KR101627462B1 - Method for improving disease resistance using CabZIP2 in plants - Google Patents
Method for improving disease resistance using CabZIP2 in plants Download PDFInfo
- Publication number
- KR101627462B1 KR101627462B1 KR1020150060833A KR20150060833A KR101627462B1 KR 101627462 B1 KR101627462 B1 KR 101627462B1 KR 1020150060833 A KR1020150060833 A KR 1020150060833A KR 20150060833 A KR20150060833 A KR 20150060833A KR 101627462 B1 KR101627462 B1 KR 101627462B1
- Authority
- KR
- South Korea
- Prior art keywords
- cabzip2
- plants
- pepper
- expression
- gene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H5/00—Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Physiology (AREA)
- Botany (AREA)
- Developmental Biology & Embryology (AREA)
- Environmental Sciences (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Peptides Or Proteins (AREA)
Abstract
본 발명은 식물체의 병 저항성 관련 고추 유래 신규 유전자 CabZIP2(Capsicum annuum bZIP transcription factor 2)에 관한 것으로서, 보다 상세하게는 CabZIP2 단백질의 발현을 조절하여 식물체의 병원균에 대한 저항성을 증진시키는 방법에 관한 것이다.
본 발명의 CabZIP2이 과발현된 형질전환 식물체(CabZIP2-OX)에서, 세균성 병원균에 대한 저항성 증가에 우수한 효과가 있음을 확인하였으므로, 인류가 이용할 수 있는 작물 등의 개량에 유용하게 활용될 수 있을 것으로 기대된다.The present invention relates to a new gene (CabzIP2 annuum bZIP transcription factor 2) derived from pepper associated with plant disease resistance, and more particularly, to a method for enhancing plant pathogen resistance by controlling the expression of CabZIP2 protein.
It has been confirmed that CabZIP2-overexpressed transgenic plant (CabZIP2-OX) of the present invention has an excellent effect in increasing the resistance to bacterial pathogens, so that it can be usefully used for improvement of crops available to mankind do.
Description
본 발명은 신규한 고추 유래 유전자 CabZIP2(Capsicum annuum bZIP transcription factor 2) 및 이를 이용한 식물체의 병 저항성을 증진시키는 방법에 관한 것이다.The present invention relates to a novel capsicum annuum bZIP transcription factor 2 (CabZIP2) derived from pepper and a method for enhancing disease resistance of a plant using the same.
식물은 고착성이라는 특징 때문에 가뭄, 고염, 병원균과 같은 환경에 지속적으로 노출된다. 이러한 환경 스트레스들은 직접적으로 식물의 성장 및 종자 생산에 해로운 영향을 끼친다. 따라서, 식물은 박테리아, 곰팡이, 바이러스, 선충류(nematode)와 같은 다양한 병원체들로부터 스스로를 보호하는 기작을 발달시켜왔다. Plants are persistently exposed to environments such as drought, high salt, and pathogens due to their stickiness characteristics. These environmental stresses directly affect plant growth and seed production. Thus, plants have developed mechanisms that protect themselves from a variety of pathogens such as bacteria, fungi, viruses, and nematodes.
방어기작은 PRR(pattern recognition receptor)에 의한 PAMP(pathogen associated molecular patterns)인식으로 활성화되기 시작한다. 식물의 병원체 인식은 이온 유출, 활성산소(ROS, reactive oxygen species) 생성, 및 방어 관련 유전자들을 유도하는 신호 유도 기작(signal transduction pathway)을 활성화하고, 이러한 반응은 식물이 병원체에 대한 저항성을 갖도록 해준다. 병원체에 대한 식물의 방어 반응은 다양한 신호 유도 기작에 의해 조절된다. The defenses begin to be activated by the recognition of pathogen associated molecular patterns (PAMP) by a small pattern recognition receptor (PRR). Plant pathogen recognition activates a signal transduction pathway that leads to ionic spillage, reactive oxygen species (ROS), and defense genes, and this response allows the plant to be resistant to pathogens . Plant defense responses to pathogens are regulated by a variety of signaling mechanisms.
식물들이 병원체의 공격을 극복하기 위한 다양한 방어 기작 중 하나는 방어 관련 유전자의 발현을 증가시켜 방어 관련 호르몬과 항균 단백질을 생성하는 것이다. One of the various defense mechanisms for plants to overcome the attack of pathogens is to increase defense gene expression to produce defensive hormones and antimicrobial proteins.
한편, 식물에 가장 많이 존재하는 전사인자 중 하나는 bZIP 단백질이다. bZIP 유전자는 모든 진핵생물에 존재하고, DNA 결합에 필요한 basic region과 이량화(dimerization)를 담당하는 leucine zipper motif를 가지며, 프로모터에 결합하기 전에 bZIP 단백질의 동종 또는 이종 이량화(homo- or hetero-dimerization)를 필요로 한다. 또한, 병원체에 대한 식물의 방어반응에 관여한다. 이러한 bZIP 전사인자에는 OsABF3, CAbZIP1 등이 포함된다.On the other hand, one of the most abundant transcription factors in plants is the bZIP protein. The bZIP gene is present in all eukaryotes, has a basic region required for DNA binding and a leucine zipper motif that is responsible for dimerization and is homo- or hetero-dimerized before binding to the promoter. dimerization. It also participates in plant defense responses to pathogens. These bZIP transcription factors include OsABF3, CAbZIP1, and the like.
이에, 이러한 bZIP 전사인자를 이용하여 가뭄, 염, 추위, 더위, 병원균과 같은 다양한 환경적 스트레스에 대한 저항성을 증진시킬 수 있는 방법에 대한 연구가 이루어지고 있는 실정이다. 환경적 스트레스에 저항성을 가진 작물의 개발은 농업 생산량 증대에 크게 기여할 것으로 기대된다. 하지만, 주로 가뭄 혹은 건조 저항성에 대한 기술에 집중되고 있기 때문에, bZIP 전사인자를 이용한 병 저항성 증진 방법에 대한 필요성이 대두되고 있다. Therefore, there is a study on a method for enhancing resistance to various environmental stresses such as drought, salt, cold, heat, and pathogen using the bZIP transcription factor. The development of crops resistant to environmental stress is expected to contribute greatly to the increase of agricultural production. However, since the technology is mainly focused on drought or dry resistance, there is a need for a method for improving disease resistance using bZIP transcription factors.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, CabZIP2이 과발현된 형질전환 식물체(CabZIP2-OX)의 세균성 병원균에 대한 저항성 증가 효과를 확인하고, 이에 기초하여 본 발명을 완성하게 되었다. Disclosure of the Invention The present invention has been conceived to solve the above-mentioned problems, and it has been confirmed that the resistance of CabZIP2 overexpressed transgenic plant (CabZIP2-OX) to bacterial pathogens is increased.
이에, 본 발명은 고추 유래의 병 저항성 단백질을 코딩하는 서열번호 1의 염기서열로 이루어진 유전자 CabZIP2, 상기 유전자 CabZIP2에 의해 코딩되는 서열번호 2의 아미노산 서열의 펩티드, 및 상기 유전자 CabZIP2를 함유하는 재조합 발현벡터를 제공하는 것을 목적으로 한다.Accordingly, the present invention provides a recombinant expression vector comprising CabZIP2 comprising the nucleotide sequence of SEQ ID NO: 1 encoding a disease-resistant protein derived from pepper, a peptide of the amino acid sequence of SEQ ID NO: 2 encoded by the gene CabZIP2, Vector. ≪ / RTI >
또한, 본 발명은 CabZIP2 단백질의 발현 또는 활성을 증가시키는 단계를 포함하는 식물체의 병 저항성 증진방법 및 상기 방법에 의해 병 저항성이 증진된 형질 전환 식물체를 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a method for promoting disease resistance of a plant comprising the step of increasing the expression or activity of a CabZIP2 protein and a transgenic plant having enhanced disease resistance by the method.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be solved by the present invention is not limited to the above-mentioned problems, and other matters not mentioned can be clearly understood by those skilled in the art from the following description.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 고추 유래의 병 저항성 단백질을 코딩하는 서열번호 1의 염기서열로 이루어진 CabZIP2(Capsicum annuum bZIP transcription factor 2) 유전자를 제공한다.In order to accomplish the object of the present invention, the present invention provides a CabZIP2 (Capsicum annuum bZIP transcription factor 2) gene comprising the nucleotide sequence of SEQ ID NO: 1 encoding a disease-resistant protein derived from pepper.
본 발명은 상기 유전자 CabZIP2에 의해 코딩되는 서열번호 2의 아미노산 서열의 펩티드를 제공한다.The present invention provides a peptide of the amino acid sequence of SEQ ID NO: 2 which is encoded by the gene CabZIP2.
본 발명은 상기에 기재된 CabZIP2 유전자를 함유하는 재조합 발현벡터를 제공한다. The present invention provides recombinant expression vectors containing the CabZIP2 gene described above.
본 발명의 일 구현예로, 상기 재조합 발현벡터는 pK2GW7, p326GFP, 또는 pGBKT7인 것을 특징으로 하는 것일 수 있다.In one embodiment of the present invention, the recombinant expression vector may be pK2GW7, p326GFP, or pGBKT7.
본 발명은 CabZIP2 단백질의 발현 또는 활성을 증가시키는 단계를 포함하는 식물체의 병 저항성 증진방법을 제공한다. The present invention provides a method for enhancing plant disease resistance comprising increasing the expression or activity of a CabZIP2 protein.
본 발명은 상기 방법에 의해 병 저항성이 증진된 형질 전환 식물체를 제공한다.The present invention provides a transgenic plant having enhanced disease resistance by the above method.
본 발명은 후보 물질을 처리한 후, CabZIP2 단백질의 발현 여부를 측정하는 단계를 포함하는, 식물체의 병 저항성 증진제 스크리닝 방법을 제공한다. The present invention provides a method for screening a plant resistance-enhancing agent, comprising the step of treating the candidate substance and measuring the expression of the CabZIP2 protein.
본 발명은 식물체의 세균성 병원균에 대한 저항성 관련 고추 유래 신규 유전자 CabZIP2에 관한 것으로서, 상기 CabZIP2이 과발현된 형질전환 식물체(CabZIP2-OX)의 병 저항성 증가효과를 확인하였는바, CabZIP2 발현 조절을 통하여 인류가 이용할 수 있는 작물 등의 개량에 유용하게 활용될 수 있을 것으로 기대된다. The present invention relates to a new gene of CabZIP2 derived from pepper associated with resistance to bacterial pathogens of plants, and it was confirmed that CabZIP2-overexpressed transgenic plant (CabZIP2-OX) It is expected that it will be useful for the improvement of available crops.
도 1은 CabZIP2(Capsicum annuum bZIP transcription factor 2) cDNA의 아미노산 서열과 다른 식물들의 bZIP 전사인자 아미노산 서열을 비교한 것이다.
도 2는 CabZIP2, CabZIP1, 및 다른 상동 단백질들의 계통도 분석 결과를 나타낸 것이다.
도 3은 Nicotiana benthamiana에서 35S:CabZIP2-GFP 과발현을 통하여 CabZIP2 단백질의 세포 내 위치를 알아본 것이다.
도 4는 CabZIP2 단백질의 Functional analysis 결과를 나타낸 것이다.
도 5는 고추 식물에서 RT-PCR을 통한 CabZIP2의 Organ-specific expression 결과를 나타낸 것이다.
도 6A는 Xcv 균주로 감염시킨 고추 잎에서 CabZIP2 유전자의 발현량을 나타낸 것이고, 도 6B 내지 6D는 각각 살리실산(SA, salicylic acid ), ethylene, methyl jasmonate를 처리한 고추 잎에서 CabZIP2 유전자의 발현량을 나타낸 것이다.
도 7은 서로 다른 Xcv 균주를 접종시킨 고추 식물에서 PR유전자의 상대적 발현량을 나타낸 것이다.
도 8은 Xcv 감염에 대한 CabZIP2-silenced 고추 식물의 증가된 감수성을 나타낸 것이다.(H: untreated healthy leaves, V: virulent strain Ds1, A: avirulent strain Bv5-4a, CaAMP1: pepper antimicrobial protein 1, CaBPR1: pepper basic PR1)
도 9는 Pseudomonas syringae pv. tomato(Pst) DC3000 감염에 대한 CabZIP2-과발현 형질전환 애기장대의 증가된 저항성을 나타낸 것으로써, 야생형 식물과 CabZIP2-과발현 형질전환 식물의 RT-PCR analysis(도 9A), Pst DC3000 접종 후 백화 현상을 관찰(도 9B), 및 세균 성장(도 9C) 결과를 나타낸 것이다.
도 10은 Pst DC3000 (105 17 cell/ml) 접종 후 야생형 식물과 형질전환 식물 잎에서 PR 유전자의 상대적 발현량을 나타낸 것이다.Figure 1 compares the amino acid sequence of CabZIP2 (Capsicum annuum bZIP transcription factor 2) cDNA with the bZIP transcription factor amino acid sequence of other plants.
Fig. 2 shows the results of the genealogical analysis of CabZIP2, CabZIP1, and other homologous proteins.
FIG. 3 shows the intracellular location of the CabZIP2 protein through the overexpression of 35S: CabZIP2-GFP in Nicotiana benthamiana.
Fig. 4 shows the functional analysis results of the CabZIP2 protein.
FIG. 5 shows organ-specific expression results of CabZIP2 by RT-PCR in pepper plants.
FIG. 6A shows the expression level of the CabZIP2 gene in the pepper leaves infected with the Xcv strain, and FIGS. 6B to 6D show the expression amounts of the CabZIP2 gene in the pepper leaves treated with salicylic acid (SA), ethylene and methyl jasmonate .
Figure 7 shows the relative expression levels of PR genes in pepper plants inoculated with different strains of Xcv.
Figure 8 shows the increased susceptibility of CabZIP2-silenced pepper plants to Xcv infection. (H: untreated healthy leaves, V: virulent strain Ds1, A: avirulent strain Bv5-4a, CaAMP1: pepper
Fig. 9 shows the results of Pseudomonas syringae pv. tomato (Pst) showed an increased resistance of the CabZIP2-overexpressing Arabidopsis to DC3000 infection, indicating RT-PCR analysis of wild-type and CabZIP2-overexpressing transgenic plants (Fig. 9A), whitening after Pst DC3000 inoculation (Fig. 9B), and bacterial growth (Fig. 9C).
Figure 10 shows the relative expression levels of PR genes in wild-type plants and transgenic plant leaves after inoculation with Pst DC3000 (105 17 cells / ml).
본 발명자들은, 식물호르몬(살리실산(SA), ethylene, 및 methyl jasmonate) 처리 조건에서 CabZIP2 발현 증가, CabZIP2 silenced된 고추에서 병원균에 대한 감염 취약, CabZIP2 과발현된 형질전환 애기장대에서 세균성 병원균에 대한 저항성 증가를 확인하고, 이에 기초하여 본 발명을 완성하였다. The present inventors have found that increasing the expression of CabZIP2 in plant hormones (salicylic acid (SA), ethylene, and methyl jasmonate) treatment conditions, susceptibility to pathogens in CabZIP2 silenced peppers, and resistance to bacterial pathogens in transgenic Arabidopsis overexpressed CabZIP2 The present invention has been completed on the basis thereof.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 고추 유래의 병 저항성 단백질을 코딩하는 신규한 유전자 CabZIP2, 유전자 CabZIP2에 의해 코딩되는 펩티드, 및 CabZIP2 유전자를 함유하는 재조합 발현벡터를 제공한다. 상기 재조합 발현벡터는 pK2GW7, p326GFP, 또는 pGBKT7일 수 있으나, 이에 제한되는 것은 아니다. The present invention provides a novel gene, CabZIP2, which encodes a disease-resistant protein derived from pepper, a peptide encoded by the gene CabZIP2, and a recombinant expression vector containing the CabZIP2 gene. The recombinant expression vector may be, but is not limited to, pK2GW7, p326GFP, or pGBKT7.
본 발명의 유전자인 CabZIP2은 differential hybridization screening을 통하여 고추로부터 분리하였으며, acidic domain을 갖는 N-말단을 가진다. 또한, 본 발명의 CabZIP2 유전자는 바람직하게는 서열번호 1의 염기서열로 이루어져 있으며, 상기 CabZIP2 유전자에 의해 코딩되는 펩티드는 바람직하게는 서열번호 2로 이루어질 수 있으나, 이에 제한되는 것은 아니다. The gene of the present invention, CabZIP2, was isolated from red pepper by differential hybridization screening and had an N-terminal with an acidic domain. In addition, the CabZIP2 gene of the present invention is preferably composed of the nucleotide sequence of SEQ ID NO: 1, and the peptide encoded by the CabZIP2 gene may preferably be SEQ ID NO: 2, but is not limited thereto.
본 발명의 일실시예에서는 CabZIP2 유전자를 분리하고, CabZIP2 단백질과 다른 bZIP 전사인자 간 아미노산 서열의 상동성을 확인하였다(실시예 1 참조). 또한, CabZIP2-GFP 과발현을 이용하여 CabZIP2 단백질이 세포질과 핵에 위치함을 확인하였고(실시예 2 참조), 효모에서 전사활성 분석을 실시하였다(실시예 3 참조). 이에 더하여, CabZIP2 유전자가 방어 반응에 관여하는지를 알아보기 위하여, 병원균 감염 및 비바이오 일리시터인 식물 호르몬을 이용하여 CabZIP2 유전자 발현량을 확인하였다(실시예 4 참조). 나아가, 식물체의 방어 반응에서 CabZIP2의 역할을 알아보기 위하여, CabZIP2-silenced 고추 식물에서 Xcv 감염에 대한 감수성 증가를 확인하였고(실시예 5 참조), CabZIP2-과발현(CabZIP2-OX) 형질전환 애기장대에서는 저항성 증가를 확인(실시예 6 참조)하여 CabZIP2 발현 또는 활성을 증가시켜 병 저항성을 증진시킬 수 있음을 밝혔다. In one embodiment of the present invention, the CabZIP2 gene was isolated and the homology of the amino acid sequence between the CabZIP2 protein and other bZIP transcription factors was confirmed (see Example 1). In addition, CabZIP2-GFP overexpression was used to confirm that the CabZIP2 protein was located in the cytoplasm and nucleus (see Example 2), and the transcriptional activity was analyzed in yeast (see Example 3). In addition, in order to investigate whether the CabZIP2 gene is involved in the defense reaction, the expression level of CabZIP2 gene was confirmed by using plant hormone, which is a pathogenic infection and non-biologic (see Example 4). Furthermore, in order to investigate the role of CabZIP2 in the defense response of plants, CabZIP2-silenced pepper plants were found to be susceptible to Xcv infection (see Example 5), and CabZIP2-overexpressed (CabZIP2-OX) (See Example 6) to increase the expression or activity of CabZIP2, thereby enhancing disease resistance.
따라서, 본 발명은 CabZIP2 단백질의 발현 또는 활성을 증가시키는 단계를 포함하는 식물체의 병 저항성 증진방법을 제공한다. 상기 증진방법은 식물체에 CabZIP2 단백질의 발현 또는 활성을 증가시키는 후보물질을 처리하는 단계 및 비처리군에 비해 발현 또는 활성이 증가하였는지 비교하는 단계를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. Accordingly, the present invention provides a method of enhancing plant disease resistance comprising increasing the expression or activity of a CabZIP2 protein. The promoting method may include a step of treating a candidate substance that increases the expression or activity of the CabZIP2 protein in a plant, and a step of comparing the expression or activity of the plant with that of the untreated group, but the present invention is not limited thereto.
본 발명의 다른 측면에 있어서, 본 발명은 CabZIP2 단백질의 발현 또는 활성이 증가되어 병 저항성이 증진된 형질전환 식물체를 제공한다. In another aspect of the present invention, there is provided a transgenic plant in which the expression or activity of the CabZIP2 protein is increased to increase disease resistance.
본 발명에 따른 식물체는 벼, 밀, 보리, 옥수수, 콩, 감자, 팥, 귀리, 수수를 포함하는 식량작물류; 애기장대, 배추, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파, 당근을 포함하는 채소작물류; 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무우, 들깨, 땅콩, 유채를 포함하는 특용작물류; 사과나무, 배나무, 대추나무, 복숭아, 양다래, 포도, 감귤, 감, 자두, 살구, 바나나를 포함하는 과수류; 장미, 글라디올러스, 거베라, 카네이션, 국화, 백합, 튤립을 포함하는 화훼류; 및 라이그라스, 레드클로버, 오차드그라스, 알파알파, 톨페스큐, 페레니얼라이그라스를 포함하는 사료작물류 등일 수 있으며, 바람직하게는 애기장대(Arabidopsis)일 수 있으나, 이에 제한되는 것은 아니다.The plant according to the present invention is a food crop including rice, wheat, barley, corn, soybean, potato, red bean, oats, sorghum; Vegetable crops including Arabidopsis, cabbage, radish, red pepper, strawberry, tomato, watermelon, cucumber, cabbage, melon, squash, onions, onions and carrots; Special crops including ginseng, tobacco, cotton, sesame seed, sugar cane, beet, perilla, peanut, and rapeseed; Fruit trees including apple trees, pears, jujube trees, peaches, sheep grapes, grapes, citrus fruits, persimmons, plums, apricots, and bananas; Roses, gladiolus, gerberas, carnations, chrysanthemums, lilies, tulips; And feed crops including rice, red clover, orchardgrass, alpha-alpha, tall fescue, perennial rice, and the like, preferably Arabidopsis, but are not limited thereto.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the following examples.
[준비예][Preparation example]
준비예 1. 식물 및 성장 조건Preparation Example 1. Plant and Growth Conditions
고추(Capsicum annuum L., cv. Nockwang), 애기장대(Arabidopsis thaliana, ecotype Col-0), 및 담배(Nicotiana benthamiana) 식물을 형광등(130 μmol photons m-2 s-1) 하 24℃, 60% 습도, 16h light cycle/8h dark cycle, 그리고 물이끼, 진주석, 질석의 부피비가 9:1:1인 조건에서 성장시켰다. Arabidopsis thaliana 종자는 in vitro 배양 전, 70% 에탄올로 1분 동안 표면을 멸균시켰다. 종자를 2% 수산화나트륨(sodium hydroxide)으로 10분 동안 처리한 후 멸균 증류수로 10회 세척하였고, 1% sucrose가 첨가된 MS 배지(Murashige and Skoog agar)에 파종하여 24℃ growth chamber에서 2주 동안 16h light cycle 및 8h dark cycle에 노출시켰다.(130 μmol photons m -2 s -1 ) at 24 ° C and 60% under the fluorescent lamp (Capsicum annuum L., cv. Nockwang), Arabidopsis thaliana (ecotype Col-0) and tobacco (Nicotiana benthamiana) Humidity, 16 h light cycle / 8 h dark cycle, and a volume ratio of molybdenum, tin, and vermiculite of 9: 1: 1. Arabidopsis thaliana seeds were sterilized with 70% ethanol for 1 minute before in vitro culture. The seeds were treated with 2% sodium hydroxide for 10 minutes, washed 10 times with sterile distilled water, and seeded on MS medium (Murashige and Skoog agar) supplemented with 1% sucrose. 16h light cycle and 8h dark cycle.
준비예 2. 병원균 접종Preparation Example 2. Inoculation of pathogens
고추에 독성(Ds1) 및 비독성(Bv5-4a)을 나타내는 Xanthomonas campestris. pv. vesicatoria(Xcv) 균주를 사용하였다. 고추잎에 접종할 세균 현탁액을 준비하기 위하여, 세균을 28℃ YN(yeast-nutrient) broth(5 g yeast extract, 8 g nutrient broth, 및 1 L H2O)에서 16시간 동안 배양하였다. 세균 현탁액은 접종 전 멸균 수돗물로 108 cfu(colony forming units)/ml 농도로 조절하였다. 6잎 단계(six-leaf stage) 고추 식물 잎의 배축면(abaxial side)에 세균 현탁액을 침투시켜 접종하였다. 대조군은 잎에 멸균 수돗물을 침투시켰다. 대조군과 세균을 접종한 고추 식물을 growth room에서 배양하였다.Xanthomonas campestris showing toxicity (Ds1) and non-toxicity (Bv5-4a) to red pepper. pv. Vesicatoria (Xcv) strains were used. Bacteria were cultured in yeast-nutrient broth (5 g yeast extract, 8 g nutrient broth, and 1 LH 2 O) for 28 h at 28 ° C to prepare bacterial suspensions to be inoculated on pepper leaves. The bacterial suspension was adjusted to 10 8 cfu (colony forming units) / ml with sterile tap water before inoculation. Six-leaf stage pepper The bacterial suspension was inoculated on the abaxial side of the plant leaf. The control infiltrated the leaves with sterile tap water. Control and bacterial inoculated pepper plants were cultured in growth room.
또한, 애기장대에 독성 병원균 Pseudomonas syringae pv. tomato DC3000을 사용하였다. 애기장대 잎에 접종할 세균 현탁액을 준비하기 위하여, 28℃ King's B medium broth에서 overnight하여 배양하였다. 5주된 잎에 10 mM MgCl2의 Pst DC3000 (1 × 105 cfu/ml) 세균현탁액을 주사기로 접종하였다. 접종 후, 애기장대 식물을 100% 습도 이하로 24시간 동안 유지한 다음, 같은 조건의 growth chamber에서 배양하였다. In addition, toxic pathogen Pseudomonas syringae pv. tomato DC3000 was used. To prepare a bacterial suspension to be inoculated on Arabidopsis leaf, it was cultured overnight at 28 ° C in King's B medium broth. 5-week-old leaves were inoculated with a 10 mM MgCl 2 Pst DC3000 (1 × 10 5 cfu / ml) bacterial suspension with a syringe. After inoculation, Arabidopsis plants were maintained at 100% humidity or less for 24 hours and then cultured in growth chambers of the same conditions.
세균 밀도는 28℃에서 kanamycin (50 μg/mL) 및 rifampicin(50 μg/mL) 첨가 King's B medium에서 연속적으로 희석함으로써 결정하였다. 데이터는 three replicate log (cfu cm- 2)의 평균 ± 표준편차이다. 감염된 각각의 잎에서 세균 성장은 Katagiri et al. (2002) 방법에 따라 측정되었다. Bacterial density was determined by continuous dilution in King's B medium supplemented with kanamycin (50 μg / mL) and rifampicin (50 μg / mL) at 28 ° C. Data are mean ± standard deviation of three replicate log (cfu cm - 2 ). Bacterial growth in each infected leaf was assessed by Katagiri et al. (2002) method.
준비예 3. 식물 호르몬 처리Preparation Example 3. Plant hormone treatment
6잎 단계(six-leaf stage) 고추 식물은 마개로 된 500㎖ 유리병에 밀폐시켰고, 리터당 5 μL의 최종 농도를 얻기 위해 에틸렌을 주입하였다. Methyl jasmonate (MeJA, 100 μM) 및 salicylic acid (SA, 5mM)을 6잎 단계(six-leaf stage) 고추 식물에 분사한 후, MeJA 처리한 고추 식물을 비닐 백에서 배양하였다. 대조군에는 물을 분사하였다. 대조군 및 실험군 고추식물은 하루에 16시간 동안 약 80 μmol photons m-2s-1(흰색 형광 램프)인 27℃ ± 1℃ growth room에서 배양하였다. Six-leaf stage The pepper plants were sealed in a capped 500 mL glass bottle and ethylene was injected to obtain a final concentration of 5 μL per liter. Methyl jasmonate (MeJA, 100 μM) and salicylic acid (SA, 5 mM) were sprayed onto the six-leaf stage pepper plants and MeJA-treated red pepper plants were cultured in plastic bags. The control group was sprayed with water. Control and experimental red pepper plants were cultured in a growth chamber at 27 ° C ± 1 ° C for 16 hours per day at approximately 80 μmol photons m -2 s -1 (white fluorescent lamp).
준비예 4. RNA 분리, RT-PCR, 및 real-time qRT-PCR 분석
RNeasy Mini kit (Qiagen, Valencia, CA, USA)를 이용하여 세균성 병원균 또는 식물 호르몬으로 처리한 고추 잎 조직에서 전체 RNA를 분리하였다. Total RNA was isolated from red pepper leaf tissues treated with bacterial pathogens or plant hormones using RNeasy Mini kit (Qiagen, Valencia, CA, USA).
DNA(genomic DNA)를 제거하기 위하여, 모든 RNA 샘플을 RNA-free DNase로 처리하였다. 분광광도계(spectrophotometer)를 이용하여 정량한 후, Transcript First Strand cDNA Synthesis kit (Roche, Indianapolis, IN, USA)를 이용하여 1 μg total RNA를 cDNA를 합성에 사용하였다. 이와 병행하여, 역전사효소 없이 cDNA를 합성하였고, cDNA 샘플의 genomic DNA에 의한 오염 가능성을 배제하기 위하여 qRT-PCR을 실시하였다. 합성된 cDNA는 iQTM SYBR Green Supermix와 특이적인 프라이머를 이용한 CFX96 TouchTM Real-Time PCR detection system (Bio-Rad, Hercules, CA, USA)으로 증폭되었다. 모든 반응은 3회 실시하였다. PCR은 다음과 같이 수행하였다: 5분 동안 95℃, 20초 동안 95℃에서 45 cycles, 20초 동안 60℃, 및 20초 동안 72℃. 각 유전자의 발현값은 ΔΔCt method로 계산하였다. 타겟 유전자 전사의 상대적 수준은 내부 대조군 유전자(18S rRNA, Actin1, 및 EF1α)를 이용하여 정규화하였다. 이용한 프라이머 염기서열은 표 1에 나타낸 바와 같다.To remove DNA (genomic DNA), all RNA samples were treated with RNA-free DNase. After quantification using a spectrophotometer, 1 μg total RNA was used for cDNA synthesis using the Transcript First Strand cDNA synthesis kit (Roche, Indianapolis, Ind., USA). In parallel, cDNA was synthesized without reverse transcriptase, and qRT-PCR was performed to exclude the possibility of contamination of cDNA samples with genomic DNA. The synthesized cDNA was amplified with a CFX96 Touch TM Real-Time PCR detection system (Bio-Rad, Hercules, Calif., USA) using iQ ™ SYBR Green Supermix and specific primers. All reactions were performed in triplicate. PCR was performed as follows: 95 cycles of 5 minutes at 95 C, 45 cycles at 95 C for 20 seconds, 60 C for 20 seconds, and 72 C for 20 seconds. Expression of each gene was calculated by the ΔΔCt method. The relative levels of target gene transcription were normalized using internal control genes (18S rRNA, Actinl, and EFl [alpha]). The primer sequences used were as shown in Table 1.
[실시예][Example]
실시예 1. CabZIP2 유전자 분리 및 서열 분석Example 1. Isolation and Sequence Analysis of CabZIP2 Gene
새로운 병원균 유도 고추 유전자를 분리하기 위하여, 약독주(avirulent strain)인 Bv5-4a로 감염된 잎을 이용하여 구축한 cDNA library의 혼성화 검사(hybridization screening)를 실시하였고, 고추 병원균-유도 유전자로 추정되는 것을 분리하였다. In order to isolate the new pathogen-induced red pepper genes, hybridization screening of cDNA library constructed with avirulent strain Bv5-4a-infected leaves was performed and the presumed pathogen-induced gene Respectively.
고추 CabZIP2 cDNA의 서열과 아미노산 배열을 기초로 CabZIP2 (Capsicum annuum bZIP transcription factor 2) 유전자를 디자인하였다. CabZIP2 클론은 1243 bp이고, 추정된 아미노산 서열은 핵 위치신호(NLS, nuclear localization signal)를 포함하는 344개 아미노산의 단백질을 암호화하였다. CabZIP2 (Capsicum annuum bZIP transcription factor 2) gene was designed based on the sequence and amino acid sequence of pepper CabZIP2 cDNA. The CabZIP2 clone was 1243 bp, and the deduced amino acid sequence encoded a 344 amino acid protein containing the nuclear localization signal (NLS).
서열 분석으로 CabZIP2 도메인이 산성 도메인을 포함하는 N-말단 영역, bZIP 영역, 및 C-말단 영역을 포함하고 있음을 알 수 있었다. 59개 아미노산으로 구성되어 있고 CabZIP2의 중심 영역에 존재하는 bZIP 도메인은 다양한 식물 단백질의 특징이다. Sequence analysis revealed that the CabZIP2 domain contained an N-terminal region, an bZIP region, and a C-terminal region containing an acidic domain. The bZIP domain, which is composed of 59 amino acids and is located in the central region of CabZIP2, is a feature of various plant proteins.
도 1에 나타낸 바와 같이, 서로 다른 식물 종에서 6가지 bZIP 전사 인자 패밀리와 함께 CabZIP2의 아미노산 서열 정렬 및 비교로 이러한 bZIP 단백질들이 유사한 류신 지퍼 구조(leucine zipper structural signature)를 가지고 있음을 알 수 있었다. 예상된 CabZIP2 (accession no. AHI85726)는 감자 VIP1-like 단백질(accession no. XP_006362824)과 86.3 %, tobacco RSG 단백질(accession no. BAA97100) 및 토마토 VIP1-like 단백질(accession no. XP_004237777)과 85.2%, bZIP transcriptional activator(accession no. ACB30357)와 60.2%, Arabidopsis VIP1 단백질(accession no. NP_001237194)과 53.53%, soybean bZIP131 단백질(accession no. NP_001237194)과 52.3%의 동일성을 가졌다. 이러한 서열 차이는, 도 2에 나타낸 바와 같이, 계통수를 반영하고, CabZIP2는 CabZIP (accession no. ACB30357; 73% 동일성 및 85% 유사성)를 포함하는 6개의 VIP1-like 단백질과 같은 분기로 그룹지어졌다는 것을 반영하였다. 특히, 이전 연구에서 분리한 CabZIP1(accession no. AAX20030; Lee et al., 2006a)는 CabZIP2와 19.45% 동일성을 가지고, 서로 다른 분기에 위치하였다. 이는 고추로부터 분리한 CabZIP2는 신규한 유전자임을 나타내는 것이다. As shown in Figure 1, amino acid sequence alignment and comparison of CabZIP2 with the six bZIP transcription factor families in different plant species revealed that these bZIP proteins have a similar leucine zipper structural signature. The expected CabZIP2 (accession No. AHI85726) was 85.2% with 86.3% potato VIP1-like protein (accession no. XP_006362824), tobacco RSG protein (accession no. BAA97100) and tomato VIP1-like protein (accession No. XP_004237777) The identity was 52.3% with bZIP transcriptional activator (accession no. ACB30357), 53.53% with Arabidopsis VIP1 protein (accession number NP_001237194) and soybean bZIP131 protein (accession no. NP_001237194). This sequence difference reflects the phylogenetic tree, as shown in Figure 2, and CabZIP2 is grouped into six VIP1-like proteins, including CabZIP (accession No. ACB30357; 73% identity and 85% similarity) . In particular, CabZIP1 (accession no. AAX20030; Lee et al., 2006a) isolated from previous studies has 19.45% identity to CabZIP2 and is located in different branches. This indicates that CabZIP2 isolated from pepper is a novel gene.
실시예 2. CabZIP2의 세포 내 위치Example 2. Intracellular location of CabZIP2
CabZIP2 단백질의 세포 내 위치를 확인하기 위하여, 35S 프로모터 조절 하에 CabZIP2의 cDNA에 녹색 형광 단백질(GFP, green fluorescent protein) 서열을 융합하였다. To confirm the intracellular location of the CabZIP2 protein, a green fluorescent protein (GFP) sequence was fused to the cDNA of CabZIP2 under the control of 35S promoter.
종결코돈 없이 CabZIP2 유전자 암호화 부위를 GFP-fused binary vector p326GFP로 삽입하였고, 그 구조체를 운반하는 Agrobacterium tumefaciens 균주 GV3101를 p19 균주(1:1 농도비; OD600 = 0.5)와 결합시켜 5주된 담배(N. benthamiana) 잎에 함께 침투시켰다. 침투 2일 후 leaf disc를 자르고, 잎의 하표피(lower epidermis) 세포를 공초점 레이저-주사 현미경(confocal laser-scanning microscope) LSM 700 (Carl Zeiss, Germany)으로 분석하였다. CabZIP2 단백질의 flg22-유도 relocalization을 연구하기 위하여, CabZIP2-GFP를 발현하는 잎에 적어도 분석 1시간 전에 10 μM flg22 펩타이드를 침투시켰다.Without a stop codon was inserted into the gene CabZIP2 encryption area with GFP-fused binary vector p326GFP, the Agrobacterium tumefaciens strain GV3101 carrying the p19 strain structure:; was coupled with (1: 1 concentration ratio of OD 600 = 0.5) 5 primary tobacco (N. benthamiana) leaves. Two days after infiltration, the leaf discs were cut and the lower epidermis cells of the leaves were analyzed by confocal laser-scanning microscope LSM 700 (Carl Zeiss, Germany). In order to study the flg22-induced relocalization of the CabZIP2 protein, 10 μM flg22 peptide was infiltrated into the leaves expressing CabZIP2-GFP at least 1 hour before analysis.
그 결과, 도 3A에 나타낸 바와 같이, 담배 표피세포(epidermal cell)에서 35S:CabZIP2-GFP 융합 단백질은 핵 및 세포질에서 GFP 신호를 생성하였고, DAPI 염색 결과와 일치하였다. 이를 통하여 CabZIP2가 핵 뿐만 아니라 세포질에도 위치하는 단백질임을 알 수 있었다. As a result, as shown in Fig. 3A, the 35S: CabZIP2-GFP fusion protein in the tobacco epidermal cell produced GFP signal in nucleus and cytoplasm, consistent with DAPI staining results. This suggests that CabZIP2 is a protein located not only in the nucleus but also in the cytoplasm.
도 1은 CabZIP2가 다른 식물 종에 VIP1-like 단백질에 높은 상동성을 가지고있음을 보여주었다. Djamei et al.(2007)은 VIR1이 박테리아 PAMP인 flg22에 의해 세포질에서 핵까지 재배치된다고 제안하였다. CabZIP2 위치가 박테리아 PAMP의 영향을 받는지를 확인하기 위하여, flg22 처리되어 35S:CabZIP2-GFP를 발현하는 담배 잎을 처리하였다.Figure 1 shows that CabZIP2 has high homology to VIP1-like proteins in other plant species. Djamei et al. (2007) suggested that VIR1 is rearranged from the cytoplasm to the nucleus by flg22, a bacterial PAMP. In order to determine whether the position of CabZIP2 was affected by bacterial PAMP, the tobacco leaves treated with flg22 and treated with 35S: CabZIP2-GFP were treated.
그 결과, 도 3B에 나타낸 바와 같이, CabZIP2의 위치는 변화하지 않았다. 핵과 세포질에서 형광신호가 탐지되었으므로, PAMP가 CabZIP2 위치를 바꾸지 않았음을 확인하였다. CabZIP2 단백질의 위치가 PAMP의 영향을 받지 않았지만, CabZIP2 단백질 발현량이 핵에서 기능하기에 충분하다는 것을 알 수 있었다.As a result, as shown in Fig. 3B, the position of CabZIP2 did not change. We confirmed that PAMP did not change the position of CabZIP2 because fluorescent signals were detected in nucleus and cytoplasm. Although the position of CabZIP2 protein was not affected by PAMP, it was found that the amount of CabZIP2 protein expression was sufficient to function in the nucleus.
실시예 3. 효모에서 CabZIP2의 전사활성화 분석(transactivation assay)Example 3. Transactivation assay of CabZIP2 in yeast [
전사 인자들은 프롤린, 글루타민, 또는 산성 아미노산이 풍부한 활성 도메인(activation domain)을 가진다. 하지만, 모든 활성 도메인이 이러한 것은 아니다.Transcription factors have a proline, glutamine, or acidic amino acid-rich activation domain. However, not all active domains are such.
CabZIP2 단백질이 효모에서 전사활성자(transactivator)로 기능할 수 있는지 확인하기 위하여, 도 4A에 나타낸 바와 같이, 일련의 CabZIP2 유전자 결실 구조를 Saccharomyces cerevisiae ADH1 프로모터 조절 하에 발현되는 효모 GAL4 DNA 결합 도메인을 포함하는 pGBKT7 vector(Clontech, Palo Alto, CA)에 융합시켰다. 융합 단백질은 GAL4-responsive 프로모터(BF: 1-344, BN: 1-130, BZ: 131-260, BC: 261-334)의 조절 하에 nutritional reporter gene(ADE1 및 HIS3)의 integrated copies를 운반하는 Saccharomyces cerevisiae 균주 ADH1에서 발현되었다. 따라서, CabZIP2 전사활성화는 GAL4 프로모터에 의해 Ade1 및 His3가 발현되는 Saccharomyces cerevisiae 균주 AH109에서 조사하였다. 효모 세포는 GAL4-CabZIP2 융합 유전자를 운반하는 발현 벡터(expression vector)로 형질전환시켰다. 전사활성화는 형질전환된 효모 세포를 선택 배지(SD [-Ade,-His, -Leu, -Trp])로 옮겨, SD 배지에서 성장하는 효모 세포에 의해 확인할 수 있었다. To confirm that the CabZIP2 protein could function as a transactivator in yeast, a series of CabZIP2 gene deletion constructs were constructed containing the yeast GAL4 DNA binding domain expressed under the control of the Saccharomyces cerevisiae ADH1 promoter, as shown in Figure 4A pGBKT7 vector (Clontech, Palo Alto, Calif.). Fusion proteins were synthesized from Saccharomyces cells carrying integrated copies of the nutritional reporter gene (ADE1 and HIS3) under the control of the GAL4-responsive promoter (BF: 1-344, BN: 1-130, BZ: 131-260, BC: 261-334) S. cerevisiae strain ADH1. Thus, CabZIP2 transcription activation was investigated in Saccharomyces cerevisiae strain AH109 in which Adel and His3 were expressed by the GAL4 promoter. Yeast cells were transformed with an expression vector carrying the GAL4-CabZIP2 fusion gene. Transcriptional activation was confirmed by transferring the transformed yeast cells to the selective medium (SD [-Ade, -His, -Leu, -Trp]) by yeast cells growing in SD medium.
다른 bZIP 전사인자들과 마찬가지로, CabZIP는 N-말단 영역에 산성 도메인을 포함한다. 산성 전사활성 도메인은 진핵 생물에서 공통적인 기능을 한다. 도 4A에 나타낸 바와 같이, BF 또는 BN을 포함하는 구조를 운반하는 효모 세포들은 선택 배지(selection medium)에서 잘 자랐고, 이를 통하여 ADE1 및 HIS3 reporter 유전자의 발현이 CabZIP2 N-말단 도메인에 의해 활성화되었음을 알 수 있었다. 산성 도메인을 포함하는 CabZIP2 N-말단 영역은 효모에서 전사활성 도메인으로써의 기능을 한다. 대조적으로, bZIP 영역(BZ: 131-260) 및 C-말단 영역(amino acids 261-334)을 나타내는 구조는 선택 배지에서 효모가 성장하지 않았다. 이러한 결과로부터 산성 도메인을 포함하는 CabZIP2 N-말단 영역이 효모에서 전사 활성자 역할을 할 수 있음을 알 수 있었다.Like other bZIP transcription factors, CabZIP contains an acidic domain at the N-terminal region. The acidic transcriptional activation domain is a common function in eukaryotes. As shown in FIG. 4A, yeast cells carrying the BF or BN-containing construct grew well in the selection medium, indicating that the expression of the ADE1 and HIS3 reporter genes was activated by the CabZIP2 N-terminal domain I could. The CabZIP2 N-terminal region containing the acidic domain functions as a transcriptionally active domain in yeast. In contrast, the structure representing the bZIP region (BZ: 131-260) and the C-terminal region (amino acids 261-334) did not grow yeast in the selective medium. These results indicate that the N-terminal region of CabZIP2 containing the acidic domain can act as a transcription activator in yeast.
많은 연구들은 bZIP 전사 인자들이 Homo sapiens, Drosophila melanogaster, Saccharomyces cerevisiae, 및 Arabidopsis thaliana를 포함하는 서로 다른 종에서 이합체화(dimerization)를 선호한다고 보고하고 있다. 대부분의 다른 bZIP 전사 인자들과 달리, subfamily I members는 이종이량체(heterodimer)보다는 동종이량체(homodimers)를 형성할 것으로 예상되었다. CabZIP2는 bZIP의 subfamily I을 포함하므로, 이분자 형광 상보(BiFC, bimolecular fluorescence complementation)분석으로 CabZIP2의 동종이량화를 확인하였다. CabZIP2의 동종이량화(homodimerization)를 확인하기 위하여 담배(N. benthamiana) 잎에서 Agrobacterium-매개 과발현 분석을 실시하였다. BiFC 분석의 자세한 방법은 다음과 같다.Many studies have reported that bZIP transcription factors prefer dimerization in different species including Homo sapiens, Drosophila melanogaster, Saccharomyces cerevisiae, and Arabidopsis thaliana. Unlike most other bZIP transcription factors, subfamily I members were expected to form homodimers rather than heterodimers. Since CabZIP2 contains the subfamily I of bZIP, homozygosity of CabZIP2 was confirmed by BiFC (bimolecular fluorescence complementation) analysis. Agrobacterium-mediated overexpression analysis was performed on tobacco (N. benthamiana) leaves to confirm the homodimerization of CabZIP2. Detailed methods of BiFC analysis are as follows.
BiFC 구조체를 만들기 위해서, 종결코돈 없이 CabZIP2의 full length cDNA를 35S-SPYNE(R)173 및 35S-SPYCE(M) 벡터에 서브클로닝 하였다. 과발현을 위하여, Agrobacterium tumefaciens 균주 GV3101 harboring 각각의 구조체를 유전자 침묵(gene silencing)을 막기 위하여 p19 균주와 섞었고, 1ml needless syringe를 이용하여 5주된 담배(N. benthamiana) 잎의 배축면(abaxial side)에 침투시켰다. 현미경 분석을 위하여, 침투 4일 후에 leaf disc를 잘랐다. 잎의 하표피(lower epidermis) 세포를 공초점 현미경(confocal microscopy, model Zeiss 510 UV/Vis Meta)으로 분석하였다.To construct a BiFC construct, the full length cDNA of CabZIP2 was cloned into the 35S-SPYNE (R) 173 and 35S-SPYCE (M) vectors without a stop codon. For overexpression, the constructs harboring Agrobacterium tumefaciens strain GV3101 were mixed with the p19 strain to prevent gene silencing and cultured on the abaxial side of a 5-week-old tobacco (N. benthamiana) leaf using a 1 ml needless syringe. ≪ / RTI > For microscopic analysis, leaf discs were cut 4 days after infiltration. The lower epidermis cells of the leaves were analyzed by confocal microscopy (model Zeiss 510 UV / Vis Meta).
그 결과, 도 4B에 나타낸 바와 같이, 세포질과 핵에서의 CabZIP2:SPYCE와 CabZIP2:SPYNE의 공동발현은 노란색 형광으로 나타났고, 이를 통하여 CabZIP2가 동종이량체로 기능함을 알 수 있었다. As a result, as shown in FIG. 4B, the coexpression of CabZIP2: SPYCE and CabZIP2: SPYNE in the cytoplasm and nucleus appeared as yellow fluorescence, indicating that CabZIP2 functions as a homodimer.
이러한 전사인자 패밀리에서 bZIP의 단백질 이량화에는 cis-acting elements 인식을 필요로 하는 leucine zipper motif가 관여한다. 대조적으로, 몇몇 bZIP 전사인자들은 이종이량체 형성 시 DNA-결합 활성을 잃는다.In this transcription factor family, the protein dimerization of bZIP involves a leucine zipper motif that requires recognition of cis-acting elements. In contrast, some bZIP transcription factors lose DNA-binding activity during heterodimerization.
실시예 4. 고추 잎에서 세균성 병원균 감염 및 비바이오 일리시터(abiotic elicitor)에 의한 CabZIP2 유전자 발현 유도Example 4. Induction of CabZIP2 gene expression by bacterial pathogen infection and abiotic elicitor in pepper leaves
잎, 줄기, 뿌리, 및 꽃과 같은 고추 조직에서 CabZIP2이 항상 발현되는지 확인하기 위하여 RT-PCR 분석을 수행하였다(준비예 4 참조). RT-PCR analysis was performed to determine whether CabZIP2 was always expressed in red pepper tissues such as leaves, stems, roots, and flowers (see Preparation Example 4).
그 결과, 도 5에 나타낸 바와 같이, CabZIP2은 상기 모든 고추 조직에서 항상 발현되었고, 특히, 줄기와 뿌리에서 CabZIP2 발현량이 높음을 확인하였다. As a result, as shown in Fig. 5, CabZIP2 was always expressed in all of the above red pepper tissues, and in particular, CabZIP2 expression was found to be high in stem and root.
CabZIP2이 고추와 Xcv의 친화적(compatible) 및 불친화적(incompatible) 상호작용에 따라 유도되는 것인지 확인하기 위하여, 독성 및 비독성 Xcv 균주로 감염시킨 고추 잎에서 CabZIP2 발현량을 분석하였다.To determine whether CabZIP2 was induced by the compatible and incompatible interactions of pepper and Xcv, the expression of CabZIP2 was analyzed in pepper leaves infected with toxic and non-toxic Xcv strains.
그 결과, 도 6A에 나타낸 바와 같이, 독성 균주 CabZIP2로 감염시킨 고추 잎에서는 접종 후 24시간 동안 눈에 띄는 증상이 없었지만, 접종 6일 후에 백화와 괴저 증상이 관찰되었다. 대조적으로, 비독성 균주 Bv5-4a로 감염된 고추 잎은 접종 18시간 후 과민반응(hypersensitive response)을 나타냈다. 이러한 다양한 질병 반응은 CabZIP2의 차별적 유도로 인한 것이다. As a result, as shown in FIG. 6A, the pepper leaves infected with the toxic strain CabZIP2 had no visible symptoms for 24 hours after inoculation, but white matter and gangrene symptoms were observed 6 days after the inoculation. In contrast, pepper leaves infected with non-toxic strain Bv5-4a showed a hypersensitive response 18 hours after inoculation. These various disease responses are due to differential induction of CabZIP2.
친화적 상호작용(compatible interaction)에서, CabZIP2 전사는 접종 후 2시간 만에 처음 탐지되었고, 6시간에 최고 수준이었다. 불친화적 상호작용(incompatible interaction)에서, CabZIP2 전사는 친화적 상호작용 동안 관찰된 것에 비하여 더 빠르고 강력하게 축적되었다. CabZIP2 유전자는 접종 후 0.5시간 만에 탐지될 수 있었고, 발현이 조금씩 점진적으로 감소하였다. 식물과 미생물이 상호작용하는 초기단계에 발생한 방어신호는 병원균에 대한 효과적인 방어반응을 위해 필요하고, PR 유전자의 전사 활성을 유도하는 terminal pathway 중 하나와 결합할 수 있다. 친화적 및 불친화적 상호작용에서, 강한 CabZIP2 발현은 각각 접종 후 0.5 및 2시간에 발생하였다. In a compatible interaction, CabZIP2 transcription was first detected at 2 hours post-inoculation and at 6 hours post-transcription. In incompatible interactions, CabZIP2 transcription accumulated faster and more potently than observed during the affinity interaction. The CabZIP2 gene could be detected within 0.5 hours of inoculation and the expression gradually decreased gradually. Defensive signals in the early stages of plant and microbial interaction are needed for an effective defense response against pathogens and can bind to one of the terminal pathways leading to the transcriptional activity of the PR gene. In a friendly and unfriendly interaction, strong CabZIP2 expression occurred at 0.5 and 2 hours after inoculation, respectively.
본 실시예에서, CaBPR1 및 CaAMP1를 포함하는 고추 PR 유전자 전사는 세균성 병원균에 의해 유도되었으므로, 이러한 유전자들의 발현 양상을 CabZIP2와 비교하였다. In this example, the expression of these genes was compared with CabZIP2 since the pepper PR gene transcription, including CaBPR1 and CaAMP1, was induced by bacterial pathogens.
그 결과, 도 7에 나타낸 바와 같이, CaBPR1 및 CaAMP1 발현은 CabZIP2 유도 후에 발생하였고, CabZIP2 전사는 친화적 상호작용에 비하여 불친화적 상호작용에서 더 빠르고 강력하게 유도되었다. 이를 통해서 CabZIP2 유전자가 방어반응에 관여함을 알 수 있었다.As a result, as shown in Fig. 7, expression of CaBPR1 and CaAMP1 occurred after CabZIP2 induction, and CabZIP2 transcription was induced faster and more strongly in unfriendly interaction than affinity interaction. This suggests that the CabZIP2 gene is involved in the defense reaction.
식물 호르몬인 SA(salicylic acid), ethylene, 및 MeJA(methyl jasmonate)는 병원균 감염시 축적되고 신호 전달 경로(signal transduction pathway)에 관여하는 방어 관련 호르몬이다. 이러한 방어 관련 호르몬들은 식물에서 병 저항성을 가진다. CabZIP2 발현에 대한 이러한 호르몬들의 효과를 평가하기 위하여, SA, ethylene, 또는 MeJA를 고추 잎에 처리하였다. SA는 기생영양 병원균(biotrophic pathogen)에 저항하도록 하는 신호전달 경로의 핵심 인자인 것으로 알려져 있다. SA 처리는, 도 6B에 나타낸 바와 같이, 처리 0.5-12시간 후에 CabZIP2를 매우 촉진시켰다. 에틸렌 처리는, 도 6C에 나타낸 바와 같이, 0.5 시간 후에 CabZIP2 전사가 처음 탐지되었고, 처리 후 6-12 시간 사이에 빠르게 증가하였다. MeJA를 처리한 고추 잎에서는, 도 6D에 나타낸 바와 같이, CabZIP2 전사가 처리 후 0.5 시간에 축적되기 시작하였고, 2-12 시간에 최고 수준에 도달하였다. CabZIP2 발현은 불친화적 상호작용에서 더 빠르고 강력하게 유도되었고, 다음으로는 방어 호르몬을 처리한 순이었다. 따라서, CabZIP2 유전자가 방어 반응에 관여함을 알 수 있었다.The plant hormones SA (salicylic acid), ethylene, and MeJA (methyl jasmonate) are defense-related hormones that accumulate during pathogen infection and are involved in the signal transduction pathway. These defense-related hormones have disease resistance in plants. To evaluate the effect of these hormones on the expression of CabZIP2, SA, ethylene, or MeJA was applied to pepper leaves. SA is known to be a key factor in signal transduction pathways to resist biotrophic pathogens. SA treatment significantly promoted CabZIP2 after 0.5-12 hours of treatment, as shown in Figure 6B. Ethylene treatment, as shown in Figure 6C, detected CabZIP2 transcription first after 0.5 hours and rapidly increased between 6-12 hours after treatment. In MeJA-treated pepper leaves, CabZIP2 transcription began to accumulate at 0.5 hour after treatment and reached a peak level in 2-12 hours, as shown in Figure 6D. Expression of CabZIP2 was induced faster and more strongly in unfriendly interactions, followed by treatment with defense hormones. Therefore, it was found that the CabZIP2 gene was involved in the defense reaction.
실시예 5. CabZIP2-silenced 고추 식물에서 Xcv 감염에 대한 증가된 감수성 확인Example 5. Identification of increased susceptibility to Xcv infection in CabZIP2-silenced pepper plants
상기 실시예 4에 나타낸 바와 같이, 고추 잎에서 CabZIP2 유전자 발현이 Xcv 감염과 방어 신호를 유발하기 위한 비바이오 일리시터(abiotic elicitor) 처리에 의해 활성화되기 때문에, 바이러스-유도 유전자 침묵(VIGS, virus-induced gene silencing) technique을 이용하여 세균성 병원균에 대한 고추의 방어 반응에서 CabZIP2의 역할을 알아보았다. 유전자의 과발현이나 knock-out에 의한 안정적인 형질전환 고추의 생산은 매우 어려우므로, VIGS 분석은 knock-down 표현형에 대한 빠르고 효과적인 수단을 제공하고, 고추의 관심 있는 유전자 기능을 자세히 알 수 있도록 도와준다. As shown in Example 4 above, since the expression of CabZIP2 gene in pepper leaves is activated by abiotic elicitor treatment to induce Xcv infection and defense signals, virus-induced gene silencing (VIGS, virus- induced gene silencing technique was used to investigate the role of CabZIP2 in the defense of pepper to bacterial pathogens. Since the production of stable transgenic peppers by overexpression or knock-out of genes is very difficult, VIGS analysis provides a fast and effective means of knock-down expression and helps to understand the gene function of interest in the pepper.
TRV(tobacco rattle virus)-기반 VIGS 분석은 고추 식물에서 knock-down된 CabZIP2 유전자를 사용하였다. CabZIP2 유전자를 침묵(silence)시키기 위하여, CabZIP2 cDNA의 254bp 절편을 pTRV2 벡터로 주입하였다. Agrobacterium tumefaciens 균주 GV3101 harboring pTRV1을 pTRV2:00 또는 pTRV2: CabZIP2 (1:1 농도비)와 결합시켰고, 고추 식물의 완전히 확장된 자엽(cotyledon) (각 구조의 OD600 = 0.2)에 함께 침투시켰다. 식물들은 상기 준비예 3과 동일한 조건의 growth room에 두었다. The TRV (tobacco rattle virus) -based VIGS analysis used the CabZIP2 gene knocked down in pepper plants. To silence the CabZIP2 gene, a 254 bp fragment of CabZIP2 cDNA was injected into the pTRV2 vector. Agrobacterium tumefaciens strain GV3101 harboring pTRV1 was combined with pTRV2: 00 or pTRV2: CabZIP2 (1: 1 concentration ratio) and infiltrated together with a fully extended cotyledon (OD 600 = 0.2 of each structure) of pepper plants. The plants were placed in a growth room under the same conditions as in Preparation Example 3 above.
고추 모종(seedling)에 재조합 TRV silencing construct를 접종하였고, 표현형 차이는 공벡터(empty vector) 대조군 또는 CabZIP2-silenced (TRV:CabZIP2) 고추를 포함하는 식물에서 성장 및 발달 시 관찰되지 않았다. VIGS efficiency는 Xcv의 독성(Ds1) 및 비독성(Bv5-4a) 균주로 접종한 다음, 12시간 후에 CabZIP2-silenced 고추 잎과 CabZIP2 공벡터 대조군을 이용하여 qRT-PCR로 분석하였다. CabZIP2 발현은 Xcv 접종 여부와 관계없이 CabZIP2-silenced 고추 잎에서 감소하였다. CabZIP2가 전사 활성자 기능을 하고(도 4 참조), VIP1 전사인자가 PR1 발현을 조절하기 때문에, CabZIP2 silencing이 방어 관련 유전자들의 유도에 영향을 미치는지를 RT-PCR로 관찰하였다. 이용한 프라이머 염기서열은 표 2에 나타낸 바와 같다.The pepper seedlings were inoculated with recombinant TRV silencing constructs and phenotypic differences were not observed during growth and development in plants containing the empty vector control or CabZIP2-silenced (TRV: CabZIP2) pepper. VIGS efficiency was assessed by qRT-PCR using CabZIP2-silenced pepper leaves and CabZIP2 co-vector control after 12 hours of inoculation with Xcv toxin (Ds1) and non-toxic (Bv5-4a) strains. CabZIP2 expression decreased in CabZIP2-silenced pepper leaves regardless of Xcv inoculation. Since CabZIP2 functions as transcriptional activator (see FIG. 4) and VIP1 transcription factor regulates PR1 expression, RT-PCR was performed to determine whether CabZIP2 silencing affects the induction of defense-related genes. The primer sequences used were as shown in Table 2. < tb > < TABLE >
그 결과, 도 8A에 나타낸 바와 같이, CaBPR1 및 CaAMP1 발현 수준은 공벡터 대조군 식물과 비교했을 때 CabZIP2-silenced 고추 잎에서 눈에 띄게 감소하였다.As a result, as shown in Fig. 8A, CaBPR1 and CaAMP1 expression levels were significantly reduced in CabZIP2-silenced pepper leaves as compared to co-vector control plants.
CabZIP2를 포함하는 방어 관련 유전자들의 발현이 식물 내 세균 증식을 반영했는지 확인하기 위하여, 0, 3, 5 days post inoculation(dpi)에서 공벡터와 CabZIP2-silenced 고추의 세균 성장을 측정하였다. Bacterial growth of the blank vector and CabZIP2-silenced red pepper was measured at 0, 3, and 5 days post inoculation (dpi) to determine if the expression of the defense-related genes including CabZIP2 reflected plant bacterial growth.
그 결과, 도 8B에 나타낸 바와 같이, 친화적 상호작용에서, CabZIP2 silencing은 몇몇 방어 관련 유전자들의 발현을 손상시켰을 뿐만 아니라, Xcv 독성 균주 감염에 대한 식물의 감수성을 증가시켰다. CabZIP2-silenced 식물은 3 또는 5 dpi에서 대조군 식물에 비하여 박테리아 증식이 상당히 높았다. Xcv 감염과 비바이오 일리시터 처리에 의한 CabZIP2 발현 유도에 따라, 이러한 결과는 CabZIP2가 독성 세균성 병원균에 대한 고추의 저항성에 필요하다는 것을 알 수 있었다. As a result, as shown in Fig. 8B, in a friendly interaction, CabZIP2 silencing not only damaged the expression of some defense-related genes, but also increased the susceptibility of plants to Xcv toxin strain infection. CabZIP2-silenced plants had significantly higher bacterial growth at 3 or 5 dpi than the control plants. Based on the induction of CabZIP2 expression by Xcv infection and non-biologic treatment, these results indicate that CabZIP2 is required for the resistance of pepper to toxic bacterial pathogens.
또한, 도 8C에 나타낸 바와 같이, 불친화적 상화작용에서, 세균 증식은 공벡터 control 고추 잎에 비하여 CabZIP2-silenced 고추 잎에서 두드러지지 않았다. CabZIP2 발현은 비독성 Xcv 감염된 고추 잎에서 빠르고 강력하게 유도되었지만, CabZIP2 silencing은 비독성 Xcv 감염에 대한 고추의 감수성이 크게 변화하지 않았다. In addition, as shown in Fig. 8C, in the unfavorable smoothing action, the bacterial growth was not noticeable in the CabZIP2-silenced pepper leaves as compared to the ball vector control pepper leaves. CabZIP2 expression was rapidly and potently induced in non-toxic Xcv infected pepper leaves, but CabZIP2 silencing did not significantly change the susceptibility of pepper to non-toxic Xcv infection.
따라서, CabZIP2이 R gene-mediated resistance보다는 basal resistance에 핵심적인 역할을 한다는 것을 알 수 있었다. 또한, CabZIP2이 다른 방어 관련 유전자 발현에 영향을 주고, 세균성 병원균에 대한 고추의 방어반응에서 중요한 역할을 한다는 것을 확인할 수 있었다. Thus, it was found that CabZIP2 plays a key role in basal resistance rather than R gene-mediated resistance. In addition, we could confirm that CabZIP2 plays an important role in the defense of the pepper to bacterial pathogens, influencing other defense gene expression.
실시예 6. CabZIP2-과발현(CabZIP2-OX) 형질전환 식물에서 세균성 병원균에 대한 증가된 저항성 확인Example 6. Confirmation of increased resistance to bacterial pathogens in CabZIP2-overexpressed (CabZIP2-OX) transgenic plants
in vivo 저항 반응에서 CabZIP2의 효과를 더 알아보기 위하여, 35S promoter 제어 하에 전체 전구체를 과발현시킨 CabZIP2 애기장대(Arabidopsis) 형질전환 식물을 만들었다. CabZIP2-과발현 형질전환 식물 발생의 자세한 방법은 다음과 같다. To further investigate the effect of CabZIP2 in in vivo resistance response, we generated a CabZIP2 Arabidopsis transgenic plant overexpressing the entire precursor under control of the 35S promoter. Detailed methods for the development of the transgenic plant are described below.
CabZIP2 full-length cDNA 서열을 애기장대에서 CaMV(cauliflower mosaic virus) 35S 프로모터 하에서 CabZIP2 유전자의 일정한 발현(구성적 발현, constitutive expression)을 유도하기 위하여 pK2GW7 binary vector로 통합시켰다. 다음으로, 전기천공법(electroporation)으로 CabZIP2 binary vector를 Agrobacterium tumefaciens 균주 GV3101에 도입하였고, CabZIP2 유전자를 가진 애기장대(Arabidopsis thaliana)의 Agrobacterium-매개 형질전환은 화아침지법(floral dip method)을 이용하여 수행되었다. 형질전환 계통(transgenic line)을 선택하기 위하여, 형질전환된 것으로 추정되는 식물에서 수확한 종자를 50 μg/mL kanamycin을 함유하는 MS agar plate에 심었다. 또한, 독립적인 homozygous T3 lines에서 CabZIP2-OX 전이유전자(transgene) 발현을 확인하기 위하여, 야생형 식물과 CabZIP2-OX 식물로부터 얻은 genomic mRNA를 이용하여 RT-PCR 분석을 실시하였다(준비예 4 참조). The CabZIP2 full-length cDNA sequence was integrated into the pK2GW7 binary vector to induce constant expression (constitutive expression) of the CabZIP2 gene under the CaMV (cauliflower mosaic virus) 35S promoter in Arabidopsis. Next, the CabZIP2 binary vector was introduced into the Agrobacterium tumefaciens strain GV3101 by electroporation and the Agrobacterium-mediated transformation of Arabidopsis thaliana with the CabZIP2 gene was performed using the floral dip method . To select the transgenic lines, seeds harvested from the transgenic plant were seeded on MS agar plates containing 50 μg / mL kanamycin. RT-PCR analysis was also performed using genomic mRNA from wild-type plants and CabZIP2-OX plants in order to confirm the expression of the CabZIP2-OX transgene in independent homozygous T3 lines (see Preparation Example 4).
그 결과, 도 9A에 나타낸 바와 같이, PCR 생성물은 야생형 식물에 대해 검출되지 않았지만, CabZIP2유전자가 세 CabZIP2-OX 식물로부터 증폭되었고, 이는 표현형 분석에 사용되었다. As a result, as shown in Fig. 9A, the PCR product was not detected for wild-type plants, but the CabZIP2 gene was amplified from three CabZIP2-OX plants, which was used for phenotypic analysis.
CabZIP2-OX 식물의 표현형은 정상 성장 조건에서 야생형 식물과 구별하기 어려웠다. CabZIP2 과발현이 병 저항성을 향상시킬 수 있는지 알아보기 위하여, 야생형 식물과 CabZIP2-OX 식물에 토마토와 애기장대에 세균성 점무늬 병(speck disease)과 유사한 증상을 일으키는 Pst DC3000를 접종하였다. 그 결과, 도 9B에 나타낸 바와 같이, 접종 7 일 후, 야생형 식물은 접종된 잎에서 전형적인 백화 현상을 나타낸 반면, CabZIP2-OX lines의 어떤 잎에서도 두드러진 백화 증상이 없었다. The phenotype of the CabZIP2-OX plant was difficult to distinguish from wild-type plants under normal growth conditions. To determine if overexpression of CabZIP2 could improve disease resistance, wild-type plants and CabZIP2-OX plants were inoculated with Pst DC3000, which causes similar symptoms to bacterial speck disease in tomatoes and Arabidopsis. As a result, as shown in Fig. 9B, after 7 days of inoculation, the wild-type plants exhibited typical bleaching phenomenon in the inoculated leaves, whereas none of the leaves of the CabZIP2-OX lines had prominent bleeding symptoms.
백화 현상과 같이 육안으로 보이는 질병(macroscopic disease) 증상이 식물에서 세균성 증식을 반영하는지 확인하기 위하여, 잎 조직의 0, 1, 3, 5 dpi에서 세균 성장을 측정하였다. 그 결과, 도 9C에 나타낸 바와 같이, 세균 성장은 0 또는 1 dpi에서 야생형과 CabZIP2-OX 식물 간 차이가 없었다. CabZIP2-OX 식물의 세균 성장은 접종 3일 후 15-30 배 감소하였다. 접종 5일 후, 야생형 식물의 세균 수는 약간 감소하였고, CabZIP2-OX 식물의 Pst DC3000 세균 성장은 야생형 식물에 비하여 18-20 배 감소하였다. Bacterial growth was measured at 0, 1, 3, and 5 dpi of leaf tissue to determine whether macroscopic disease symptoms, such as whitening, reflected bacterial growth in plants. As a result, as shown in Fig. 9C, bacterial growth did not differ between wild type and CabZIP2-OX plants at 0 or 1 dpi. Bacterial growth of CabZIP2-OX plants decreased 15-30 fold after 3 days of inoculation. Five days after inoculation, the number of bacteria in wild-type plants decreased slightly and the growth of Pst DC3000 bacteria in CabZIP2-OX plants was 18-20 times lower than wild-type plants.
도 9에 나타낸 결과로부터 CabZIP2 과발현이 세균성 병원균에 대한 저항성을 증가시켰음을 알 수 있었다. CabZIP2 형질전환 계통의 병원성 세균 병원체(virulent bacterial pathogen) Pst DC3000에 대한 저항성 증가는 고추 CabZIP2 유전자의 과발현으로부터 발생하였다. 이전 연구에서, CAbZIP1-OX 식물은 표현형이 Pst DC3000에 대한 저항성을 나타냈다. 하지만, CAbZIP1은 CabZIP2와 다른 bZIP 전사 인자이다.From the results shown in Fig. 9, it was found that CabZIP2 overexpression increased resistance to bacterial pathogens. Increased resistance to the virulent bacterial pathogen Pst DC3000 in the CabZIP2 transgenic line resulted from overexpression of the capsicum CabZIP2 gene. In previous studies, the CAbZIP1-OX plants exhibited resistance to the Pst DC3000 phenotype. However, CAbZIP1 is a bZIP transcription factor different from CabZIP2.
CabZIP2-OX 식물에서 세균성 병원균에 대한 저항성 증가가 SA(salicylic acid)-dependent PR 유전자 발현과 관련된 것인지 알아보기 위하여, 야생형 식물과 CabZIP2-OX 식물에서 PR(pathogenesis-related)1 및 NPR1(Nonexpressor of Pathogenesis-Related protein 1) 발현 수준을 비교하였다. (Pathogenesis-related) 1 and NPR1 (Nonexpressor of Pathogenesis) in wild-type and CabZIP2-OX plants in order to investigate whether the increased resistance to bacterial pathogens in the CabZIP2-OX plant is associated with SA (salicylic acid) -Related protein 1) expression levels were compared.
그 결과, 도 10에 나타낸 바와 같이, PR1 및 NPR1 유전자의 발현은 야생형 식물보다 CabZIP2-OX 잎에서 더 활발하였다. 하지만, JA와 관련된 PDF1.2 및 LOX 유전자의 발현은 야생형 식물과 CabZIP2-OX 식물에서 큰 차이가 없었다. As a result, as shown in Fig. 10, expression of PR1 and NPR1 genes was more active in CabZIP2-OX leaves than in wild type plants. However, the expression of PDF1.2 and LOX genes associated with JA was not significantly different between wild-type and CabZIP2-OX plants.
따라서, SA-dependent 방어 기작이 세균성 병원균 감염에 대한 병 저항성이 증가된 CabZIP2-OX에 기여함을 알 수 있었다.Thus, it was found that the SA-dependent defense mechanism contributes to the increased resistance of CabZIP2-OX to bacterial pathogen infection.
상기 준비예 및 실시예로부터, CabZIP2 단백질이 세포질과 핵에 위치하며, 그 곳에서 전사 활성자로써의 기능을 한다는 것을 확인할 수 있었다. 또한, CabZIP2 Silencing으로 세균성 병원균에 대한 고추 식물의 감수성이 증가하였고, CabZIP2 형질전환 애기장대의 이소성(ectopic) 발현으로 Pst DC3000에 대한 저항성이 증가하였음을 확인할 수 있었다. 이러한 결과는 CabZIP2이 고추 식물에서 세균성 병원균에 대한 방어 반응의 전사 활성자로서 기능할 수 있음을 의미한다. From the above preparation examples and examples, it was confirmed that the CabZIP2 protein is located in the cytoplasm and the nucleus, and functions as a transcription activator there. In addition, the susceptibility of pepper plants to bacterial pathogens was increased by CabZIP2 silencing, and the resistance to Pst DC3000 was increased by ectopic expression of the CabZIP2 transgenic Arabidopsis thaliana. These results indicate that CabZIP2 can function as a transcription activator of the defense response against bacterial pathogens in pepper plants.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야 한다.It will be understood by those skilled in the art that the foregoing description of the present invention is for illustrative purposes only and that those of ordinary skill in the art can readily understand that various changes and modifications may be made without departing from the spirit or essential characteristics of the present invention. will be. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.
<110> Chung-Ang University Industry-Academy Cooperation Foundation <120> Method for improving disease resistance using CabZIP2 in plants <130> P20150068_PB15-12550 <160> 14 <170> KoPatentIn 3.0 <210> 1 <211> 1035 <212> DNA <213> CabZIP2 <400> 1 atggacccga agttcgccgg aaagcccata cccgctccat ttctagcggg tcgaactgac 60 cttgaccaga tgcccgatac tcctacccgt attgcccgtc accgtcgagc tcaatcggag 120 actttcttcc ggttcccgga ctttgacgat gatattctac tggacgacgt cgttgctgac 180 ttcaacatcg acatttctgc gccgtcggct gatacacata tgcagcagcc ggctaattcg 240 gctgactcgt catcaaccgg accccttttt gctggaccgt ctggtggtga tcaaaaccct 300 agaccgttga atcatttccg gagtctgtca gttgacgctg acttttttga tgggttggag 360 tttggtgatg ttggagcagc gacaacaccg gcggcggcga aggaagaaga gaagtgggtg 420 atgggttcgg gttcgggttc gggttcgcgg cataggcata gtaattcgat ggatggttct 480 tttagtacgg cgtcgtttga agctgagagt tctgttaaga aagctatggc gcctgatcgc 540 cttgctgaat tggctttaat tgatcccaag agagctaaaa ggattcttgc aaacagacaa 600 tctgctgcac gttctaagga gcggaaaatc cgttatacta atgaactgga gaggaaggtg 660 cagactctgc agactgaagc tactaatcta tctgcacaaa tcacggttct gcagagagac 720 aatagtggat tgactactga gaacaaagaa ctcaagctac ggttgcaagc tttggaacaa 780 caagcccatc ttagagatgc cctgaatgaa gctttgaggg aagaattgca gcggctaaag 840 atagcagctg gtcaaatgac agctgcaaat ggaaccaggg ggccgcgtcc acatttccct 900 ccccagccgc agtcatttgt ccaatgtggt aatctccatt cacaacagca gcagcagcct 960 caatctaaca caagttccca aaatattggt ggtcagaccc aacctagctt gatgaacttc 1020 agtaacaggg gttga 1035 <210> 2 <211> 344 <212> PRT <213> CabZIP2 <400> 2 Met Asp Pro Lys Phe Ala Gly Lys Pro Ile Pro Ala Pro Phe Leu Ala 1 5 10 15 Gly Arg Thr Asp Leu Asp Gln Met Pro Asp Thr Pro Thr Arg Ile Ala 20 25 30 Arg His Arg Arg Ala Gln Ser Glu Thr Phe Phe Arg Phe Pro Asp Phe 35 40 45 Asp Asp Asp Ile Leu Leu Asp Asp Val Val Ala Asp Phe Asn Ile Asp 50 55 60 Ile Ser Ala Pro Ser Ala Asp Thr His Met Gln Gln Pro Ala Asn Ser 65 70 75 80 Ala Asp Ser Ser Ser Thr Gly Pro Leu Phe Ala Gly Pro Ser Gly Gly 85 90 95 Asp Gln Asn Pro Arg Pro Leu Asn His Phe Arg Ser Leu Ser Val Asp 100 105 110 Ala Asp Phe Phe Asp Gly Leu Glu Phe Gly Asp Val Gly Ala Ala Thr 115 120 125 Thr Pro Ala Ala Ala Lys Glu Glu Glu Lys Trp Val Met Gly Ser Gly 130 135 140 Ser Gly Ser Gly Ser Arg His Arg His Ser Asn Ser Met Asp Gly Ser 145 150 155 160 Phe Ser Thr Ala Ser Phe Glu Ala Glu Ser Ser Val Lys Lys Ala Met 165 170 175 Ala Pro Asp Arg Leu Ala Glu Leu Ala Leu Ile Asp Pro Lys Arg Ala 180 185 190 Lys Arg Ile Leu Ala Asn Arg Gln Ser Ala Ala Arg Ser Lys Glu Arg 195 200 205 Lys Ile Arg Tyr Thr Asn Glu Leu Glu Arg Lys Val Gln Thr Leu Gln 210 215 220 Thr Glu Ala Thr Asn Leu Ser Ala Gln Ile Thr Val Leu Gln Arg Asp 225 230 235 240 Asn Ser Gly Leu Thr Thr Glu Asn Lys Glu Leu Lys Leu Arg Leu Gln 245 250 255 Ala Leu Glu Gln Gln Ala His Leu Arg Asp Ala Leu Asn Glu Ala Leu 260 265 270 Arg Glu Glu Leu Gln Arg Leu Lys Ile Ala Ala Gly Gln Met Thr Ala 275 280 285 Ala Asn Gly Thr Arg Gly Pro Arg Pro His Phe Pro Pro Gln Pro Gln 290 295 300 Ser Phe Val Gln Cys Gly Asn Leu His Ser Gln Gln Gln Gln Gln Pro 305 310 315 320 Gln Ser Asn Thr Ser Ser Gln Asn Ile Gly Gly Gln Thr Gln Pro Ser 325 330 335 Leu Met Asn Phe Ser Asn Arg Gly 340 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CabZIP2 Forward <400> 3 ccagccgcag tcatttgtcc a 21 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> CabZIP2 Reverse <400> 4 tcacagcctg caacactacc catt 24 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 18s rRNA Forward <400> 5 tatggtgtgc accggtcgtc tcgt 24 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> 18s rRNA Reverse <400> 6 gcagttgttc gtctttcata aatccaa 27 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> CaActin1 Forward <400> 7 gacgtgacct aactgataac ctgat 25 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> CaActin1 Reverse <400> 8 ctctcagcac caatggtaat aactt 25 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> CaEF1-alpha Forward <400> 9 ttaaggatct taagcgtggt tatgt 25 <210> 10 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> CaEF1-alpha Reverse <400> 10 tcttcaagaa cttaggctcc ttctc 25 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CaBPR1 Forward <400> 11 caggatgcaa cactctggtg g 21 <210> 12 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CaBPR1 Reverse <400> 12 atcaaaggcc ggttggtc 18 <210> 13 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> CaAMP1 Forward <400> 13 gaattcatga tgaatgctaa tggatt 26 <210> 14 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CaAMP1 Reverse <400> 14 gaattcagtc tgtgatcccc gc 22 <110> Chung-Ang University Industry-Academy Cooperation Foundation <120> Method for improving disease resistance using CabZIP2 in plants <130> P20150068_PB15-12550 <160> 14 <170> KoPatentin 3.0 <210> 1 <211> 1035 <212> DNA <213> CabZIP2 <400> 1 atggacccga agttcgccgg aaagcccata cccgctccat ttctagcggg tcgaactgac 60 cttgaccaga tgcccgatac tcctacccgt attgcccgtc accgtcgagc tcaatcggag 120 actttcttcc ggttcccgga ctttgacgat gatattctac tggacgacgt cgttgctgac 180 ttcaacatcg acatttctgc gccgtcggct gatacacata tgcagcagcc ggctaattcg 240 gctgactcgt catcaaccgg accccttttt gctggaccgt ctggtggtga tcaaaaccct 300 agaccgttga atcatttccg gagtctgtca gttgacgctg acttttttga tgggttggag 360 tttggtgatg ttggagcagc gacaacaccg gcggcggcga aggaagaaga gaagtgggtg 420 atgggttcgg gttcgggttc gggttcgcgg cataggcata gtaattcgat ggatggttct 480 tttagtacgg cgtcgtttga agctgagagt tctgttaaga aagctatggc gcctgatcgc 540 cttgctgaat tggctttaat tgatcccaag agagctaaaa ggattcttgc aaacagacaa 600 tctgctgcac gttctaagga gcggaaaatc cgttatacta atgaactgga gaggaaggtg 660 cagactctgc agactgaagc tactaatcta tctgcacaaa tcacggttct gcagagagac 720 aatagtggat tgactactga gaacaaagaa ctcaagctac ggttgcaagc tttggaacaa 780 caagcccatc ttagagatgc cctgaatgaa gctttgaggg aagaattgca gcggctaaag 840 atagcagctg gtcaaatgac agctgcaaat ggaaccaggg ggccgcgtcc acatttccct 900 ccccagccgc agtcatttgt ccaatgtggt aatctccatt cacaaguca gcagcagcct 960 caatctaaca caagttccca aaatattggt ggtcagaccc aacctagctt gatgaacttc 1020 agtaacaggg gttga 1035 <210> 2 <211> 344 <212> PRT <213> CabZIP2 <400> 2 Met Asp Pro Lys Phe Ala Gly Lys Pro Ile Pro Ala Pro Phe Leu Ala 1 5 10 15 Gly Arg Thr Asp Leu Asp Gln Met Pro Asp Thr Pro Thr Arg Ile Ala 20 25 30 Arg His Arg Arg Ala Gln Ser Glu Thr Phe Phe Arg Phe Pro Asp Phe 35 40 45 Asp Asp Asp Ile Leu Leu Asp Asp Val Val Ala Asp Phe Asn Ile Asp 50 55 60 Ile Ser Ala Pro Ser Ala Asp Thr His Met Gln Gln Pro Ala Asn Ser 65 70 75 80 Ala Asp Ser Ser Ser Thr Gly Pro Leu Phe Ala Gly Pro Ser Gly Gly 85 90 95 Asp Gln Asn Pro Arg Pro Leu Asn His Phe Arg Ser Leu Ser Val Asp 100 105 110 Ala Asp Phe Phe Asp Gly Leu Glu Phe Gly Asp Val Gly Ala Ala Thr 115 120 125 Thr Pro Ala Ala Ala Lys Glu Glu Glu Lys Trp Val Met Gly Ser Gly 130 135 140 Ser Gly Ser Gly Ser Arg His Arg His Ser Asn Ser Met Asp Gly Ser 145 150 155 160 Phe Ser Thr Ala Ser Phe Glu Ala Glu Ser Ser Val Lys Lys Ala Met 165 170 175 Ala Pro Asp Arg Leu Ala Glu Leu Ala Leu Ile Asp Pro Lys Arg Ala 180 185 190 Lys Arg Ile Leu Ala Asn Arg Gln Ser Ala Ala Arg Ser Ser Lys Glu Arg 195 200 205 Lys Ile Arg Tyr Thr Asn Glu Leu Glu Arg Lys Val Gln Thr Leu Gln 210 215 220 Thr Glu Ala Thr Asn Leu Ser Ala Gln Ile Thr Val Leu Gln Arg Asp 225 230 235 240 Asn Ser Gly Leu Thr Thr Glu Asn Lys Glu Leu Lys Leu Arg Leu Gln 245 250 255 Ala Leu Glu Gln Gln Ala His Leu Arg Asp Ala Leu Asn Glu Ala Leu 260 265 270 Arg Glu Glu Leu Gln Arg Leu Lys Ile Ala Ala Gly Gln Met Thr Ala 275 280 285 Ala Asn Gly Thr Arg Gly Pro Arg Pro His Phe Pro Pro Gln Pro Gln 290 295 300 Ser Phe Val Gln Cys Gly Asn Leu His Ser Gln Gln Gln Gln Gln Pro 305 310 315 320 Gln Ser Asn Thr Ser Ser Gln Asn Ile Gly Gly Gln Thr Gln Pro Ser 325 330 335 Leu Met Asn Phe Ser Asn Arg Gly 340 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CabZIP2 Forward <400> 3 ccagccgcag tcatttgtcc a 21 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> CabZIP2 Reverse <400> 4 tcacagcctg caacactacc catt 24 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 18s rRNA Forward <400> 5 tatggtgtgc accggtcgtc tcgt 24 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> 18s rRNA Reverse <400> 6 gcagttgttc gtctttcata aatccaa 27 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> CaActin1 Forward <400> 7 gacgtgacct aactgataac ctgat 25 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> CaActin1 Reverse <400> 8 ctctcagcac caatggtaat aactt 25 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> CaEF1-alpha Forward <400> 9 ttaaggatct taagcgtggt tatgt 25 <210> 10 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> CaEF1-alpha Reverse <400> 10 tcttcaagaa cttaggctcc ttctc 25 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CaBPR1 Forward <400> 11 caggatgcaa cactctggtg g 21 <210> 12 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CaBPR1 Reverse <400> 12 atcaaaggcc ggttggtc 18 <210> 13 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> CaAMP1 Forward <400> 13 gaattcatga tgaatgctaa tggatt 26 <210> 14 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CaAMP1 Reverse <400> 14 gaattcagtc tgtgatcccc gc 22
Claims (6)
Comprising increasing the expression or activity of the CabZIP2 protein consisting of the amino acid sequence of SEQ ID NO: 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150060833A KR101627462B1 (en) | 2015-04-29 | 2015-04-29 | Method for improving disease resistance using CabZIP2 in plants |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150060833A KR101627462B1 (en) | 2015-04-29 | 2015-04-29 | Method for improving disease resistance using CabZIP2 in plants |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101627462B1 true KR101627462B1 (en) | 2016-06-07 |
Family
ID=56193141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150060833A Expired - Fee Related KR101627462B1 (en) | 2015-04-29 | 2015-04-29 | Method for improving disease resistance using CabZIP2 in plants |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101627462B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101876634B1 (en) * | 2016-10-07 | 2018-07-09 | 중앙대학교 산학협력단 | Method for improving the resistance to the drought stress using pepper transcription factor CaDILZ1 in plants |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060106494A (en) * | 2005-04-08 | 2006-10-12 | 고려대학교 산학협력단 | CaBIP1 gene (CABIP1) derived from Korean red pepper varieties, and a method for screening plant disease and environmental stress resistance using the same |
-
2015
- 2015-04-29 KR KR1020150060833A patent/KR101627462B1/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060106494A (en) * | 2005-04-08 | 2006-10-12 | 고려대학교 산학협력단 | CaBIP1 gene (CABIP1) derived from Korean red pepper varieties, and a method for screening plant disease and environmental stress resistance using the same |
Non-Patent Citations (2)
Title |
---|
GenBank Accession Number KC795276 (2014.05.01) * |
GenBank Accession Number KC795276 (2014.05.01)* |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101876634B1 (en) * | 2016-10-07 | 2018-07-09 | 중앙대학교 산학협력단 | Method for improving the resistance to the drought stress using pepper transcription factor CaDILZ1 in plants |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030101481A1 (en) | Plant gene sequences I | |
CN110818783B (en) | Lilium regale WRKY transcription factor gene LrWRKY2 and application thereof | |
US20160068860A1 (en) | Transgenic plants | |
CN107164391A (en) | A kind of strawberry floral genes FvbHLH78 and its application | |
KR101775788B1 (en) | Method for improving the resistance to the drought stress using CaDRT1 in plants | |
KR100896487B1 (en) | OSFRCP1 Gene that Increases Plant Stress Resistance and Transgenic Plants Incorporated with the Gene | |
KR102190603B1 (en) | Method for improving the resistance to the drought stress using pepper ERF transcription CaDRAT1 in plants | |
KR101209219B1 (en) | Plant with Increased Resistance to Various Stresses Transformed with OsRAF Gene | |
CN106591324B (en) | Millet SiASR4 gene and application | |
KR101775789B1 (en) | CaMAF1 protein imlicated in drought tolerance and the use thereof | |
KR100900928B1 (en) | CARCM1H1 gene that increases plant stress resistance and transgenic plants into which the gene is introduced | |
CN118374536A (en) | Application of grape VvHSF30 in regulating plant alkaline salt stress resistance | |
KR101627462B1 (en) | Method for improving disease resistance using CabZIP2 in plants | |
CN103320448B (en) | Lilium regle bZIP transcription factor LrbZIP1 and application | |
CN106892973A (en) | Plant adversity resistance related protein GhMYB4 and encoding gene and application | |
KR101894180B1 (en) | Method for improving the resistance to drought stress using pepper transcription factor CaDRHB1 in plants | |
KR101710806B1 (en) | Method for improving the resistance to the abiotic stresses using CaAINR1 in plants | |
KR20200063569A (en) | Gene implicated in high temperature stress tolerance and use thereof | |
Wu et al. | The transcription factor PpTGA9 improves salt tolerance by interacting with PpATP1 in peach | |
CN102174525B (en) | Brassica napus resistance-related gene (i)BnWRERF50(/i) and preparation method as well as application | |
KR102674990B1 (en) | Pepper transcription factor CaSAP11 gene and method for improving the resistance to the drought or salt stress using CaSAP11 in plants | |
KR102524914B1 (en) | Pepper transcription factor CaAIM1 gene and method for improving the resistance to the drought stresses using CaAIM1 in plants | |
KR102516731B1 (en) | Pepper transcription factor CaHAT1 gene and method for improving the resistance to the drought stress using CaHAT1 in plants | |
KR102516750B1 (en) | Pepper transcription factor CaSIMK1 gene and method for improving the resistance to the drought stresses using CaSIMK1 in plants | |
KR20200063568A (en) | Gene implicated in salt stress tolerance and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
PA0302 | Request for accelerated examination |
St.27 status event code: A-1-2-D10-D16-exm-PA0302 St.27 status event code: A-1-2-D10-D17-exm-PA0302 |
|
D13-X000 | Search requested |
St.27 status event code: A-1-2-D10-D13-srh-X000 |
|
D14-X000 | Search report completed |
St.27 status event code: A-1-2-D10-D14-srh-X000 |
|
PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
AMND | Amendment | ||
E13-X000 | Pre-grant limitation requested |
St.27 status event code: A-2-3-E10-E13-lim-X000 |
|
P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
PE0601 | Decision on rejection of patent |
St.27 status event code: N-2-6-B10-B15-exm-PE0601 |
|
AMND | Amendment | ||
P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
PX0901 | Re-examination |
St.27 status event code: A-2-3-E10-E12-rex-PX0901 |
|
PX0701 | Decision of registration after re-examination |
St.27 status event code: A-3-4-F10-F13-rex-PX0701 |
|
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
PR1002 | Payment of registration fee |
Fee payment year number: 1 St.27 status event code: A-2-2-U10-U11-oth-PR1002 |
|
PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
PR1001 | Payment of annual fee |
Fee payment year number: 4 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 St.27 status event code: A-5-5-R10-R13-asn-PN2301 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 St.27 status event code: A-5-5-R10-R13-asn-PN2301 |
|
P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
PC1903 | Unpaid annual fee |
Not in force date: 20220531 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE St.27 status event code: A-4-4-U10-U13-oth-PC1903 |
|
PC1903 | Unpaid annual fee |
Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20220531 St.27 status event code: N-4-6-H10-H13-oth-PC1903 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 St.27 status event code: A-5-5-R10-R13-asn-PN2301 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |