KR101391136B1 - Method for manufacturing graphite film electro-deposited metal oxide for supercapacitor electrode and supercapacitor comprising the same - Google Patents
Method for manufacturing graphite film electro-deposited metal oxide for supercapacitor electrode and supercapacitor comprising the same Download PDFInfo
- Publication number
- KR101391136B1 KR101391136B1 KR1020120052519A KR20120052519A KR101391136B1 KR 101391136 B1 KR101391136 B1 KR 101391136B1 KR 1020120052519 A KR1020120052519 A KR 1020120052519A KR 20120052519 A KR20120052519 A KR 20120052519A KR 101391136 B1 KR101391136 B1 KR 101391136B1
- Authority
- KR
- South Korea
- Prior art keywords
- electrode
- metal oxide
- graphite
- manganese
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 45
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 43
- 239000010439 graphite Substances 0.000 title claims abstract description 43
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 238000004070 electrodeposition Methods 0.000 claims abstract description 24
- 239000003990 capacitor Substances 0.000 claims abstract description 13
- 239000002131 composite material Substances 0.000 claims abstract description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- 239000011572 manganese Substances 0.000 claims description 11
- ZAUUZASCMSWKGX-UHFFFAOYSA-N manganese nickel Chemical compound [Mn].[Ni] ZAUUZASCMSWKGX-UHFFFAOYSA-N 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 239000000243 solution Substances 0.000 claims description 9
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910021607 Silver chloride Inorganic materials 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 6
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 6
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 239000012702 metal oxide precursor Substances 0.000 claims description 4
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229940071125 manganese acetate Drugs 0.000 claims description 3
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 claims description 3
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 3
- 239000002243 precursor Substances 0.000 claims description 3
- 239000002659 electrodeposit Substances 0.000 claims description 2
- 238000005530 etching Methods 0.000 claims description 2
- 230000003746 surface roughness Effects 0.000 claims description 2
- 238000000151 deposition Methods 0.000 abstract description 4
- 239000011230 binding agent Substances 0.000 abstract description 3
- 239000006258 conductive agent Substances 0.000 abstract description 3
- JEMDLNFQNCQAKN-UHFFFAOYSA-N nickel;oxomanganese Chemical group [Ni].[Mn]=O JEMDLNFQNCQAKN-UHFFFAOYSA-N 0.000 description 8
- 239000007772 electrode material Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- 229920001940 conductive polymer Polymers 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- -1 manganese-nickel metal oxide Chemical class 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000002848 electrochemical method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910018651 Mn—Ni Inorganic materials 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910018669 Mn—Co Inorganic materials 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- MMIPFLVOWGHZQD-UHFFFAOYSA-N manganese(3+) Chemical compound [Mn+3] MMIPFLVOWGHZQD-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
Abstract
그라파이트 상에 금속 산화물층을 전기화학적으로 전착하는 단계를 포함하는 슈퍼커패시터용 금속 산화물/그라파이트 전극의 제조방법에 관한 것으로서, 본 발명에 따르면 종래의 도전제와 바인더를 사용하여 전극을 제조하는 방법과 달리 그라파이트에 직접 금속 산화물을 전착하여 금속산화물/그라파이트 복합재 전극을 제조하고, 이를 전극으로 그대로 사용할 수 있기 때문에 제조 공정이 간단하고, 동시에 공정비용을 절감 효과를 가져온다. 또한, 그라파이트 전극 위에 전착되는 금속 산화물의 종류, 크기와 두께를 다양하게 조절하여 성능이 보다 향상된 전극의 제조가 가능하여, 슈퍼커패시터와 이차전지 등 다양한 분야에 활용할 수 있다.The present invention relates to a method of manufacturing an electrode using a conventional conductive agent and a binder, and a method of manufacturing a metal oxide / graphite electrode for a supercapacitor, which comprises electrochemically depositing a metal oxide layer on a graphite. Alternatively, the metal oxide / graphite composite electrode can be directly manufactured by electrodeposition of a metal oxide directly on the graphite, and the electrode can be used as an electrode, thereby simplifying the manufacturing process and reducing the process cost. Also, it is possible to manufacture electrodes with improved performance by variously controlling the kind, size and thickness of the metal oxide electrodeposited on the graphite electrode, and the present invention can be applied to various fields such as a super capacitor and a secondary battery.
Description
본 발명은 슈퍼커패시터용 전극의 제조방법에 관한 것으로서, 더욱 상세하게는 전기화학적 방법으로 금속 산화물을 그라파이트 시트에 직접 전착하여 이를 전극으로 그대로 사용할 수 있는 금속산화물/그라파이트 전극의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing an electrode for a supercapacitor, and more particularly, to a method of manufacturing a metal oxide / graphite electrode by electrodepositing a metal oxide directly on a graphite sheet by an electrochemical method and using the electrode as an electrode.
슈퍼커패시터(supercapacitor) 혹은 울트라커패시터(ultracapacitor)라고 불리는 전기화학 커패시터(electrochemical capacitor)는 기존 커패시터보다 높은 에너지밀도(energy density), 이차전지보다 높은 출력밀도(power density), 기타 에너지 저장장치보다 훨씬 우수한 사이클 수명 특성 등으로 인하여 신규 에너지 저장장치로서 각광을 받고 있다.Electrochemical capacitors, called supercapacitors or ultracapacitors, have higher energy densities than conventional capacitors, higher power densities than secondary cells, and much better than other energy storage devices Cycle life characteristics, and the like.
슈퍼커패시터는 활성탄을 전극물질로 사용하는 전기이중층 커패시터(electric double layer capacitor, EDLC)와 폴리아닐린(polyaniline), 폴리피롤(polypyrrole) 등과 같은 전도성 고분자, RuO2, MnO2 등의 금속산화물 및 이들의 복합체(Mn-Ni, Mn-Co 등) 등을 전극물질로 사용하는 의사커패시터(pseudo-capacitor)로 나눌 수 있다.The super capacitor includes an electric double layer capacitor (EDLC) using activated carbon as an electrode material, a conductive polymer such as polyaniline and polypyrrole, a conductive polymer such as RuO 2 , MnO 2 (Mn-Ni, Mn-Co, etc.) and the like are used as an electrode material, and a pseudo-capacitor.
현재 사용되는 전기이중층 커패시터(EDLC)는 다공성 구조의 활성탄소(activated carbon) 계열의 물질을 전극으로 사용하고 있다. 활성탄소는 비표면적이 넓고 기공(pore)이 균일하여 커패시턴스(capacitance)가 높다. 또한, 전기전도성과 이온확산률이 높아서 낮은 등가직렬저항(equivalent series resistance, ESR)을 나타내고 넓은 전위범위에서 안정하다는 장점을 가진다. 그러나 축전용량의 한계로 인하여 에너지 밀도가 낮은 점이 제한요소로 작용하여 EDLC의 대안으로 EDLC에 비해 축전용량이 3-4 배 정도 큰 금속산화물을 이용한 의사커패시터(pseudo-capacitor)의 연구가 활발히 이루어지고 있다.Currently, electric double layer capacitors (EDLC) use an activated carbon material as a porous structure. Activated carbon has a large specific surface area and uniform pores and high capacitance. In addition, it has an advantage of having low equivalent series resistance (ESR) due to high electrical conductivity and high ion diffusion rate and stable in a wide potential range. However, due to the limitation of the storage capacity, the low energy density acts as a limiting factor. As an alternative to the EDLC, pseudo-capacitors using metal oxides with a storage capacity three to four times larger than EDLC are actively studied have.
의사커패시터의 전극재료로서 금속산화물을 제조하는 방법과 관련하여 종래 화학적 공침(coprecipitation)과 동결 건조(freeze-drying)에 의해 제조하는 방법, 알루미나 주형의 나노 기공에 스퍼터링하여 얻는 방법, 전도성 고분자를 코팅한 금속산화물 제조법, 또는 탄소나노튜브 나노복합소재를 사용하여 제조하는 방법 등이 있다.As a method for producing a metal oxide as an electrode material of a pseudo capacitor, there has been known a conventional method of preparing by coprecipitation and freeze-drying, a method of sputtering on nano pores of an alumina template, a method of coating a conductive polymer A method of manufacturing a metal oxide, or a method of manufacturing using a carbon nanotube nanocomposite material.
이러한 종래 기술로서, 선행 특허문헌, 한국등록특허 10-1064299에는 화학적 공침과 동결건조를 이용하여 제조한 니켈-망간 이성분계 복합 전극재료에 관한 내용이 기재되어 있으며, 한국등록특허 10-1102982에는 전기화학 중합법을 이용하여 전도성고분자를 코팅한 금속산화물 제조방법이 기재되어 있다. 또한, 비특허문헌 Yi-Shiun et al., Electrochemical and Solid-State Letters, 6 (10), A210-A213 (2003); Chi-Chang Hu et al., Electrochemical and Solid-State Letters, 5(3) A43-A46 (2002) 등에 금속 산화물을 이용한 슈퍼커패시터 전극의 제조방법에 관한 내용이 기재되어 있다.As such prior arts, Korean Patent Registration No. 10-1064299 discloses a nickel-manganese bicomponent composite electrode material prepared by chemical coagulation and freeze-drying, and Korean Patent No. 10-1102982 discloses a nickel- There is disclosed a method for producing a metal oxide by coating a conductive polymer using a chemical polymerization method. Also, non-patent documents Yi-Shiun et al., Electrochemical and Solid-State Letters, 6 (10), A210-A213 (2003); A method for manufacturing a supercapacitor electrode using a metal oxide is disclosed in, for example, Chi-Chang Hu et al., Electrochemical and Solid-State Letters, 5 (3) A43-A46 (2002)
상기의 방법에 따른 전극 물질들은 결과물이 파우더 상태이므로 그것을 항상 탄소계 도전제와 부착을 위하여 바인더와 혼합하여 알루미늄 호일(foil)에 부착하여 슈퍼커패시터용 전극을 다시 제조해야 하므로 제조공정 시간이 길고, 이에 따른 제조비용이 증가되어 비효율적인 문제점을 가지고 있다. 또한, 기존에 연구된 망간산화물의 전기화학적 전착법 역시 이때 사용된 전극들은 백금을 비롯한 니켈 호일, 탄소나노튜브와 같은 가격이 비싼 물질들이어서 여전히 비효율적인 문제점을 갖고 있다.Since the electrode material according to the above method is in a powder state, it is always mixed with a binder for adhesion with a carbon-based conductive agent and is attached to an aluminum foil to manufacture an electrode for a supercapacitor, The manufacturing cost is increased, which is an inefficient problem. Also, the electrochemical electrodeposition method of manganese oxide, which has been studied previously, is still inefficient because the electrodes used in this process are expensive materials such as platinum, nickel foil, and carbon nanotube.
[선행기술문헌][Prior Art Literature]
[특허문헌][Patent Literature]
한국등록특허공보 제10-1064299호 (2010.05.26.공개)Korean Patent Registration No. 10-1064299 (published on May 26, 2010)
한국등록특허공보 제10-1102982호 (2011.02.09 공개)Korean Patent Registration No. 10-1102982 (Published Feb., 2011)
[비특허문헌][Non-Patent Document]
Yi-Shiun et al., Electrochemical and Solid-State Letters, 6 (10), A210-A213 (2003);Yi-Shiun et al., Electrochemical and Solid-State Letters, 6 (10), A210-A213 (2003);
Chi-Chang Hu et al., Electrochemical and Solid-State Letters, 5(3) A43-A46 (2002)Chi-Chang Hu et al., Electrochemical and Solid-State Letters, 5 (3) A43-A46 (2002)
따라서, 본 발명이 해결하고자 하는 과제는 그라파이트 시트(graphite sheet)를 전극물질로 사용하고, 여기에 전기화학적인 방법으로 금속 산화물을 전착하여 이를 전극으로 직접 활용할 수 있어 공정 효율이 우수하며, 보다 성능이 향상된 금속 산화물/그라파이트 복합재 전극을 제조하는 방법을 제공하는 것이다.Accordingly, a problem to be solved by the present invention is to use a graphite sheet as an electrode material, electrodeposition the metal oxide by an electrochemical method, and directly use the electrode as an electrode, And to provide a method for manufacturing the improved metal oxide / graphite composite electrode.
본 발명은 상기 과제를 해결하기 위하여,In order to solve the above problems,
그라파이트 상에 금속 산화물층을 전기화학적으로 전착하는 단계;를 포함하는 슈퍼커패시터용 금속 산화물/그라파이트 전극의 제조방법을 제공한다.And electrochemically depositing a metal oxide layer on the graphite. The present invention also provides a method of manufacturing a metal oxide / graphite electrode for a supercapacitor.
본 발명의 일 실시예에 의하면, 상기 전기화학적으로 전착하는 단계는, (a) 금속 산화물 전구체 용액을 포함하는 욕(bath)에 Ag/AgCl을 기준전극으로 하고, 작업전극과 대전극에 그라파이트 시트를 연결하여 3 전극계 욕(bath)을 구성하는 단계; 및According to an embodiment of the present invention, the electrochemical electrodepositing step includes the steps of: (a) using Ag / AgCl as a reference electrode in a bath containing a metal oxide precursor solution; To form a three-electrode system bath; And
(b) 상기 욕(bath)에서 30-180 초간 -1.2 V의 전원을 인가하여 금속 산화물층을 그라파이트에 직접 전착하는 단계;를 포함하는 것일 수 있다.(b) applying a power of -1.2 V for 30 to 180 seconds in the bath to electrodeposit the metal oxide layer directly on the graphite.
본 발명의 다른 일 실시예에 의하면, 상기 금속 산화물은 니켈 산화물, 코발트 산화물, 철 산화물, 마그네슘 산화물, 구리 산화물, 아연 산화물, 인듐 산화물, 루테늄 산화물, 바나듐 산화물, 이리듐 산화물 및 납 산화물로 이루어진 군에서 선택된 1종 이상의 금속 산화물일 수 있다.According to another embodiment of the present invention, the metal oxide is selected from the group consisting of nickel oxide, cobalt oxide, iron oxide, magnesium oxide, copper oxide, zinc oxide, indium oxide, ruthenium oxide, vanadium oxide, iridium oxide and lead oxide And may be one or more selected metal oxides.
본 발명의 다른 일 실시예에 의하면, 상기 금속 산화물 전구체 용액은 망간 아세테이트(Mn(CH3COO)2·4H2O)와 염화니켈(NiCl2·6H2O)을 포함하는 수용액으로서, 망간과 니켈의 몰비가 1 : 1 ~ 1 : 3일 수 있다.According to another embodiment of the present invention, the metal oxide precursor solution is an aqueous solution containing manganese acetate (Mn (CH 3 COO) 2 .4H 2 O) and nickel chloride (NiCl 2 .6H 2 O) Nickel molar ratio may be between 1: 1 and 1: 3.
본 발명의 다른 일 실시예에 의하면, 상기 전기화학적 전착 단계 이전에, 그라파이트 시트를 전처리하는 단계;를 더 포함할 수 있으며,According to another embodiment of the present invention, before the electrochemical electrodeposition step, pre-treating the graphite sheet may further include:
상기 전처리 단계는 실리콘 카바이드 종이(SiC paper)로 그라파이트 시트를 문질러 표면의 거칠기를 증가시킨 후, 황산에 침지시켜서 화학적으로 에칭(etching)하고, 메탄올 용액에 침지시켜 불순물을 제거하는 것일 수 있다.The pretreatment step may include rubbing the graphite sheet with silicon carbide paper (SiC paper) to increase the roughness of the surface, chemically etching it by immersing it in sulfuric acid, and immersing it in a methanol solution to remove impurities.
본 발명의 다른 일 실시예에 의하면, 상기 전기화학적 전착 단계 이후에, 그라파이트 시트에 전착된 금속 산화물을 열처리하여 금속 산화물을 결정화시키는 단계;를 더 포함할 수 있으며,According to another embodiment of the present invention, the method may further include crystallizing the metal oxide by heat-treating the metal oxide electrodeposited on the graphite sheet after the electrochemical electrodeposition step,
상기 열처리는 200-300 ℃에서 2-4 시간 동안 열처리하는 것일 수 있다.
The heat treatment may be a heat treatment at 200-300 ° C for 2-4 hours.
본 발명은 상기 과제를 해결하기 위하여,In order to solve the above problems,
상기 제조방법에 따라 제조되는 것을 특징으로 하는 금속 산화물/그라파이트 전극을 포함하는 슈퍼커패시터를 제공한다.The present invention also provides a super capacitor including the metal oxide / graphite electrode, which is manufactured according to the above-described method.
본 발명에 따르면 종래의 도전제와 바인더를 사용하여 전극을 제조하는 방법과 달리 그라파이트에 직접 금속 산화물을 전착하여 금속산화물/그라파이트 복합재 전극을 제조하고, 이를 전극으로 그대로 사용할 수 있기 때문에 제조 공정이 간단하고, 동시에 공정비용을 절감 효과를 가져온다. 또한, 그라파이트 전극 위에 전착되는 금속 산화물의 종류, 크기와 두께를 다양하게 조절하여 성능이 보다 향상된 전극의 제조가 가능하여, 슈퍼커패시터와 이차전지 등 다양한 분야에 활용할 수 있다.According to the present invention, a metal oxide / graphite composite electrode is manufactured by directly depositing a metal oxide on a graphite, unlike the conventional method of manufacturing an electrode using a conductive agent and a binder, and the electrode can be used as an electrode. And at the same time, reduces the cost of the process. Also, it is possible to manufacture electrodes with improved performance by variously controlling the kind, size and thickness of the metal oxide electrodeposited on the graphite electrode, and the present invention can be applied to various fields such as a super capacitor and a secondary battery.
도 1은 본 발명의 일 실시예에 따라 전기화학적으로 그라파이트 전극에 직접 망간-니켈 산화물 전착을 위한 욕(bath)과 전극의 구성을 보여주는 개념도이다.
도 2는 본 발명의 일 실시에에 따라 전기화학적 전착시간을 60 초로 하고, 니켈과 망간의 몰비가 2 : 1인 욕에서 제조하여 그라파이트 시트에 전착된 망간-니켈 산화물의 SEM 이미지이다.
도 3a는 본 발명에 따라 전착된 망간-니켈 금속 산화물에 대한 열처리 전의 SEM 이미지이고, 도 3b는 열처리 후의 SEM 이미지이다.
도 4는 본 발명의 일 실시에에 따라 망간과 니켈의 몰비를 1 : 2로 하고, 전기화학적 전착 시간을 달리하여 제조한 전극에 대한 충방전 그래프이다.
도 5는 본 발명의 일 실시에에 따라 망간과 니켈의 몰비를 1 : 2로 하고, 전기화학적 전착 시간을 달리하여 제조한 전극에 대한 커패시턴스 측정값을 나타낸 그래프이다.FIG. 1 is a conceptual diagram showing a structure of a bath and an electrode for electrodeposition of manganese-nickel oxide directly on a graphite electrode according to an embodiment of the present invention.
2 is a SEM image of manganese-nickel oxide electrodeposited on a graphite sheet produced in a bath having a nickel / manganese molar ratio of 2: 1 with an electrochemical deposition time of 60 seconds according to an embodiment of the present invention.
FIG. 3A is an SEM image of the electrodeposited manganese-nickel metal oxide according to the present invention before heat treatment, and FIG. 3B is an SEM image after heat treatment.
FIG. 4 is a graph of charge / discharge for an electrode manufactured by varying the electrochemical deposition time with a molar ratio of manganese and nickel of 1: 2 according to one embodiment of the present invention.
FIG. 5 is a graph showing a capacitance measurement value for an electrode manufactured at a molar ratio of manganese and nickel of 1: 2 according to an embodiment of the present invention and having different electrochemical deposition times. FIG.
이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명은 슈퍼커패시터 물질인 금속 산화물, 특히 망간-니켈 금속산화물을 전기화학적인 방법을 이용하여 탄소계 기판, 특히 그라파이트 시트에 곧바로 전착하여 성능이 우수한 망간-니켈 이성분계 전극물질이 전착된 슈퍼커패시터용 전극을 빠른 시간 내에 간단한 공정으로 제조하는 방법을 제공한다.The present invention relates to a method for directly depositing a metal oxide, particularly a manganese-nickel metal oxide, on a carbon-based substrate, in particular, a graphite sheet, using an electrochemical method to form a supercapacitor The present invention provides a method for manufacturing an electrode for use in a simple process in a short time.
본 발명은 종래의 금속 산화물을 파우더 입자로 제조하여 전극을 제조했던 방법에서 공정 단계를 획기적으로 줄임으로써 공정비용의 절감을 유도할 수 있는 것을 특징으로 한다.The present invention is characterized in that the process steps are drastically reduced in the method of manufacturing the electrode by preparing the conventional metal oxide as the powder particle, thereby reducing the process cost.
또한, 전기화학적 전착시간, 금속 산화물 전구체의 금속 농도 및 금속 산화물 결정화 열처리 시간 등의 제조공정 변수를 조절하여 원하는 크기와 두께로 금속 산화물을 형성할 수 있는 것을 특징으로 한다.
In addition, the metal oxide can be formed in a desired size and thickness by adjusting manufacturing process parameters such as electrochemical deposition time, metal concentration of metal oxide precursor, and heat treatment time of metal oxide crystallization.
본 발명에 따른 슈퍼커패시터용 금속 산화물/그라파이트 전극의 제조방법은 (ⅰ) 금속 산화물, 특히 망간-니켈 산화물을 전착할 수 있는 니켈과 망간의 몰비 조절한 전구체 용액을 포함하는 욕(bath)을 준비하는 단계, (ⅱ) 금속 산화물의 전착에 사용되는 그라파이트 시트의 전처리 단계, (ⅲ) 전처리된 그라파이트 시트의 크기를 달리 하여 각각 작업전극과 대전극으로 구성하여 전기화학적으로 전착시키는 단계, (ⅳ) 전착된 금속 산화물을 열처리하여 결정화시키는 단계로 크게 구성된다.The method for preparing a metal oxide / graphite electrode for a supercapacitor according to the present invention comprises the steps of: (i) preparing a bath containing a precursor solution in which a molar ratio of nickel and manganese capable of electrodepositing a metal oxide, particularly a manganese- (Iii) electrochemically electrodepositing the working electrode and the counter electrode, respectively, by varying the size of the pretreated graphite sheet, (iv) electroplating the electrodeposited graphite sheet, And a step of crystallizing the electrodeposited metal oxide by heat treatment.
본 발명은 전착에 사용되는 전위와 전착시간, 열처리 시간 등의 공정 변수를 조절하여 전착되는 금속 산화물 입자의 크기, 금속 산화물층의 두께 등을 조절하여 슈퍼커패시터 전극의 성능을 다양하게 조절할 수 있는 것을 특징으로 한다.
The present invention can control the performance of the supercapacitor electrode by adjusting the size of the metal oxide particles to be electrodeposited and the thickness of the metal oxide layer by adjusting process parameters such as dislocation, electrodeposition time, and heat treatment time used for electrodeposition .
이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않고, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. It will be clear to those who have knowledge.
<실시예><Examples>
실시예 1. 망간-니켈 산화물/그라파이트 전극의 제조Example 1. Preparation of manganese-nickel oxide / graphite electrode
(1) 그라파이트 시트의 준비(1) Preparation of graphite sheet
작업전극과 대전극에 사용할 그라파이트 시트는 작업전극용과 대전극용 크기를 각각 다르게 하여 미리 잘라두었다. 그리고 각각의 시트는 다음의 전처리 과정을 거쳤다.The graphite sheet to be used for the working electrode and the counter electrode was cut out in advance for different sizes for the working electrode and the counter electrode. Each sheet was subjected to the following pretreatment process.
먼저, SiC paper(실리콘 카바이드 종이)로 문질러서 물리적 polishing 작업으로 시트 표면의 거칠기를 증가시켰다. 이후, 20 wt% 황산에 20 초 동안 담그어 표면을 화학적으로 에칭(etching)하고 곧바로 2 M 메탄올 용액에 20 초 담그어 마이크로 수준의 결함과 불순물을 제거하였다. 메탄올에서 꺼낸 뒤 증류수로 표면을 깨끗이 씻어낸 뒤 65 ℃ 오븐에 6 시간 건조시켜 수분을 말끔히 제거하였다. 전착 전에 말끔히 건조된 시트를 준비하며 공기중의 노출을 최대한 피하였다.
First, the surface roughness of the sheet was increased by rubbing with SiC paper (silicon carbide paper) and physical polishing. Then, the surface was chemically etched by immersing in 20 wt% sulfuric acid for 20 seconds and immediately immersed in a 2 M methanol solution for 20 seconds to remove micro-level defects and impurities. After removing from the methanol, the surface was thoroughly rinsed with distilled water, and then dried in an oven at 65 ° C for 6 hours to remove moisture. Before the electrodeposition, the sheet was prepared to dryness and avoided exposure to the air as much as possible.
(2) 망간-니켈 수용액의 준비(2) Preparation of manganese-nickel aqueous solution
슈퍼커패시터용 Mn-Ni 산화물 전극제조를 위하여 전구체는 망간아세테이트(Mn(CH3COO)2·4H2O)와 염화니켈(NiCl2·6H2O)을 사용하였다. 그리고 망간과 니켈의 몰비가 1 : 2가 되도록 망간-니켈 수용액을 제조하였다.
Manganese acetate (Mn (CH 3 COO) 2 · 4H 2 O) and nickel chloride (NiCl 2 · 6H 2 O) were used as precursors for the preparation of Mn-Ni oxide electrodes for supercapacitors. A manganese-nickel aqueous solution was prepared so that the molar ratio of manganese to nickel was 1: 2.
(3) 그라파이트 시트에 망간-니켈 산화물의 전착(3) Electrodeposition of manganese-nickel oxide on the graphite sheet
준비된 그라파이트 시트를 크기별로 작은 것은 작업전극에 그보다 3 배 큰 크기의 시트는 대전극에 연결한 뒤 Ag/AgCl 전극을 기준전극으로 하여 욕에 설치하였다.(하기 도 1) 그 후. 일정전위전착법(potentiostatic method)으로 그라파이트 시트에 망간-니켈 산화물을 전착하였다. 즉, 일정전위(potentiostatic) 모드에서 -1.2 V를 인가하여 시간을 30, 60, 120, 180초로 달리하여 전착되는 망간-니켈 산화물의 양을 조절하면서 전착하였다.A prepared graphite sheet having a size smaller than that of the working electrode was connected to a counter electrode having a size three times larger than that of the working electrode, and the Ag / AgCl electrode was set as a reference electrode in the bath. The manganese-nickel oxide was electrodeposited on the graphite sheet by a constant potentiostatic method. That is, in the potentiostatic mode, -1.2 V was applied and the time was changed to 30, 60, 120, and 180 seconds to electrodeposition while controlling the amount of manganese-nickel oxide electrodeposited.
상기 일정전위전착법(potentiostatic method)에 의하면, 전위를 고정하고 시간에 따라서 전착량의 조절이 가능하고, 이에 따라서 망간-니켈 욕(bath)에서 원하는 커패시턴스를 가지는 전극을 제조할 수 있다.
According to the constant potential electrodeposition method, it is possible to control the electrodeposition amount by fixing the electric potential and the time, and accordingly, an electrode having a desired capacitance in a manganese-nickel bath can be manufactured.
(4) 열처리 단계(4) Heat treatment step
상기 (3)에 의한 망간-니켈 산화물의 전착 후에는 증류수로 표면을 세척하고 수분 제거 및 산화물 결정화를 위해 250 ℃에서 3 시간 동안 열처리(annealing)하였다.
After electrodeposition of the manganese-nickel oxide according to (3), the surface was washed with distilled water and annealed at 250 ° C for 3 hours to remove water and crystallize the oxide.
하기 도 2는 상기 실시예에 따라 전기화학적 전착시간을 60 초로 하고, 니켈과 망간의 몰비가 2 : 1인 욕에서 제조하여 그라파이트 시트에 전착된 망간-니켈 산화물의 SEM 이미지이고, 하기 도 2에서 보는 바와 같이, 본 발명에 따른 망간-니켈 금속 산화물은 결정화되어 fiber 형태를 가지며, 그 길이는 약 60-100 ㎚이다.
2 is an SEM image of a manganese-nickel oxide electrodeposited on a graphite sheet produced in a bath having a nickel / manganese molar ratio of 2: 1 with an electrochemical deposition time of 60 seconds according to the above embodiment, and FIG. 2 As can be seen, the manganese-nickel metal oxide according to the present invention is crystallized to have a fiber shape and its length is about 60-100 nm.
실험예 2. 열처리 전후의 산화물층의 결정화 변화 확인Experimental Example 2. Confirmation of crystallization change of oxide layer before and after heat treatment
하기 도 3a는 전착된 망간-니켈 금속 산화물에 대한 열처리 전의 SEM 이미지이고, 도 3b는 열처리 후의 SEM 이미지로서, 열처리 전에는 금속산화물의 형태가 보이는 듯 하나, 결정화가 이뤄지기 전이므로 fiber의 형태를 갖추고 있지 않으며, 열처리 후에는 결정화가 이루어져서 fiber 형태를 갖춘 금속 산화물 결정을 표면에서 확인할 수 있다.
FIG. 3A is an SEM image of the electrodeposited manganese-nickel metal oxide before heat treatment, FIG. 3B is an SEM image after heat treatment, which shows the shape of the metal oxide before the heat treatment but before the crystallization, And crystallization occurs after the heat treatment, so that a metal oxide crystal having a fiber shape can be confirmed on the surface.
실험예 2. 충방전 테스트EXPERIMENTAL EXAMPLE 2 Charging / discharging test
충방전 실험은 3전극 체계로 구성된 욕에서 진행하였다. 기준전극과 대전극은 각각 Ag/AgCl 전극, 백금 전극을 사용하였다. 0.5 M Na2SO4 용액을 전해질로 사용하였으며 제조한 니켈-망간 전극을 우선 0 V가 될 때까지 완전 방전을 시킨 후 0 ~ 0.85 V(vs. Ag/AgCl)의 전위범위에서 10 ㎃의 전류로 충전시킨 뒤 -10 ㎃로 완전 방전시켰다. 하기 도 4는 망간과 니켈의 몰비가 1 : 2인 욕에서 전기화학적 전착 시간을 다르게 하여 제조한 전극에 대한 충방전 실험 결과이다. 전착시간에 따른 커패시턴스가 다르듯 충방전 양상 역시 다름을 확인할 수 있다.
The charge and discharge tests were carried out in a bath consisting of a three electrode system. Ag / AgCl electrode and platinum electrode were used as the reference electrode and the counter electrode, respectively. 0.5 M Na 2 SO 4 The prepared nickel-manganese electrode was first fully discharged until it reached 0 V and then charged at a current of 10 mA in a potential range of 0 to 0.85 V (vs. Ag / AgCl) I was completely discharged with mA. FIG. 4 is a graph showing the results of charge and discharge tests for electrodes prepared by different electrochemical deposition times in a 1: 2 molar ratio of manganese and nickel. It can be seen that the charging and discharging behaviors are also different as the capacitances depend on the electrodeposition time.
실험예 3. CV 실험Experimental Example 3. CV Experiment
본 발명에 따라 제조한 전극의 커패시턴스(capacitance)를 계산하기 위하여 0.5 M Na2SO4 용액에서 기준전극으로 Ag/AgCl, 대전극으로 2×2 ㎠의 백금전극을 대전극을 이용하여 진행했다. CV 곡선은 -0.2 ~ 1.0 V 영역에서 20 ㎷/s의 주사속도를 인가하여 얻었다. 커패시턴스는 C=I/(dV/dt) 식을 이용하여 측정하였다. 본 발명에 따라 제조한 전극의 커패시턴스는 하기 도 5에 나타나 있는 바와 같이, 상기 실시예 1-(3)의 전착시간에 따라 490-270 F/g의 다양한 커패시턴스 값을 가진다.In order to calculate the capacitance of the electrode manufactured according to the present invention, 0.5 M Na 2 SO 4 Ag / AgCl was used as a reference electrode in the solution, and a platinum electrode of 2 × 2 cm 2 was used as a counter electrode by using a counter electrode. The CV curve was obtained by applying a scanning speed of 20 ㎷ / s in the range of -0.2 ~ 1.0 V. The capacitance was measured using the equation C = I / (dV / dt). As shown in FIG. 5, the capacitance of the electrode manufactured according to the present invention has various capacitance values of 490-270 F / g depending on the electrodeposition time of Example 1- (3).
Claims (7)
상기 그라파이트 시트에 전착된 망간-니켈 복합 산화물을 열처리하여 망간-니켈 복합 산화물을 결정화시키는 단계;를 포함하고,
상기 전기화학적으로 전착하는 단계는, (a) 망간-니켈 복합 산화물 전구체 용액을 포함하는 욕(bath)에 Ag/AgCl을 기준전극으로 하고, 작업전극과 대전극에 그라파이트 시트를 연결하여 3 전극계 욕(bath)을 구성하는 단계; 및
(b) 상기 욕(bath)에서 30-180 초간 -1.2 V의 전원을 인가하여 망간-니켈 복합 산화물을 그라파이트에 직접 전착하는 단계;를 포함하며,
상기 열처리는 200-300 ℃에서 2-4 시간 동안 수행되는 것을 특징으로하는 슈퍼커패시터용 금속 산화물/그라파이트 전극의 제조방법.Electrochemically electrodepositing a manganese-nickel composite oxide on a graphite sheet; And
And a step of crystallizing the manganese-nickel composite oxide by heat-treating the manganese-nickel composite oxide electrodeposited on the graphite sheet,
Wherein the electrochemical electrodeposition step comprises the steps of: (a) using Ag / AgCl as a reference electrode in a bath containing a solution of a manganese-nickel composite oxide precursor, and connecting a graphite sheet to a working electrode and a counter electrode, Constituting a bath; And
(b) applying a power of -1.2 V for 30 to 180 seconds in the bath to directly electrodeposit the manganese-nickel complex oxide on the graphite,
Wherein the heat treatment is performed at 200-300 캜 for 2-4 hours. The method of manufacturing a metal oxide / graphite electrode for a supercapacitor according to claim 1,
상기 금속 산화물 전구체 용액은 망간아세테이트(Mn(CH3COO)2·6H2O)와 염화니켈(NiCl2·4H2O)을 포함하는 수용액으로서, 망간과 니켈의 몰비가 1 : 1 ~ 1 : 3인 것을 특징으로 하는 슈퍼커패시터용 금속 산화물/그라파이트 전극의 제조방법.The method according to claim 1,
Wherein the metal oxide precursor solution is an aqueous solution containing manganese acetate (Mn (CH 3 COO) 2 .6H 2 O) and nickel chloride (NiCl 2 .4H 2 O), wherein the molar ratio of manganese to nickel is 1: 3. The method for producing a metal oxide / graphite electrode for a supercapacitor according to claim 1,
상기 전기화학적 전착 단계 이전에, 그라파이트 시트를 전처리하는 단계;를 더 포함하고,
상기 전처리 단계는 실리콘 카바이드 종이(SiC paper)로 그라파이트 시트를 문질러 표면의 거칠기를 증가시킨 후, 황산에 침지시켜서 화학적으로 에칭(etching)하고, 메탄올 용액에 침지시켜 불순물을 제거하는 것을 특징으로 하는 슈퍼커패시터용 금속 산화물/그라파이트 전극의 제조방법.The method according to claim 1,
Further comprising pretreating the graphite sheet prior to the electrochemical electrodeposition step,
Wherein the pretreatment step comprises rubbing the graphite sheet with silicon carbide paper (SiC paper) to increase the surface roughness, then immersing it in sulfuric acid, chemically etching it, and immersing it in a methanol solution to remove impurities. Method for the manufacture of metal oxide / graphite electrodes for capacitors.
A super capacitor comprising a metal oxide / graphite electrode produced according to any one of claims 1, 4 or 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120052519A KR101391136B1 (en) | 2012-05-17 | 2012-05-17 | Method for manufacturing graphite film electro-deposited metal oxide for supercapacitor electrode and supercapacitor comprising the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120052519A KR101391136B1 (en) | 2012-05-17 | 2012-05-17 | Method for manufacturing graphite film electro-deposited metal oxide for supercapacitor electrode and supercapacitor comprising the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130140946A KR20130140946A (en) | 2013-12-26 |
KR101391136B1 true KR101391136B1 (en) | 2014-06-19 |
Family
ID=49985166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120052519A Active KR101391136B1 (en) | 2012-05-17 | 2012-05-17 | Method for manufacturing graphite film electro-deposited metal oxide for supercapacitor electrode and supercapacitor comprising the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101391136B1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103871752B (en) * | 2014-03-19 | 2016-08-31 | 山东大学 | A kind of oxidation cuprio asymmetric type supercapacitor and preparation method thereof |
CN105420794B (en) * | 2015-11-13 | 2018-01-26 | 上海应用技术学院 | A kind of preparation method of graphene/ferric oxide composite material |
CN106847546B (en) * | 2017-04-05 | 2019-01-18 | 苏州海凌达电子科技有限公司 | A kind of preparation method of porous vanadic anhydride super capacitor material |
CN107104004A (en) * | 2017-05-22 | 2017-08-29 | 华北电力大学(保定) | A kind of flexible electrode, its preparation method and ultracapacitor |
WO2020130186A1 (en) * | 2018-12-19 | 2020-06-25 | 성균관대학교산학협력단 | Method for manufacturing printed super capacitor provided in nfc tag, and method for manufacturing nfc tag comprising printed super capacitor |
CN113594448B (en) * | 2021-07-05 | 2025-03-14 | 武汉科技大学 | A preparation method for directly constructing sulfur-doped iron-cobalt-nickel ternary oxide nanotubes and its products and applications |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050048173A (en) * | 2003-11-19 | 2005-05-24 | 한국과학기술연구원 | Method for preparing thin film of ruthenium oxide using electrodeposition |
JP2009510767A (en) * | 2005-09-30 | 2009-03-12 | ウイスコンシン アラムナイ リサーチ フオンデーシヨン | Electrochemical double layer capacitor using organosilicon electrolyte |
KR20090121143A (en) * | 2008-05-21 | 2009-11-25 | 주식회사 에이엠오 | Supercapacitor electrode manufactured by electrospinning and its manufacturing method |
-
2012
- 2012-05-17 KR KR1020120052519A patent/KR101391136B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050048173A (en) * | 2003-11-19 | 2005-05-24 | 한국과학기술연구원 | Method for preparing thin film of ruthenium oxide using electrodeposition |
JP2009510767A (en) * | 2005-09-30 | 2009-03-12 | ウイスコンシン アラムナイ リサーチ フオンデーシヨン | Electrochemical double layer capacitor using organosilicon electrolyte |
KR20090121143A (en) * | 2008-05-21 | 2009-11-25 | 주식회사 에이엠오 | Supercapacitor electrode manufactured by electrospinning and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
KR20130140946A (en) | 2013-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101031019B1 (en) | Method for producing a metal electrode having a transition metal oxide coating layer and the metal electrode produced thereby | |
KR101763516B1 (en) | Hierarchical mesoporous NiCo2S4/MnO2 core-shell array on 3-dimensional nickel foam composite and preparation method thereof | |
Guerra et al. | ZnO/Carbon nanowalls shell/core nanostructures as electrodes for supercapacitors | |
KR101391136B1 (en) | Method for manufacturing graphite film electro-deposited metal oxide for supercapacitor electrode and supercapacitor comprising the same | |
Jin et al. | Electrochemical properties of α-Co (OH) 2/graphene nano-flake thin film for use as a hybrid supercapacitor | |
US20100126870A1 (en) | Controlled electrodeposition of nanoparticles | |
WO2017093074A1 (en) | Method for producing a silicon-based porous electrode for a battery, in particular a lithium-ion battery | |
KR20170078555A (en) | Flexible supercapacitor and method of fabricating the same | |
DE102009027174A1 (en) | Substrate for use with a wet electrolytic capacitor | |
Ye et al. | Facile synthesis of hierarchical CuO nanoflower for supercapacitor electrodes | |
KR20170078774A (en) | Hierarchical composite structures based on graphene foam or graphene-like foam | |
WO2010088186A2 (en) | Carbon-based ultracapacitor | |
Kang et al. | Simple fabrication of nickel sulfide nanostructured electrode using alternate dip-coating method and its supercapacitive properties | |
JP2009537434A (en) | CATALYST COMPOSITION COMPRISING ACTIVATED CARBON AND CARBON NANOTUBE, PROCESS FOR PRODUCING THE SAME, ELECTRODE CONTAINING CATALYTIC COMPOUND, AND SUPERCONDUCTOR | |
Shi et al. | A growth mechanism investigation on the anodic deposition of nanoporous gold supported manganese oxide nanostructures for high performance flexible supercapacitors | |
KR100806678B1 (en) | Method for manufacturing carbon nanotube / metal oxide nanocomposite electrode prepared by electrochemical method | |
Huang et al. | Facile synthesis and application of V2O5/MXene nanocomposites as electrode materials for supercapacitors | |
KR101418864B1 (en) | Carbon nanoplates using silk proteins and the manufacturing method | |
KR102327752B1 (en) | Manufacturing method for porous electrode, porous electrode thereby and electrochemical capacitor comprising the porous electrode | |
KR101716867B1 (en) | Electrode for supercapacitor and preparation method thereof | |
EP2748830A1 (en) | Method for producing an electrode material comprising nanowires | |
KR101573780B1 (en) | Electorde material containing multi-element metal oxide deposited electrode for supercapacitor and preparation method thereof | |
KR101389826B1 (en) | Supercapacitor comprising metal oxide electrode and polymer gel electrolyte | |
US8709105B2 (en) | Electrodes and their fabrication methods as well as applications | |
KR101220036B1 (en) | Electrode for electrochemical device, method for fabricating the same and electrochemical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20120517 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20130925 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20140328 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20140425 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20140428 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20170403 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20170403 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180410 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20180410 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190412 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20190412 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20200427 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20210427 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20220426 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20230425 Start annual number: 10 End annual number: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20240423 Start annual number: 11 End annual number: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20250424 Start annual number: 12 End annual number: 12 |