[go: up one dir, main page]

CN110818783B - Lilium regale WRKY transcription factor gene LrWRKY2 and application thereof - Google Patents

Lilium regale WRKY transcription factor gene LrWRKY2 and application thereof Download PDF

Info

Publication number
CN110818783B
CN110818783B CN201911106106.9A CN201911106106A CN110818783B CN 110818783 B CN110818783 B CN 110818783B CN 201911106106 A CN201911106106 A CN 201911106106A CN 110818783 B CN110818783 B CN 110818783B
Authority
CN
China
Prior art keywords
lrwrky2
gene
tobacco
plants
ser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911106106.9A
Other languages
Chinese (zh)
Other versions
CN110818783A (en
Inventor
刘迪秋
普丽梅
陈虹均
郑锂蕾
李珊
王自娥
葛锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201911106106.9A priority Critical patent/CN110818783B/en
Publication of CN110818783A publication Critical patent/CN110818783A/en
Application granted granted Critical
Publication of CN110818783B publication Critical patent/CN110818783B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种岷江百合WRKY转录因子基因LrWRKY2,其核苷酸序列如SEQ ID NO:1所述,编码如SEQ ID NO:2所示氨基酸序列的蛋白质,本发明通过功能基因组学相关技术研究证实LrWRKY2基因具有提高植物抗真菌的功能,将本发明抗真菌的LrWRKY2基因构建到植物表达载体上并转入烟草中过量表达,转基因烟草植株具有很强的抗真菌侵染能力,实验结果显示超表达LrWRKY2的转基因烟草对稻黑孢霉、茄腐镰刀菌、轮枝镰刀菌、葡萄座腔菌、人参链格孢的侵染具有高水平的抗性。The invention discloses a WRKY transcription factor gene LrWRKY2 of Lily of the Minjiang River. Studies have confirmed that the LrWRKY2 gene has the function of improving the anti-fungal function of plants. The anti-fungal LrWRKY2 gene of the present invention is constructed into a plant expression vector and transferred to tobacco for overexpression. The transgenic tobacco plants have strong anti-fungal infection ability. The experimental results show The transgenic tobacco overexpressing LrWRKY2 has a high level of resistance to infection by Nigella oryzae, Fusarium solani, Fusarium verticillium, Botrytis, and Alternaria ginseng.

Description

一种岷江百合WRKY转录因子基因LrWRKY2及应用A Minjiang Lily WRKY transcription factor gene LrWRKY2 and its application

技术领域technical field

本发明涉及分子生物学以及基因工程相关技术研究领域,特别是一种具有抗真菌侵染能力的岷江百合WRKY转录因子基因LrWRKY2及应用。The invention relates to the research field of molecular biology and related technologies of genetic engineering, in particular to a Minjiang lily WRKY transcription factor gene LrWRKY2 with antifungal infection ability and application thereof.

背景技术Background technique

植物以一种高度可变且时序性的方式对转录组进行大规模重新编程以应对病原物入侵或其它逆境胁迫,而这种赋予植物对不同环境条件具有可塑性适应的调控反应是多种转录因子网络作用的结果。WRKY转录因子是植物防卫反应相关转录因子网络中的一个调控蛋白基因家族,主要参与植物免疫系统应对多种不同的生物和非生物胁迫(Pandey SP,Somssich IE. The role of WRKY transcription factors in plant immunity. PlantPhysiol, 2009, 150(4): 1648-1655; Bakshi M, Oelmüller R. WRKY transcriptionfactor: Jack of many trades in plants. Plant Signal Behav, 2014, 9(2):e27700.)。WRKY转录因子是植物中最大的几类转录因子之一,N 端一般是由WRKYGQK 七肽序列组成的WRKY结构域,C 端则是CX4-5CX22-23HXH (C2H2)或CX7CX23-HXC (C2HC)组成的锌指结构(Rushton PJ, Somssich IE, Ringler P, et al. WRKY transcriptionfactors. Trends Plant Sci, 2010, 15(5): 247-258.)。Plants undergo large-scale reprogramming of their transcriptomes in a highly variable and temporal manner in response to pathogen invasion or other stress, and this regulatory response that confers plastic adaptation to different environmental conditions is the result of multiple transcription factors The result of network action. WRKY transcription factors are a family of regulatory protein genes in the plant defense response-related transcription factor network, which are mainly involved in the plant immune system responding to a variety of different biotic and abiotic stresses (Pandey SP, Somssich IE. The role of WRKY transcription factors in plant immunity . PlantPhysiol, 2009, 150(4): 1648-1655; Bakshi M, Oelmüller R. WRKY transcriptionfactor: Jack of many trades in plants. Plant Signal Behav, 2014, 9(2):e27700.). WRKY transcription factors are one of the largest types of transcription factors in plants. The N-terminus is generally a WRKY domain composed of the WRKYGQK heptapeptide sequence, and the C-terminus is composed of CX4-5CX22-23HXH (C2H2) or CX7CX23-HXC (C2HC). The zinc finger structure of (Rushton PJ, Somssich IE, Ringler P, et al. WRKY transcriptionfactors. Trends Plant Sci, 2010, 15(5): 247-258.).

受WRKY 调控的靶基因启动子区大都含有W-box (TTGACC/T),其中TGAC 是W-box的核心序列,且高度保守,一旦当中某一核苷酸发生改变都会导致WRKY 蛋白与之结合的能力的降低,甚至丧失(谢政文, 王连军, 陈锦洋, 等. 植物WRKY 转录因子及其生物学功能研究进展. 中国农业科技导报, 2016, 18(3): 46-54.)。WRKY结构域由四股β折叠构成,保守的WRKYGQK残基对应于N端的β折叠(strand β-1),能够进入DNA沟并与DNA上的W盒发生作用(Ciolkowski I, Wanke D, Birkenbihl RP, et al. Studies on DNA-bindingselectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol, 2008, 68(1-2): 81-92.)。Most of the promoter regions of target genes regulated by WRKY contain W-box (TTGACC/T), of which TGAC is the core sequence of W-box and is highly conserved. Once a nucleotide is changed, WRKY protein will bind to it. The ability to reduce or even lose (Xie Zhengwen, Wang Lianjun, Chen Jinyang, et al. Research progress on plant WRKY transcription factors and their biological functions. China Agricultural Science and Technology Review, 2016, 18(3): 46-54.). The WRKY domain is composed of four-strand β-sheets, and the conserved WRKYGQK residue corresponds to the N-terminal β-sheet (strand β-1), which can enter the DNA groove and interact with the W box on DNA (Ciolkowski I, Wanke D, Birkenbihl RP, et al. Studies on DNA-bindingselectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol, 2008, 68(1-2): 81-92.).

WRKY转录因子通过调控植物转录组重新编程以应对不同病原物的入侵,其对抗病反应相关基因的转录调控是植物对病原体防卫反应的关键组成部分,在植物防卫反应中起重要作用。植物中的WRKY基因家族包含许多调节植物生长和发育以及多种应激反应的成员(Wu ZJ, Li XH, Liu ZW, et al. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress. MolGenet Genomics, 2016, 291(1): 255-69.)。在胡杨中过表达PtrWRKY18和PtrWRKY35可增强对锈菌(Melampsora)的抗性,同时提高转基因植物中PR基因的表达(Jiang Y, Guo L,Ma X, et al. The WRKY transcription factors PtrWRKY18 and PtrWRKY35 promoteMelampsora resistance in Populus. Tree Physiol, 2017, 37(5): 665-675.)。草莓FaWRKY1则负调控果实对胶孢炭疽菌(Colletotrichum acutatum)的抗性(Higuera JJ,Garrido-Gala J, Lekhbou A, et al. The strawberry FaWRKY1 transcription factornegatively regulates resistance to Colletotrichum acutatum in fruit uponInfection. Front Plant Sci, 2019, 10: 480.)。PtWRKY14超表达则可增强烟草(Nicotiana tabacum)对TMV侵染的抵抗能力(王兴, 林善枝. PtWRKY14基因转化烟草及对TMV的抗性影响研究. 广东农业科学, 2014, 41(7): 130-133.)。此外,水杨酸(SA)介导的活性氧(ROS)信号传导增强了JcWRKY转基因烟草对苜蓿炭腐病病原菌的抗性(Agarwal P,Patel K, Agarwal PK. Ectopic expression of JcWRKY confers enhanced resistancein transgenic tobacco against Macrophomina phaseolina. DNA Cell Biol, 2018,37(4): 298-307.)。WRKY transcription factors reprogram the plant transcriptome to respond to the invasion of different pathogens. The transcriptional regulation of genes related to disease resistance response is a key component of plant defense responses to pathogens and plays an important role in plant defense responses. The WRKY gene family in plants contains many members that regulate plant growth and development and various stress responses (Wu ZJ, Li XH, Liu ZW, et al. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress. MolGenet Genomics, 2016, 291(1): 255-69.). Overexpression of PtrWRKY18 and PtrWRKY35 in Populus euphratica enhanced the resistance to rust fungus ( Melampsora ) and simultaneously increased PR gene expression in transgenic plants (Jiang Y, Guo L, Ma X, et al. The WRKY transcription factors PtrWRKY18 and PtrWRKY35 promote Melampsora resistance in Populus . Tree Physiol, 2017, 37(5): 665-675.). The strawberry FaWRKY1 transcription factor negatively regulates resistance to Colletotrichum acutatum in fruit upon Infection. Front Plant Sci , 2019, 10: 480.). Overexpression of PtWRKY14 can enhance the resistance of tobacco ( Nicotiana tabacum ) to TMV infection (Wang Xing, Lin Shanzhi. PtWRKY14 gene transformed tobacco and its effect on TMV resistance. Guangdong Agricultural Science, 2014, 41(7): 130 -133.). Furthermore, salicylic acid (SA)-mediated reactive oxygen species (ROS) signaling enhanced the resistance of JcWRKY transgenic tobacco to alfalfa char rot pathogen (Agarwal P, Patel K, Agarwal PK. Ectopic expression of JcWRKY confers enhanced resistance in transgenic tobacco against Macrophomina phaseolina . DNA Cell Biol, 2018, 37(4): 298-307.).

百合是百合科(Liliaceae)百合属(Lilium)植物的总称,属多年生球根类花卉。在种球繁殖及鲜切花生产过程中,百合易受到真菌、病毒、细菌等多种病原菌的危害。目前发现的百合病害达几十种之多,其中由镰刀属(Fusariumspp.)真菌引起的枯萎病(又称为基腐病、茎腐病)是百合生产中危害最严重的病害。镰刀菌侵染百合种球后引起基盘坏死、鳞片腐烂脱落,造成种球质量下降;植株感染镰刀菌后叶片变黄、萎蔫下垂,植株提早枯萎死亡,严重影响百合切花的产量和品质。其中尖孢镰刀菌(F. oxysporum)致病性最强、分离频率最高,是百合枯萎病的主要致病菌。岷江百合(L. regale Wilson)为我国特有种,仅分布于岷江流域海拔800~2700m 的河谷到山腰的岩石缝中,具有强的抗枯萎病性,是现代百合育种的重要种质资源。WRKYs参与应答多种生物和非生物胁迫,是植物防御系统的重要组成部分,因此对岷江百合中WRKY转录因子基因的发掘以及功能分析具有重要的研究及其应用价值。Lily is the general name of the Liliaceae ( Liliaceae ) genus Lilium ( Lilium ) plants, is a perennial bulbous flowers. During the propagation of bulbs and the production of fresh cut flowers, lilies are susceptible to the harm of fungi, viruses, bacteria and other pathogens. There are dozens of lily diseases found so far. Among them, fusarium wilt (also known as base rot and stem rot) caused by fungi of the genus Fusarium spp. is the most serious disease in lily production. Fusarium infects lily bulbs, causing basal necrosis and scales to rot and fall off, resulting in a decline in the quality of bulbs. After plants are infected with Fusarium, the leaves turn yellow, wilt and droop, and the plants die prematurely, which seriously affects the yield and quality of lily cut flowers. Among them, F. oxysporum has the strongest pathogenicity and the highest isolation frequency, and is the main pathogen of lily fusarium wilt. Minjiang lily ( L. regale Wilson) is an endemic species in China. It is only distributed in the valleys of the Minjiang River at an altitude of 800-2700 m to the rock crevices on the mountainside. It has strong resistance to fusarium wilt and is an important germplasm resource for modern lily breeding. WRKYs are involved in responding to a variety of biotic and abiotic stresses and are an important part of plant defense systems. Therefore, the discovery and functional analysis of WRKY transcription factor genes in Minjiang lily has important research and application value.

发明内容SUMMARY OF THE INVENTION

本发明的目的是提供一种岷江百合WRKY转录因子基因LrWRKY2及其应用,即在提高烟草对稻黑孢霉(Nigrospora oryzae)、茄腐镰刀菌(Fusarium solani)、轮枝镰刀菌(Fusarium verticillioides)、葡萄座腔菌(Botryosphaeria dothidea)、人参链格孢(Alternaria panax)抗性中的应用。The purpose of the present invention is to provide a Minjiang lily WRKY transcription factor gene LrWRKY2 and its application, that is, in improving tobacco resistance to Nigrospora oryzae , Fusarium solani , Fusarium verticillioides , Botryosphaeria dothidea and Alternaria panax resistance.

本发明从岷江百合中克隆获得的具有抗真菌活性的WRKY转录因子的全长基因,WRKY转录因子基因LrWRKY2核苷酸序列如SEQ ID NO:1所示,该基因cDNA全长序列为1302bp,包含一个1032 bp的开放阅读框、45 bp的5’非翻译区、225 bp的3’非翻译区,编码如SEQID NO:2所示氨基酸序列的蛋白质。The present invention clones the full-length gene of WRKY transcription factor with antifungal activity from Lily of the Minjiang River. The nucleotide sequence of the WRKY transcription factor gene LrWRKY2 is shown in SEQ ID NO: 1, and the full-length cDNA sequence of the gene is 1302bp, including An open reading frame of 1032 bp, a 5' untranslated region of 45 bp, and a 3' untranslated region of 225 bp encodes a protein with the amino acid sequence shown in SEQID NO:2.

本发明中LrWRKY2基因的编码区是序列表SEQ ID NO:1中第46-1077位所示的核苷酸序列。The coding region of the LrWRKY2 gene in the present invention is the nucleotide sequence shown in positions 46-1077 in SEQ ID NO: 1 of the sequence listing.

本发明分离克隆岷江百合的一个抗真菌相关基因的完整cDNA片段,利用根癌农杆菌(Agrobacterium tumefaciens)介导将目的基因转入受体植物中并过量表达,通过进一步实验验证该基因是否具有抗真菌的活性,为后期利用该基因改良烟草及其他植物抵御真菌病害的能力奠定基础,发明人将这个基因命名为LrWRKY2The present invention isolates and clones a complete cDNA fragment of an antifungal related gene of Lily of the Minjiang River, utilizes Agrobacterium tumefaciens to mediate the transfer of the target gene into the recipient plant and overexpresses it, and further experiments to verify whether the gene has antifungal properties The fungal activity lays the foundation for the later use of this gene to improve the ability of tobacco and other plants to resist fungal diseases. The inventor named this gene LrWRKY2 .

上述LrWRKY2基因可以应用于提高烟草的抗真菌特性,具体操作如下:The above-mentioned LrWRKY2 gene can be applied to improve the antifungal properties of tobacco, and the specific operations are as follows:

(1)采用扩增LrWRKY2的特异引物,从接种尖孢镰刀菌后的岷江百合根中提取总RNA,通过逆转录-聚合酶链式反应(reverse transcription-polymerase chainreaction,RT-PCR)扩增出LrWRKY2的全长编码区,然后将其连接到pGEM-T载体上,经测序获得具有目的基因的克隆;(1) Using specific primers for amplifying LrWRKY2 , total RNA was extracted from the roots of Lily Minjiang after inoculation with Fusarium oxysporum, and amplified by reverse transcription-polymerase chain reaction (RT-PCR). The full-length coding region of LrWRKY2 was then ligated into the pGEM-T vector and sequenced to obtain a clone with the target gene;

(2)用限制性内切酶BamHI和XbaI酶切pGEM-T-LrWRKY2载体,通过胶回收得到目的基因片段,用同样的内切酶酶切植物表达载体pCAMBIA2300s,胶回收获得所需载体大片段,再将所获得LrWRKY2基因片段与pCAMBIA2300s片段连接,构建植物超表达载体,之后将所构建的重组载体通过根癌农杆菌介导转入烟草中表达;(2) The pGEM-T- LrWRKY2 vector was digested with restriction enzymes Bam HI and Xba I, and the target gene fragment was obtained by gel recovery. The plant expression vector pCAMBIA2300s was digested with the same endonuclease, and the desired vector was obtained by gel recovery. Large fragment, then the obtained LrWRKY2 gene fragment was connected with the pCAMBIA2300s fragment to construct a plant overexpression vector, and then the constructed recombinant vector was transferred into tobacco through Agrobacterium tumefaciens for expression;

(3)以重组载体T-DNA上具有的抗性标记筛选转化子,并通过PCR以及RT-PCR检测得到真正的转基因植株,分析转基因植物叶片抗真菌侵染的能力,最后筛选出对真菌抗性明显增强的转基因植株。(3) Screen the transformants with the resistance markers on the recombinant vector T-DNA, and obtain the real transgenic plants by PCR and RT-PCR detection, analyze the ability of the leaves of the transgenic plants to resist fungal infection, and finally screen out the resistance to fungi. Transgenic plants with significantly enhanced sex.

本发明为提高植物对真菌病害的抗性提供了一种新的方法,通过基因工程手段培育抗病植物可以克服传统育种的不足,不仅育种周期缩短,而且操作简单,容易获得高抗材料。本发明来自岷江百合的LrWRKY2基因能增强植物对真菌的抗性,将该基因导入烟草中,可以产生具有真菌抗性的新品种和新材料。利用基因工程技术培育抗性植物品种和材料具有明显的优势和不可取代的重要性;它不仅可以为大规模生产农作物、药材、园艺植物等提供方便,大量减少化学农药的使用,还可以为农业生产节约成本、减小环境污染,因此本发明具有广阔的市场应用前景。The invention provides a new method for improving the resistance of plants to fungal diseases, and cultivating disease-resistant plants by means of genetic engineering can overcome the shortcomings of traditional breeding, not only shortens the breeding cycle, but also is simple to operate and easy to obtain high-resistance materials. The LrWRKY2 gene from Minjiang lily of the invention can enhance the resistance of plants to fungi, and the gene can be introduced into tobacco to produce new varieties and new materials with fungal resistance. The use of genetic engineering technology to cultivate resistant plant varieties and materials has obvious advantages and irreplaceable importance; it can not only provide convenience for the large-scale production of crops, medicinal materials, horticultural plants, etc., greatly reduce the use of chemical pesticides, but also provide agricultural Production costs are saved and environmental pollution is reduced, so the invention has broad market application prospects.

附图说明Description of drawings

图1是本发明LrWRKY2转基因烟草基因组DNA的PCR检测结果图,图中:Marker为DL2000 DNA Marker (大连宝生物);阳性对照为质粒pGEM-T-LrWRKY2为模板的PCR结产物;WT为非转基因烟草(野生型)总DNA为模板PCR的产物;Fig. 1 is the PCR detection result diagram of LrWRKY2 transgenic tobacco genomic DNA of the present invention, among the figure: Marker is DL2000 DNA Marker (Dalian treasure biology); Positive control is the PCR result that plasmid pGEM-T- LrWRKY2 is template; WT is non-transgenic Tobacco (wild type) total DNA is the product of template PCR;

图2是本发明阳性LrWRKY2转基因烟草中LrWRKY2转录水平的表达分析结果图;图中:Marker是DL2000 DNA Marker (大连宝生物);WT是非转基因烟草总RNA逆转录cDNA为模板的PCR产物;阳性对照是质粒pGEM-T-LrWRKY2为模板的PCR产物;Fig. 2 is the expression analysis result chart of LrWRKY2 transcription level in positive LrWRKY2 transgenic tobacco of the present invention; among the figure: Marker is DL2000 DNA Marker (Dalian Bao Bio); WT is the PCR product of non-transgenic tobacco total RNA reverse transcription cDNA as template; positive control It is the PCR product of plasmid pGEM-T- LrWRKY2 as template;

图3是本发明LrWRKY2转基因烟草抗性鉴定的结果图;图中a、b、c、d、e分别是接种稻黑孢霉、轮枝镰刀菌、葡萄座腔菌、茄腐镰刀菌、人参链格孢的LrWRKY2转基因烟草叶片;WT为野生型烟草的叶片,1、8、17、27为LrWRKY2转基因烟草的叶片。Fig. 3 is the result picture of the LrWRKY2 transgenic tobacco resistance identification of the present invention; in the figure a, b, c, d, e are respectively inoculated with Nigella oryzae, Fusarium verticillium, Botrytis, Fusarium solani, Panax ginseng Alternaria LrWRKY2 transgenic tobacco leaves; WT is the leaves of wild-type tobacco, 1, 8, 17, 27 are LrWRKY2 transgenic tobacco leaves.

具体实施方式Detailed ways

下面通过附图和实施例对本发明作进一步详细说明,但本发明保护范围不局限于所述内容,实施例中方法如无特殊说明均为常规方法,使用的试剂如无特殊说明均为常规市售试剂或按常规方法配制的试剂。The present invention will be described in further detail below through the accompanying drawings and examples, but the protection scope of the present invention is not limited to the content. The methods in the examples are conventional methods unless otherwise specified, and the reagents used are conventional commercial methods unless otherwise specified. commercially available reagents or reagents prepared by conventional methods.

实施例1:LrWRKY2全长基因克隆以及序列分析Example 1: LrWRKY2 full-length gene cloning and sequence analysis

用尖孢镰刀菌接种岷江百合,用接种24 h后的根提取总RNA,用液氮将接种后的岷江百合根研磨成粉末,然后转入离心管中,采用异硫氰酸胍法提取总RNA,采用逆转录酶M-MLV (promega)以总RNA为模板合成cDNA第一链,反应体系和操作过程为:取5 μg TotalRNA,依次加入50 ng oligo(dT),2 μL dNTP(2.5 mM each)、DEPC水加至反应体积为14.5 μL;混匀后,70℃加热变性5 min后迅速在冰上冷却5 min,然后依次加入4 μL 5×First-stand buffer、0.5 μL RNasin(200U)、1 μL M-MLV(200U),混匀并短时离心,42℃温浴1.5h,取出后70℃加热10 min,终止反应;cDNA第一链合成后置于-20℃保存备用。Minjiang lily was inoculated with Fusarium oxysporum, and total RNA was extracted from the roots 24 h after inoculation. The inoculated roots of Minjiang lily were ground into powder with liquid nitrogen, and then transferred to a centrifuge tube, and total RNA was extracted by guanidine isothiocyanate method. RNA, using reverse transcriptase M-MLV (promega) to synthesize the first strand of cDNA with total RNA as template, the reaction system and operation process are: take 5 μg total RNA, add 50 ng oligo (dT), 2 μL dNTP (2.5 mM) in turn. each), DEPC water was added to the reaction volume of 14.5 μL; after mixing, heat denaturation at 70°C for 5 min, then quickly cool on ice for 5 min, then add 4 μL 5×First-stand buffer, 0.5 μL RNasin (200U) , 1 μL M-MLV (200U), mix well and centrifuge for a short time, incubate at 42°C for 1.5h, take out and heat at 70°C for 10 min to terminate the reaction; store at -20°C after synthesis of the first strand of cDNA.

以合成的第一链cDNA为模板,扩增目的基因LrWRKY2,所用上下游引物序列分别为5’ CTACAAGGTTCATCCTGCTAGACAT 3’及5’ TTTGCTTTCCATCCACTAGATAACA3’。采用AdvantageTM 2 PCR Enzyme(Clontech)扩增出目的基因;PCR反应条件:94℃ 5 min;94℃30 s,60℃ 30 s,72℃ 1 min,32个循环;72℃ 7 min;反应体系(20 μL)为0.5 μL cDNA、2μL 10×Advantage 2 PCR Buffer、0.4 μL 50×dNTP Mix (10mM each)、0.4 μL 正向引物(10 μM)、0.4 μL 反向引物(10 μM)、0.4 μL Advantage 2 PCR Polymerase Mix、15.9 μLPCR-Grade water;PCR结束后,取5 μL用于琼脂糖凝胶电泳,以检测扩增产物的特异性以及大小。The target gene LrWRKY2 was amplified using the synthesized first-strand cDNA as a template. The upstream and downstream primer sequences used were 5' CTACAAGGTTCATCCTGCTAGACAT 3' and 5'TTTGCTTTCCATCCACTAGATAACA3', respectively. The target gene was amplified by Advantage TM 2 PCR Enzyme (Clontech); PCR reaction conditions: 94°C for 5 min; 94°C for 30 s, 60°C for 30 s, 72°C for 1 min, 32 cycles; 72°C for 7 min; reaction system (20 μL) for 0.5 μL cDNA, 2 μL 10× Advantage 2 PCR Buffer, 0.4 μL 50× dNTP Mix (10 mM each), 0.4 μL Forward Primer (10 μM), 0.4 μL Reverse Primer (10 μM), 0.4 μL Advantage 2 PCR Polymerase Mix, 15.9 μL PCR-Grade water; after PCR, take 5 μL for agarose gel electrophoresis to test the specificity and size of the amplified product.

对PCR产物进行TA克隆,使用的试剂盒为pGEM-T easy Vector SystemⅠ(Promega,USA),反应体系和操作过程为:取1.5 μL PCR产物,依次加入1 μL pGEM-T Vector(50 ng/μL)和2.5 μL 2×Ligation solution I,混匀后置于16 ℃过夜反应。采用热激转化法将连接产物转入大肠杆菌DH5α中。使用含有氨苄青霉素(ampicillin,Amp)的LB固体培养基筛选阳性克隆,挑选若干个单菌落,摇菌后用扩增LrWRKY2的特异引物鉴定出多克隆位点插入LrWRKY2的克隆,将所鉴定的克隆进行测序,最终获得的LrWRKY2全长cDNA为1302 bp,通过NCBI ORF finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html)分析发现其包含一个1032 bp的开放读码框(见序列表),LrWRKY2编码一个含343个氨基酸的蛋白质,其分子量约为37.91 KDa,等电点约为5.88,含有4个半胱氨酸残基。LrWRKY2具有1个WRKYGQK保守结构域,在每个WRKY结构域之后紧接一个C2H2 (C-X4-C-X22/23-H-X1-H)型锌指基序。显然,LrWRKY2编码的蛋白质属于Ⅱ类WRKY转录因子。The PCR products were cloned by TA using the pGEM-T easy Vector System I (Promega, USA). ) and 2.5 μL of 2×Ligation solution I, mixed well and placed at 16 °C for overnight reaction. The ligated product was transformed into E. coli DH5α by heat shock transformation. Use LB solid medium containing ampicillin (ampicillin, Amp) to screen positive clones, select several single colonies, and use specific primers for amplifying LrWRKY2 to identify clones with multiple cloning sites inserted into LrWRKY2 . Sequencing was performed, and the final LrWRKY2 full-length cDNA was 1302 bp, which was analyzed by NCBI ORF finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) and found that it contained an open reading frame of 1032 bp Box (see Sequence Listing), LrWRKY2 encodes a 343 amino acid protein with a molecular weight of about 37.91 KDa, an isoelectric point of about 5.88, and 4 cysteine residues. LrWRKY2 has a WRKYGQK conserved domain followed by a C2H2 (C-X4-C-X22/23-H-X1-H) type zinc finger motif immediately after each WRKY domain. Apparently, the protein encoded by LrWRKY2 belongs to class II WRKY transcription factor.

实施例2:植物超表达载体构建Example 2: Plant overexpression vector construction

采用SanPrep柱式质粒DNA小量抽提试剂盒(上海生工)提取插入LrWRKY2的大肠杆菌质粒pGEM-T-LrWRKY2以及植物表达载体pCAMBIA2300s的质粒,取1 μL用于琼脂糖凝胶电泳以检测所提取质粒的完整性及浓度高低;用限制性内切酶BamHI(TaKaRa)和XbaI(TaKaRa)分别对质粒pGEM-T-LrWRKY2和pCAMBIA2300s进行双酶切(100 μL体系),反应体系和操作过程为:取20 μL pGEM-T-LrWRKY2和pCAMBIA2300s质粒、依次加入10 μL 10×Kbuffer、4 μL BamHI、6 μL XbaI、60 μL ddH2O,混匀后短时离心,置于37℃过夜反应;将所有酶切产物点于琼脂糖凝胶中进行电泳,然后对LrWRKY2片段和pCAMBIA2300s载体大片段分别进行胶回收,整个过程使用SanPrep柱式DNA胶回收试剂盒(上海生工);取1 μL回收产物通过琼脂糖凝胶电泳检测回收片段的大小以及浓度,置于-20℃保存备用。The E. coli plasmid pGEM-T- LrWRKY2 inserted into LrWRKY2 and the plasmid of the plant expression vector pCAMBIA2300s were extracted using the SanPrep column-type plasmid DNA mini-extraction kit (Shanghai Shenggong), and 1 μL was taken for agarose gel electrophoresis to detect all the The integrity and concentration of the extracted plasmids; double-enzyme digestion of plasmids pGEM-T- LrWRKY2 and pCAMBIA2300s with restriction enzymes Bam HI (TaKaRa) and Xba I (TaKaRa) respectively (100 μL system), reaction system and operation The process is: take 20 μL pGEM-T- LrWRKY2 and pCAMBIA2300s plasmids, add 10 μL 10×Kbuffer, 4 μL Bam HI, 6 μL Xba I, 60 μL ddH 2 O in turn, mix well, centrifuge for a short time, and place at 37°C overnight reaction; spot all the digested products on agarose gel for electrophoresis, and then gel recovery of LrWRKY2 fragment and pCAMBIA2300s vector large fragment, using SanPrep column DNA gel recovery kit (Shanghai Sangong); 1 μL of the recovered product was detected by agarose gel electrophoresis for the size and concentration of the recovered fragments, and stored at -20°C for later use.

利用T4 DNA Ligase(TaKaRa),将回收的LrWRKY2 DNA片段和pCAMBIA2300s载体片段连接起来,反应体系(20 μL)和操作过程为:取10 μL LrWRKY2 DNA片段依次加入2 μLpCAMBIA2300s载体DNA、2 μL 10×T4 DNA Ligase Buffer、1 μL T4 DNA Ligase、5 μLddH2O,混匀后短时离心,然后16℃水浴过夜反应。接着采用热激转化法将连接产物转入大肠杆菌DH5α中,用含有50 mg/L卡那霉素(kanamycin,Km)的固体培养基筛选阳性克隆。挑选单菌落摇菌,以菌液为模板用扩增LrWRKY2的特异引物进行PCR,挑选出LrWRKY2与pCAMBIA2300s成功连接的克隆,所检测的菌株若为阳性,加入甘油并置于-80℃保存备用。Using T4 DNA Ligase (TaKaRa), the recovered LrWRKY2 DNA fragment and pCAMBIA2300s vector fragment were ligated. The reaction system (20 μL) and the operation process were as follows: 10 μL LrWRKY2 DNA fragment was added to 2 μL pCAMBIA2300s vector DNA, 2 μL 10×T4 DNA Ligase Buffer, 1 μL T4 DNA Ligase, 5 μL ddH 2 O, mixed well, centrifuged for a short time, and then reacted in a water bath at 16°C overnight. Then, the ligated product was transformed into E. coli DH5α by heat shock transformation, and positive clones were screened with solid medium containing 50 mg/L kanamycin (Km). A single colony was selected and shaken, and PCR was performed using the bacterial solution as a template with specific primers for amplifying LrWRKY2 to select clones that successfully linked LrWRKY2 to pCAMBIA2300s. If the detected strain was positive, add glycerol and store at -80°C for later use.

采用SanPrep柱式质粒抽提试剂盒(上海生工)提取并纯化上述大肠杆菌中的pCAMBIA2300s-LrWRKY2质粒。随后用液氮冻融法将上述构建的植物表达载体pCAMBIA2300s-LrWRKY2转入根癌农杆菌LBA4404感受态细胞中。操作步骤为:取2μgpCAMBIA2300s-LrWRKY2质粒加入含有200μL感受态细胞的离心管中,轻轻混匀后冰浴5min,随后转入液氮中冷冻1 min,然后迅速置于37℃水浴5 min,之后立即冰浴2 min,加入800μL LB液体培养基于28℃振荡培养4 h。将活化后的农杆菌涂于含有50 mg/L Km的LB固体培养基上,28℃静止培养。挑选单菌落摇菌,再用扩增LrWRKY2的特异性引物进行PCR,检测pCAMBIA2300s-LrWRKY2是否转入农杆菌中,对于阳性克隆,加入甘油后置于-80℃保存备用。The pCAMBIA2300s -LrWRKY2 plasmid in the above E. coli was extracted and purified using the SanPrep column plasmid extraction kit (Shanghai Shenggong). Subsequently, the above-constructed plant expression vector pCAMBIA2300s -LrWRKY2 was transformed into Agrobacterium tumefaciens LBA4404 competent cells by liquid nitrogen freeze-thaw method. The operation steps are as follows: add 2 μg pCAMBIA2300s- LrWRKY2 plasmid to a centrifuge tube containing 200 μL competent cells, mix gently, ice bath for 5 min, then transfer to liquid nitrogen to freeze for 1 min, then quickly place in a 37°C water bath for 5 min, and then Immediately ice-bath for 2 min, add 800 μL of LB liquid culture for 4 h at 28°C with shaking. The activated Agrobacterium was spread on LB solid medium containing 50 mg/L Km, and cultured at 28°C statically. A single colony was selected and shaken, and PCR was performed with specific primers for amplifying LrWRKY2 to detect whether pCAMBIA2300s -LrWRKY2 was transformed into Agrobacterium. For positive clones, add glycerol and store at -80°C for later use.

实施例3:农杆菌介导的植物遗传转化以及转基因植物筛选Example 3: Agrobacterium-mediated plant genetic transformation and screening of transgenic plants

本实验的转基因受体是烟草,将烟草种子用75%的酒精浸泡30s,用无菌水洗涤后用0.1 %的HgCl2浸泡8 min,然后再用无菌水洗涤若干次,播种于1/2 MS培养基上,28℃暗培养6 d,发芽后转至光照培养箱(25℃,16 h/d光照),以后每月用1/2MS培养基继代一次。The transgenic receptor in this experiment was tobacco. Tobacco seeds were soaked in 75% alcohol for 30s, washed with sterile water, soaked in 0.1% HgCl for 8 min, then washed with sterile water for several times, and sown in 1/1/2 2 MS medium, cultivated in the dark at 28 °C for 6 d, transferred to a light incubator (25 °C, 16 h/d light) after germination, and then subcultured with 1/2 MS medium once a month.

从-80℃冰箱中取出保存的含有pCAMBIA2300s-LrWRKY2质粒的农杆菌LBA4404菌种,接种于5 mL含有50 mg/L Km和20 mg/L利福平的LB液体培养基中,28℃培养至培养基浑浊。吸取1 mL浑浊的菌液至含有50 mg/L Km的LB固体培养基上,28℃培养48 h;随后将LB固体培养基上的农杆菌刮下适量接种于附加有20 mg/L的乙酰丁香酮的MGL液体培养基中,28℃振荡培养2-3 h以活化农杆菌。Take out the preserved Agrobacterium LBA4404 strain containing pCAMBIA2300s -LrWRKY2 plasmid from the -80℃ refrigerator, inoculate it in 5 mL LB liquid medium containing 50 mg/L Km and 20 mg/L rifampicin, and cultivate it at 28℃ to The medium is cloudy. Pipette 1 mL of turbid bacterial solution onto LB solid medium containing 50 mg/L Km, and cultivate at 28 °C for 48 h; then scrape off an appropriate amount of Agrobacterium on the LB solid medium and inoculate it with 20 mg/L acetyl In the MGL liquid medium of syringone, shake cultured at 28°C for 2-3 h to activate Agrobacterium.

取烟草无菌苗叶片切成1 cm2左右的叶盘,完全浸泡于上述含有活化农杆菌的MGL液体培养基中,浸染时间为15 min,用无菌滤纸吸干叶片表面的菌液,将叶盘置于共培养基上进行室温培养,烟草转化的共培养基为MS+0.02 mg/L 6-BA+2.1 mg/L NAA+30 g/Lsucrose+6 g/L琼脂,22℃无光条件下共培养2天。Take the leaves of tobacco sterile seedlings and cut them into leaf discs of about 1 cm 2 , and completely immerse them in the above-mentioned MGL liquid medium containing activated Agrobacterium for 15 min. The leaf discs were cultured at room temperature on a co-culture medium. The co-culture medium for tobacco transformation was MS+0.02 mg/L 6-BA+2.1 mg/L NAA+30 g/Lsucrose+6 g/L agar, 22°C without light Cultivated for 2 days under the conditions.

将共培养后的叶盘转到加有抗生素的MS筛选培养基中分化成苗,同时筛选转基因植株。烟草筛选培养基为MS+0.5mg/L 6-BA+0.1mg/L NAA+30g/L sucrose+6g/L琼脂+50mg/L Km+200 mg/L 头孢霉素(cefotaxime sodium salt,Cef);筛选培养时将培养瓶转移至光照培养箱培养(25℃,16 h/d光照,8 h/d黑暗),待烟草长出芽后用含有50 mg/L Km和200mg/L Cef的MS培养基继代培养,因烟草愈伤分化率较高,故需要对再生植株进行进一步筛选,将烟草再生苗移至含有50 mg/L Km的MS培养基上使其生根,最后选用生根较好的再生苗做进一步的检测。The leaf discs after co-culture were transferred to MS screening medium with antibiotics and differentiated into shoots, and transgenic plants were screened at the same time. Tobacco screening medium is MS+0.5mg/L 6-BA+0.1mg/L NAA+30g/L sucrose+6g/L agar+50mg/L Km+200 mg/L cefotaxime sodium salt, Cef ; During the screening culture, transfer the culture flask to a light incubator (25°C, 16 h/d light, 8 h/d dark), and after the tobacco grows buds, culture it with MS containing 50 mg/L Km and 200 mg/L Cef The regenerated plants need to be further screened because of the high callus differentiation rate of tobacco. The tobacco regenerated seedlings are transferred to MS medium containing 50 mg/L Km to make them take root. Finally, the better rooting plants are selected. The regenerated seedlings were further tested.

采用CTAB法提取转基因烟草植株叶片的基因组DNA,将提取的基因组DNA取1μL通过琼脂糖凝胶电泳检测其完整性和浓度,以转基因植株的基因组DNA为模板用扩增LrWRKY2的特异引物进行PCR,PCR结束后,取8μL产物用于琼脂糖凝胶电泳以检测阳性转基因植株,部分烟草转基因植株的扩增结果如图1所示,LrWRKY2转基因烟草共筛选到51株阳性转基因植株。The genomic DNA of the leaves of transgenic tobacco plants was extracted by CTAB method, and 1 μL of the extracted genomic DNA was taken to detect its integrity and concentration by agarose gel electrophoresis. After PCR, 8 μL of the product was taken for agarose gel electrophoresis to detect positive transgenic plants. The amplification results of some tobacco transgenic plants are shown in Figure 1. A total of 51 positive transgenic plants were screened from LrWRKY2 transgenic tobacco.

实施例4:转基因烟草中LrWRKY2的表达分析以及转基因植株抗真菌侵染的功能分析Example 4: Expression analysis of LrWRKY2 in transgenic tobacco and functional analysis of transgenic plants against fungal infection

取阳性转基因单株以及非转基因烟草(野生型)的嫩叶提取总RNA,逆转录生成cDNA第一链,并以此为模板用扩增LrWRKY2的特异引物进行PCR,根据PCR结果分析各转基因单株中LrWRKY2转录水平的表达,总RNA提取以及RT-PCR的方法与实施例1中相同,PCR结束之后,取8μL用于琼脂糖凝胶电泳,部分单株的检测结果如图2所示,共检测到47个转基因单株中LrWRKY2在转录水平大量表达,这些单株的编号为1~47。The positive transgenic individual plants and young leaves of non-transgenic tobacco (wild-type) were taken to extract total RNA, reverse-transcribed to generate the first strand of cDNA, and used as a template for PCR with specific primers for amplifying LrWRKY2 . The expression of the LrWRKY2 transcript level in the strain, the extraction of total RNA and the RT-PCR method were the same as those in Example 1. After PCR, 8 μL was taken for agarose gel electrophoresis. The detection results of some individual strains are shown in Figure 2. A total of 47 transgenic individual plants were detected to express a large amount of LrWRKY2 at the transcriptional level, and these individual plants were numbered from 1 to 47.

将实验室保存的几种病原真菌接种于PDA固体培养基(200g/L马铃薯,15g/L琼脂,20 g/L葡萄糖)上,28℃暗培养7d。选取温室中生长良好、大小均一且完全伸展的野生型烟草和LrWRKY2转基因烟草叶片,用手术剪从叶柄除剪下。用无菌塑料枪头在叶片约相同位置形成大小一致的伤口,分别接种大小相等的真菌菌丝块。将处理后的叶片置于铺有无菌水浸湿的滤纸的平板中,于28℃光照培养箱中培养,每天加水保湿。培养7 d后收集叶片并观察各株系叶片的发病情况。结果如图3所示,分别接种稻黑孢霉、轮枝镰刀菌、葡萄座腔菌、茄腐镰刀菌、人参链格孢等五种病原真菌后,野生型烟草的叶片形成较大的病斑,叶片出现黄化和腐烂的现象,而转基因烟草叶片的症状很轻微,形成的病斑面积也远小于野生型烟草。显然,LrWRKY2转基因烟草对稻黑孢霉、轮枝镰刀菌、葡萄座腔菌、茄腐镰刀菌、人参链格孢等病原真菌具有很强的抗性。Several pathogenic fungi preserved in the laboratory were inoculated on PDA solid medium (200 g/L potato, 15 g/L agar, 20 g/L glucose), and cultivated in the dark at 28°C for 7 days. Wild-type tobacco leaves and LrWRKY2 transgenic tobacco leaves that grow well, uniform in size and fully expanded in the greenhouse were selected and cut from petioles with surgical scissors. Use a sterile plastic pipette tip to form wounds of the same size on the leaves at about the same position, and inoculate the fungal mycelium blocks of equal size respectively. The treated leaves were placed in a plate covered with filter paper soaked in sterile water, and cultivated in a light incubator at 28°C, and water was added every day for moisturizing. After 7 days of culture, the leaves were collected and the disease status of the leaves of each line was observed. The results are shown in Figure 3. After inoculation with five types of pathogenic fungi, including Nigella oryzae, Fusarium verticillium, Botrytis sp., Fusarium solani, and Alternaria ginseng, the leaves of the wild-type tobacco formed larger disease. The leaves appeared yellowing and rotting, while the symptoms of transgenic tobacco leaves were very mild, and the area of lesions formed was much smaller than that of wild-type tobacco. Obviously, LrWRKY2 transgenic tobacco has strong resistance to pathogenic fungi such as Nigella oryzae, Fusarium verticillium, Botrytis, Fusarium solani, and Alternaria ginseng.

序列表sequence listing

<110> 昆明理工大学<110> Kunming University of Science and Technology

<120> 一种岷江百合WRKY转录因子基因LrWRKY2及应用<120> A Minjiang Lily WRKY transcription factor gene LrWRKY2 and its application

<160> 4<160> 4

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 1302<211> 1302

<212> DNA<212> DNA

<213> 岷江百合(Lilium regale Wilson)<213> Lilium regale Wilson

<400> 1<400> 1

ctcccctctc cctctctcac ccctacaagg ttcatcctgc tagacatgtg tgatctcttc 60ctcccctctc cctctctcac ccctacaagg ttcatcctgc tagacatgtg tgatctcttc 60

tggcaaagaa tggaaggcga gcttgccgac atcgtccgca ccagcggcct caccagccat 120tggcaaagaa tggaaggcga gcttgccgac atcgtccgca ccagcggcct caccagccat 120

ccgcccatct ccgactttgc tgattgggat ctaccttccg accccataac cttctcccct 180ccgcccatct ccgactttgc tgattgggat ctaccttccg accccataac cttctcccct 180

tcatcccaag acaacttcgg cgacccattc atcaacttgc cagatccatt gcttcatgaa 240tcatcccaag acaacttcgg cgacccattc atcaacttgc cagatccatt gcttcatgaa 240

tcaccggcca ccaatatcgc tccagtctct gactccgaca accatgaaat aggtgtgcca 300tcaccggcca ccaatatcgc tccagtctct gactccgaca accatgaaat aggtgtgcca 300

cttgctcaga ggatgatagc agcgagcgag gagctgaaga ggcctaacaa catattctca 360cttgctcaga ggatgatagc agcgagcgag gagctgaaga ggcctaacaa catattctca 360

cggatgctgc agatctcccc aagggagcta aaagctactc aaatgatatc gaccagtgat 420cggatgctgc agatctcccc aagggagcta aaagctactc aaatgatatc gaccagtgat 420

ttgatgaaga cgagcaacag tggctcgaca ggcgccgtgc agatttcctc tccaaggggt 480ttgatgaaga cgagcaacag tggctcgaca ggcgccgtgc agatttcctc tccaaggggt 480

cttggaatca agaggaggaa aagccaggca aagaaggtgg tgtgcatccc agcaccagca 540cttggaatca agaggaggaa aagccaggca aagaaggtgg tgtgcatccc agcaccagca 540

gctacaacca gcaggagcag tggagaggtt gttccagctg atctttgggc ttggaggaag 600gctacaacca gcaggagcag tggagaggtt gttccagctg atctttgggc ttggaggaag 600

tatggacaga aacccatcaa aggttctcct catccaaggg gctactatag atgcagcagc 660tatggacaga aacccatcaa aggttctcct catccaaggg gctactatag atgcagcagc 660

tcaaaaggat gctcagcaag gaagcaagtc gagaggagcc gaactgatcc aaacatgcta 720tcaaaaggat gctcagcaag gaagcaagtc gagaggagcc gaactgatcc aaacatgcta 720

gtcatcactt acacatccga gcacaaccat ccctggccga cacagaggaa cgctctcgct 780gtcatcactt acacatccga gcacaaccat ccctggccga cacagaggaa cgctctcgct 780

ggatcgacaa gatcgtcaca cccggctaag aacatctctt ccgcggcatc caagatctcc 840ggatcgacaa gatcgtcaca cccggctaag aacatctctt ccgcggcatc caagatctcc 840

ccacctgcaa atttgaagga agaagaaccc aaggaggagg taatctcaac cattgtgcca 900ccacctgcaa atttgaagga agaagaaccc aaggaggagg taatctcaac cattgtgcca 900

gtgaaggaag aaatggcagg aaatgatcat caagaattcc aagaccaagt gttgcagcat 960gtgaaggaag aaatggcagg aaatgatcat caagaattcc aagaccaagt gttgcagcat 960

acttacaagc caatgatacc agactcgaat caatccgatg atttctttga tgagttggga 1020acttacaagc caatgatacc agactcgaat caatccgatg atttctttga tgagttggga 1020

gaattgggga ctgattctat ggattcattt aacatgtttg aatgggccgg gaaataatct 1080gaattgggga ctgattctat ggattcattt aacatgtttg aatgggccgg gaaataatct 1080

ggagtcatag atttcgaata aaaagttgtt atctagtgga tggaaagcaa aaactattga 1140ggagtcatag atttcgaata aaaagttgtt atctagtgga tggaaagcaa aaactattga 1140

ggtttgaagc acatacattt tcacatactt gatttaacca aaatatgaat taaatcctta 1200ggtttgaagc acatacattt tcacatactt gatttaacca aaatatgaat taaatcctta 1200

gtgtcctata agtgaaaatg tattgtgcat ggattctgtt ttatggattg ctacatatat 1260gtgtcctata agtgaaaatg tattgtgcat ggattctgtt ttatggattg ctacatatat 1260

ttgtgttttg gactatctga ccaatgactg gttaacttat aa 1302ttgtgttttg gactatctga ccaatgactg gttaacttat aa 1302

<210> 2<210> 2

<211> 343<211> 343

<212> PRT<212> PRT

<213> 岷江百合(Lilium regale Wilson)<213> Lilium regale Wilson

<400> 2<400> 2

Met Cys Asp Leu Phe Trp Gln Arg Met Glu Gly Glu Leu Ala Asp IleMet Cys Asp Leu Phe Trp Gln Arg Met Glu Gly Glu Leu Ala Asp Ile

1 5 10 151 5 10 15

Val Arg Thr Ser Gly Leu Thr Ser His Pro Pro Ile Ser Asp Phe AlaVal Arg Thr Ser Gly Leu Thr Ser His Pro Pro Ile Ser Asp Phe Ala

20 25 30 20 25 30

Asp Trp Asp Leu Pro Ser Asp Pro Ile Thr Phe Ser Pro Ser Ser GlnAsp Trp Asp Leu Pro Ser Asp Pro Ile Thr Phe Ser Pro Ser Ser Gln

35 40 45 35 40 45

Asp Asn Phe Gly Asp Pro Phe Ile Asn Leu Pro Asp Pro Leu Leu HisAsp Asn Phe Gly Asp Pro Phe Ile Asn Leu Pro Asp Pro Leu Leu His

50 55 60 50 55 60

Glu Ser Pro Ala Thr Asn Ile Ala Pro Val Ser Asp Ser Asp Asn HisGlu Ser Pro Ala Thr Asn Ile Ala Pro Val Ser Asp Ser Asp Asn His

65 70 75 8065 70 75 80

Glu Ile Gly Val Pro Leu Ala Gln Arg Met Ile Ala Ala Ser Glu GluGlu Ile Gly Val Pro Leu Ala Gln Arg Met Ile Ala Ala Ser Glu Glu

85 90 95 85 90 95

Leu Lys Arg Pro Asn Asn Ile Phe Ser Arg Met Leu Gln Ile Ser ProLeu Lys Arg Pro Asn Asn Ile Phe Ser Arg Met Leu Gln Ile Ser Pro

100 105 110 100 105 110

Arg Glu Leu Lys Ala Thr Gln Met Ile Ser Thr Ser Asp Leu Met LysArg Glu Leu Lys Ala Thr Gln Met Ile Ser Thr Ser Asp Leu Met Lys

115 120 125 115 120 125

Thr Ser Asn Ser Gly Ser Thr Gly Ala Val Gln Ile Ser Ser Pro ArgThr Ser Asn Ser Gly Ser Thr Gly Ala Val Gln Ile Ser Ser Pro Arg

130 135 140 130 135 140

Gly Leu Gly Ile Lys Arg Arg Lys Ser Gln Ala Lys Lys Val Val CysGly Leu Gly Ile Lys Arg Arg Lys Ser Gln Ala Lys Lys Val Val Cys

145 150 155 160145 150 155 160

Ile Pro Ala Pro Ala Ala Thr Thr Ser Arg Ser Ser Gly Glu Val ValIle Pro Ala Pro Ala Ala Thr Thr Ser Arg Ser Ser Gly Glu Val Val

165 170 175 165 170 175

Pro Ala Asp Leu Trp Ala Trp Arg Lys Tyr Gly Gln Lys Pro Ile LysPro Ala Asp Leu Trp Ala Trp Arg Lys Tyr Gly Gln Lys Pro Ile Lys

180 185 190 180 185 190

Gly Ser Pro His Pro Arg Gly Tyr Tyr Arg Cys Ser Ser Ser Lys GlyGly Ser Pro His Pro Arg Gly Tyr Tyr Arg Cys Ser Ser Ser Lys Gly

195 200 205 195 200 205

Cys Ser Ala Arg Lys Gln Val Glu Arg Ser Arg Thr Asp Pro Asn MetCys Ser Ala Arg Lys Gln Val Glu Arg Ser Arg Thr Asp Pro Asn Met

210 215 220 210 215 220

Leu Val Ile Thr Tyr Thr Ser Glu His Asn His Pro Trp Pro Thr GlnLeu Val Ile Thr Tyr Thr Ser Glu His Asn His Pro Trp Pro Thr Gln

225 230 235 240225 230 235 240

Arg Asn Ala Leu Ala Gly Ser Thr Arg Ser Ser His Pro Ala Lys AsnArg Asn Ala Leu Ala Gly Ser Thr Arg Ser Ser His Pro Ala Lys Asn

245 250 255 245 250 255

Ile Ser Ser Ala Ala Ser Lys Ile Ser Pro Pro Ala Asn Leu Lys GluIle Ser Ser Ala Ala Ser Lys Ile Ser Pro Pro Ala Asn Leu Lys Glu

260 265 270 260 265 270

Glu Glu Pro Lys Glu Glu Val Ile Ser Thr Ile Val Pro Val Lys GluGlu Glu Pro Lys Glu Glu Val Ile Ser Thr Ile Val Pro Val Lys Glu

275 280 285 275 280 285

Glu Met Ala Gly Asn Asp His Gln Glu Phe Gln Asp Gln Val Leu GlnGlu Met Ala Gly Asn Asp His Gln Glu Phe Gln Asp Gln Val Leu Gln

290 295 300 290 295 300

His Thr Tyr Lys Pro Met Ile Pro Asp Ser Asn Gln Ser Asp Asp PheHis Thr Tyr Lys Pro Met Ile Pro Asp Ser Asn Gln Ser Asp Asp Phe

305 310 315 320305 310 315 320

Phe Asp Glu Leu Gly Glu Leu Gly Thr Asp Ser Met Asp Ser Phe AsnPhe Asp Glu Leu Gly Glu Leu Gly Thr Asp Ser Met Asp Ser Phe Asn

325 330 335 325 330 335

Met Phe Glu Trp Ala Gly LysMet Phe Glu Trp Ala Gly Lys

340 340

<210> 3<210> 3

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial)<213> Artificial Sequence (Artificial)

<400> 3<400> 3

ctacaaggtt catcctgcta gacat 25ctacaaggtt catcctgcta gacat 25

<210> 4<210> 4

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial)<213> Artificial Sequence (Artificial)

<400> 4<400> 4

tttgctttcc atccactaga taaca 25tttgctttcc atccactaga taaca 25

Claims (1)

1.一种岷江百合WRKY转录因子基因LrWRKY2在提高烟草对稻黑孢霉(Nigrospora oryzae)、茄腐镰刀菌(Fusarium solani)、轮枝镰刀菌(Fusarium verticillioides)、人参链格孢(Alternaria panax)抗性中的应用,所述岷江百合WRKY转录因子基因LrWRKY2的核苷酸序列如SEQ ID NO:1所示。1. A Minjiang lily WRKY transcription factor gene LrWRKY2 can improve tobacco resistance to Nigrospora oryzae , Fusarium solani , Fusarium verticillioides , Alternaria panax For the application in resistance, the nucleotide sequence of the WRKY transcription factor gene LrWRKY2 of Lily of the Minjiang River is shown in SEQ ID NO: 1.
CN201911106106.9A 2019-11-13 2019-11-13 Lilium regale WRKY transcription factor gene LrWRKY2 and application thereof Active CN110818783B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911106106.9A CN110818783B (en) 2019-11-13 2019-11-13 Lilium regale WRKY transcription factor gene LrWRKY2 and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911106106.9A CN110818783B (en) 2019-11-13 2019-11-13 Lilium regale WRKY transcription factor gene LrWRKY2 and application thereof

Publications (2)

Publication Number Publication Date
CN110818783A CN110818783A (en) 2020-02-21
CN110818783B true CN110818783B (en) 2022-06-24

Family

ID=69554807

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911106106.9A Active CN110818783B (en) 2019-11-13 2019-11-13 Lilium regale WRKY transcription factor gene LrWRKY2 and application thereof

Country Status (1)

Country Link
CN (1) CN110818783B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110747202B (en) * 2019-11-13 2021-09-14 昆明理工大学 Lilium regale WRKY transcription factor gene LrWRKY11 and application thereof
CN112831505B (en) * 2021-03-16 2023-04-11 昆明理工大学 Pseudo-ginseng WRKY transcription factor gene PnWRKY15 and application thereof
CN112831504B (en) * 2021-03-16 2023-03-24 昆明理工大学 Pseudo-ginseng WRKY transcription factor gene PnWRKY9 and application thereof
CN113061614B (en) * 2021-03-30 2023-04-28 四川大学 Application of tomato SlWRKY35 gene in improving carotenoid compound or/and chlorophyll content of tomatoes
CN113604477B (en) * 2021-08-20 2023-03-24 昆明理工大学 Lilium regale defensin antibacterial peptide gene LrDEF1 and application thereof
CN113603757B (en) * 2021-08-20 2023-05-26 昆明理工大学 Lily regale Dirigent similar protein gene LrDIR1 and application thereof
CN116064586B (en) * 2022-11-01 2024-04-02 广东省农业科学院果树研究所 Papaya CpWRKY50 gene and application thereof in improving papaya anthracnose resistance
CN116218877B (en) * 2023-04-28 2023-11-24 昆明理工大学 Application of pseudo-ginseng WRKY transcription factor PnWRKY12

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105441460A (en) * 2016-01-06 2016-03-30 昆明理工大学 Lilium regale Wilson WRKY transcription factor gene LrWRKY1 and application

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY173157A (en) * 2016-03-07 2019-12-31 Sime Darby Plantation Sdn Bhd Methods for obtaining oil palm plants that have tolerance to ganoderma boninense
CN107937414B (en) * 2017-12-11 2019-03-29 西南大学 Belladonna WRKY class transcription factor gene and its recombinant plant expression vector and application

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105441460A (en) * 2016-01-06 2016-03-30 昆明理工大学 Lilium regale Wilson WRKY transcription factor gene LrWRKY1 and application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Analysis of WRKY transcription factors and characterization of two Botrytis cinerea-responsive LrWRKY genes from Lilium regale;Cui等;《Plant Physiology and Biochemistry》;20180424;第127卷;第525-536页 *
Cui等.Analysis of WRKY transcription factors and characterization of two Botrytis cinerea-responsive LrWRKY genes from Lilium regale.《Plant Physiology and Biochemistry》.2018,第127卷第525-536页. *

Also Published As

Publication number Publication date
CN110818783A (en) 2020-02-21

Similar Documents

Publication Publication Date Title
CN110818783B (en) Lilium regale WRKY transcription factor gene LrWRKY2 and application thereof
CN105441460B (en) A kind of Ming River lily WRKY transcription factor genes LrWRKY1 and application
CN110818782B (en) A Minjiang Lily WRKY transcription factor gene LrWRKY3 and its application
CN110747202B (en) Lilium regale WRKY transcription factor gene LrWRKY11 and application thereof
CN110734482B (en) A Minjiang lily WRKY transcription factor gene LrWRKY4 and its application
CN112831504B (en) Pseudo-ginseng WRKY transcription factor gene PnWRKY9 and application thereof
CN105861517B (en) A kind of Radix Notoginseng antibacterial peptide gene PnSN1 and its application
CN108588087B (en) A gene GmLecRK-R for improving plant disease resistance and its application
CN112831505B (en) Pseudo-ginseng WRKY transcription factor gene PnWRKY15 and application thereof
CN108251432B (en) Notoginseng disease course related protein genePnPRlikeAnd applications
CN106244599B (en) A kind of Panax notoginseng disease course related protein 1 family gene PnPR1-2 and its application
CN104131015B (en) The application of a kind of lilium regale wilson pathogenesis-related proteins 10 gene LrPR10-5
CN113603757B (en) Lily regale Dirigent similar protein gene LrDIR1 and application thereof
CN107267526B (en) Panax notoginseng MYB transcription factor gene PnMYB2 and its application
CN103194456B (en) Lilium regale antifungal gene Lr14-3-3 and application thereof
CN106244598B (en) Radix Notoginseng Dirigent albuminoid gene PnDIR1 and application
CN104878019A (en) Yangbi walnut germin-like protein gene JsGLP1 and application thereof
CN107365794A (en) Pseudo-ginseng chitinase gene PnCHI1 application
CN107267525B (en) Application of Panax notoginseng polygalacturonase inhibitory protein gene PnPGIP
CN103320448B (en) Lilium regle bZIP transcription factor LrbZIP1 and application
CN109295068B (en) A kind of Panax notoginseng sweet protein gene PnTLP2 and its application
CN104774847B (en) Yangbi bulla walnut Pro-rich GFP JsPRP1 and application
CN109234284B (en) A kind of Panax notoginseng sweet protein gene PnTLP5 and its application
CN108707611B (en) Pseudo-ginseng reverse osmosis protein genePnOLP1And applications
CN113604477B (en) Lilium regale defensin antibacterial peptide gene LrDEF1 and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant