[go: up one dir, main page]

KR101335655B1 - Method for manufacturing organic lighting emitting diode combined with metal nano structure and organic lighting emitting diode manufactured using the same - Google Patents

Method for manufacturing organic lighting emitting diode combined with metal nano structure and organic lighting emitting diode manufactured using the same Download PDF

Info

Publication number
KR101335655B1
KR101335655B1 KR1020120032166A KR20120032166A KR101335655B1 KR 101335655 B1 KR101335655 B1 KR 101335655B1 KR 1020120032166 A KR1020120032166 A KR 1020120032166A KR 20120032166 A KR20120032166 A KR 20120032166A KR 101335655 B1 KR101335655 B1 KR 101335655B1
Authority
KR
South Korea
Prior art keywords
metal
emitting diode
layer
organic light
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020120032166A
Other languages
Korean (ko)
Other versions
KR20130110315A (en
Inventor
기현철
김두근
김선훈
정유라
박아름
김상기
홍경진
Original Assignee
한국광기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국광기술원 filed Critical 한국광기술원
Priority to KR1020120032166A priority Critical patent/KR101335655B1/en
Publication of KR20130110315A publication Critical patent/KR20130110315A/en
Application granted granted Critical
Publication of KR101335655B1 publication Critical patent/KR101335655B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/244Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 전도성 기판 상에 증착방식 및 핫 엠보싱 공정 등을 이용하여 비주기적 또는 주기적인 나노구조를 형성시켜 플라즈몬 공명효과와 휘도 불균일을 감소시킬 수 있는 보조전극으로 사용함으로써, 발광 효율이 향상된 유기발광다이오드를 제조함에 그 목적이 있다.
이러한 목적을 달성하기 위한 본 발명은, 금속 나노 구조가 결합된 유기발광다이오드의 제조방법에 관한 것으로서, (a) 투명 전도성 기판 상에 금속나노입자를 비주기적으로 형성하거나, 상기 투명전도성 기판 상에 은(Ag) 또는 금속나노입자가 용융되어 있는 용액인 금속나노물질을 도포하고, 도포한 금속나노물질 상에 핫 엠보싱 공정을 수행하여 보조전극으로 이용되는 주기적인 금속나노구조의 전극을 형성하는 단계, (b) 상기 비주기적으로 형성시에는 금속나노입자 상에 정공수송층, 발광층, 전자주입층을 차례로 형성하는 단계, (c) 상기 주기적으로 형성시에는 금속나노구조의 전극 상에 정공수송층, 발광층, 전자주입층을 차례로 형성하는 단계 및 (d) 상기 (b) 단계 또는 (c) 단계의 수행 후 전자주입층 상에 음극층을 형성하는 단계를 포함하고, 상기 핫 엠보싱 공정 수행시 나노입자의 크기 및 간격을 조절하는 것을 특징으로 한다.
The present invention uses an auxiliary electrode that can reduce the plasmon resonance effect and luminance non-uniformity by forming aperiodic or periodic nanostructures using a deposition method and a hot embossing process on a conductive substrate, thereby improving organic light emission efficiency The purpose is to produce a diode.
The present invention for achieving the above object relates to a method for manufacturing an organic light emitting diode combined with a metal nanostructure, (a) to form a metal nanoparticles on a transparent conductive substrate aperiodic or on the transparent conductive substrate Applying a metal nano material, which is a solution in which silver (Ag) or metal nano particles are molten, and performing a hot embossing process on the coated metal nano material to form an electrode having a periodic metal nano structure used as an auxiliary electrode (b) sequentially forming a hole transport layer, a light emitting layer, and an electron injection layer on the metal nanoparticles when the aperiodic is formed, and (c) a hole transport layer and a light emitting layer on the electrode of the metal nanostructure during the periodic formation. , And sequentially forming the electron injection layer, and (d) forming a cathode layer on the electron injection layer after performing step (b) or (c). When performing hot-embossing process is characterized in that for adjusting the size and spacing of the nanoparticles.

Description

금속 나노 구조가 결합된 유기발광다이오드 제조방법 및 이를 통해 제조된 유기발광다이오드{METHOD FOR MANUFACTURING ORGANIC LIGHTING EMITTING DIODE COMBINED WITH METAL NANO STRUCTURE AND ORGANIC LIGHTING EMITTING DIODE MANUFACTURED USING THE SAME}METHOD FOR MANUFACTURING ORGANIC LIGHTING EMITTING DIODE COMBINED WITH METAL NANO STRUCTURE AND ORGANIC LIGHTING EMITTING DIODE MANUFACTURED USING THE SAME}

본 발명은 금속 나노 구조가 결합된 유기발광다이오드 제조방법 및 이를 통해 제조된 유기발광다이오드의 발광효율 향상에 관한 것으로서, 더욱 상세하게는 은(Ag)과 같은 금속을 투명 전도성 기판 상에 주기적 또는 비주기적으로 나노 구조를 형성하여, 발광 효율을 향상시키는 유기발광다이오드의 제조에 관한 것이다. The present invention relates to a method of manufacturing an organic light emitting diode combined with a metal nanostructure, and to improving luminous efficiency of the organic light emitting diode manufactured by the same. The present invention relates to the fabrication of organic light emitting diodes that periodically form nanostructures to improve luminous efficiency.

유기발광다이오드는 유기 EL, 또는 OLED(Organic Light Emitting Diode)로 명하며, 유기물 박막에 양극과 음극을 통하여 주입된 정공, 전자가 재결합, 여기하면서 빛을 방출하며 발광하는 다이오드이다. The organic light emitting diode is referred to as an organic EL or OLED (Organic Light Emitting Diode), and is a diode emitting light while emitting light while recombining and exciting holes and electrons injected through an anode and a cathode into an organic thin film.

유기발광다이오드는 외부로 방출되는 빛이 발광량의 20%만 방출하고 80%정도의 빛은 유기발광다이오드에 구성되어 있는 유리나 투명전도성 기판(ITO)과 유기층에서 방출되지 않기 때문에 OLED 효율이 낮게 된다. The organic light emitting diode emits only 20% of the emitted light, and about 80% of the light is not emitted from the glass or transparent conductive substrate (ITO) and the organic layer of the organic light emitting diode, thereby lowering the OLED efficiency.

OLED의 발광효율 향상 기술은 마이크로렌즈 어레이, 외부 광산란층, 저반사 필름을 적용하는 방법의 기술 개발이 진행 중에 있다. The technology of improving the luminous efficiency of OLED is under development of a method of applying a microlens array, an external light scattering layer, and a low reflection film.

또한, 플라즈몬은 금속 내의 자유전자 집단적으로 진동하는 유사 입자를 말하며, 플라즈몬이 표면에 국부적으로 존재하기 때문에 표면 플라즈몬(Surface Plasmon)이라고 한다. 빛에너지가 표면 플라즈몬에 변환되어 금속의 나노 입자표면에 축적되었음을 말하며 빛의 회절 한계보다 작은 영역에서 광 제어가 가능하다. Plasmons also refer to similar particles that collectively vibrate free electrons in metals, and are called surface plasmons because plasmons are local to the surface. Light energy is converted to surface plasmons and accumulated on the surface of metal nanoparticles, and light can be controlled in a region smaller than the diffraction limit of light.

한편, 유기발광다이오드의 제조방법과 관련해서는, 한국공개특허 10-2008-0059807호(이하, '선행문헌')외 다수 출원 및 공개되어 있다. On the other hand, with respect to the manufacturing method of the organic light emitting diode, Korean Patent Publication No. 10-2008-0059807 (hereinafter referred to as "prior literature") and many other applications and publications.

선행문헌에 따른 유기발광다이오드 제조방법은, 제 1 전극을 기판상에 형성하는 단계; 상기 제 1 전극상에 제 1 전하주입층을 형성하는 단계; 상기 제 1 전하주입층상에 제 1 전하수송층을 형성하는 단계; 상기 제 1 전하수송층상에 보조 발광층을 형성하는 단계; 상기 보조발광층상에 상기 보조발광층보다 발광 효율이 큰 유기발광층을 형성하는 단계; 및 상기 유기발광층상에 제 2 전극을 형성하는 단계; 를 포함하여 이루어진다. An organic light emitting diode manufacturing method according to the prior art, comprising: forming a first electrode on a substrate; Forming a first charge injection layer on the first electrode; Forming a first charge transport layer on the first charge injection layer; Forming an auxiliary light emitting layer on the first charge transport layer; Forming an organic light emitting layer having a higher luminous efficiency than the auxiliary light emitting layer on the auxiliary light emitting layer; And forming a second electrode on the organic light emitting layer. .

그러나, 선행기술과 같은 종래 기술은, 유기발광다이오드의 발광 균일도를 향상하기 위해 주로 진공증착방식을 이용한 보조전극 형성을 하는데 주로 크롬이나 은, 알루미늄, 알루미늄 합금을 이용한다. However, in the prior art as in the prior art, chromium, silver, aluminum, and aluminum alloys are mainly used to form an auxiliary electrode mainly using a vacuum deposition method in order to improve the uniformity of emission of the organic light emitting diode.

따라서, 진공증착 방식으로 제조된 보조전극은 도출형으로 균일도가 떨어지는 단점이 있었으며, 보조전극과 플라즈몬 공명효과를 이용할 수 없다는 문제점이 있었다. Therefore, the auxiliary electrode manufactured by the vacuum deposition method has a disadvantage in that the uniformity is lowered as a derived type, and there is a problem in that the auxiliary electrode and the plasmon resonance effect cannot be used.

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 전도성 기판 상에 핫 엠보싱 공정 등을 이용하여 비주기적 또는 주기적인 나노구조를 형성시켜 플라즈몬 공명효과와 휘도 불균일을 감소시킬 수 있는 보조전극으로 사용함으로써, 발광 효율이 향상된 유기발광다이오드를 제조함에 그 목적이 있다. The present invention has been made in view of the above problems, and is used as an auxiliary electrode capable of reducing plasmon resonance effects and luminance unevenness by forming aperiodic or periodic nanostructures using a hot embossing process on a conductive substrate. Thus, the purpose is to produce an organic light emitting diode with improved luminous efficiency.

이러한 기술적 과제를 달성하기 위한 본 발명은 금속 나노 구조가 결합된 유기발광다이오드의 제조방법에 관한 것으로서, (a) 투명 전도성 기판 상에 금속나노입자를 비주기적으로 형성하거나, 상기 투명전도성 기판 상에 은(Ag) 또는 금속나노입자가 용융되어 있는 용액인 금속나노물질을 도포하고, 도포한 금속나노물질 상에 핫 엠보싱 공정을 수행하여 보조전극으로 이용되는 주기적인 금속나노구조의 전극을 형성하는 단계, (b) 상기 비주기적으로 형성시에는 금속나노입자 상에 정공수송층, 발광층, 전자주입층을 차례로 형성하는 단계, (c) 상기 주기적으로 형성시에는 금속나노구조의 전극 상에 정공수송층, 발광층, 전자주입층을 차례로 형성하는 단계 및 (d) 상기 (b) 단계 또는 (c) 단계의 수행 후 전자주입층 상에 음극층을 형성하는 단계를 포함하고, 상기 핫 엠보싱 공정 수행시 나노입자의 크기 및 간격을 조절하는 것을 특징으로 한다. The present invention for achieving the technical problem relates to a method of manufacturing an organic light emitting diode combined with a metal nanostructure, (a) to form a metal nanoparticles on a transparent conductive substrate aperiodic or on the transparent conductive substrate Applying a metal nano material, which is a solution in which silver (Ag) or metal nano particles are molten, and performing a hot embossing process on the coated metal nano material to form an electrode having a periodic metal nano structure used as an auxiliary electrode (b) sequentially forming a hole transport layer, a light emitting layer, and an electron injection layer on the metal nanoparticles when formed aperiodically; And sequentially forming the electron injection layer and (d) forming a cathode layer on the electron injection layer after performing the step (b) or (c). Characterized in that for adjusting the size and spacing of the nanoparticles when performing the hot embossing process.

삭제delete

상기와 같은 본 발명에 따르면, 나노입자의 플라즈몬 공명형상을 이용할 뿐만 아니라 금속 나노입자의 크기 및 간격 조절이 가능한 핫 엠보싱 방식을 이용하여 나노구조를 형성시켜 보조전극으로 사용함으로써, 발광의 균일도와 플라즈몬 공명형상을 이용한 발광효율을 향상시킬 수 있는 효과가 있다. According to the present invention as described above, as well as using the plasmon resonance shape of the nanoparticles as well as forming a nanostructure using a hot embossing method that can control the size and spacing of the metal nanoparticles, by using as an auxiliary electrode, uniformity and plasmon of light emission There is an effect that can improve the luminous efficiency using the resonance shape.

도 1 은 본 발명에 따른 금속 나노 구조가 비주기적으로 결합된 유기발광다이오드의 제 1 제조방법에 관한 전체 흐름도.
도 2 내지 도 3 은 본 발명에 따른 금속 나노 구조가 주기적으로 결합된 유기발광다이오드의 제 2 제조방법에 관한 전체 흐름도.
1 is an overall flow chart of a first method for manufacturing an organic light emitting diode having a metal nanostructure bonded non-periodically in accordance with the present invention.
2 to 3 is an overall flow chart of a second method for manufacturing an organic light emitting diode that is periodically bonded to a metal nanostructure according to the present invention.

본 발명의 구체적 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서 본 발명에 관련된 공지 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 구체적인 설명을 생략하였음에 유의해야 할 것이다.Specific features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings. It is to be noted that the detailed description of known functions and constructions related to the present invention is omitted when it is determined that the gist of the present invention may be unnecessarily blurred.

이하, 첨부된 도면을 참조하여 본 발명을 상세하게 설명한다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the accompanying drawings.

본 발명에 따른 금속 나노 구조가 결합된 유기발광다이오드 제조방법 및 이를 통해 제조된 유기발광다이오드에 관하여 도 1 내지 도 3 을 참조하여 설명하면 다음과 같다. A method of manufacturing an organic light emitting diode coupled to a metal nanostructure according to the present invention and an organic light emitting diode prepared through the same will be described with reference to FIGS. 1 to 3.

본 발명에서는 상술한 바와 같은 목적을 달성하기 위하여, 전도성 기판 상에 금속나노입자를 증착한 후, 열처리하여 금속나노구조층을 비주기적으로 형성시키는 제 1 제조방법, 및 전도성 기판 상에 은(Ag) 또는 금속나노입자 용액을 도포한 후, 핫 엠보싱 공정을 수행하여 보조전극으로 이용되는 금속나노구조층을 주기적으로 형성시키는 제 2 제조방법을 개시하도록 한다.
In the present invention, in order to achieve the object described above, the first manufacturing method for depositing the metal nanoparticles on the conductive substrate, and then heat treatment to form a metal nanostructure layer aperiodic, and silver (Ag) on the conductive substrate Or after the metal nanoparticle solution is applied, a second manufacturing method for periodically forming a metal nanostructure layer used as an auxiliary electrode by performing a hot embossing process is disclosed.

이하에서, 상술한 제조방법을 구체적으로 살피면 다음과 같다. In the following, the manufacturing method described above will be described in detail.

도 1 은 본 발명에 따른 금속 나노 구조가 비주기적으로 결합된 유기발광다이오드의 제 1 제조방법(S100)에 관한 전체 흐름도로서, 도시된 바와 같이 베이스 기판(10) 상에 전도성 물질(ITO)로 이루어진 투명 전도성 기판(20)을 형성한다(S110). 이때, 상기 베이스 기판(10)은 유리(Glass) 또는 유연성(Flexible) 기판일 수 있다.FIG. 1 is an overall flowchart of a first method (S100) of fabricating an organic light emitting diode in which a metal nanostructure is aperiodically bonded according to the present invention, and as a conductive material (ITO) on a base substrate 10 as shown. A transparent conductive substrate 20 is formed (S110). In this case, the base substrate 10 may be a glass or a flexible substrate.

이후, 상기 투명 전도성 기판(20) 상에 금속나노입자(30)를 비주기적으로 형성한다(S120). 이때, 전자빔 증착기(E-beam evaporator)를 이용하여 금속 나노 구조층을 증착 및 가열처리하여 금속나노입자(30)를 형성한다. Thereafter, the metal nanoparticles 30 are formed aperiodically on the transparent conductive substrate 20 (S120). At this time, the metal nanostructure layer is deposited and heated using an E-beam evaporator to form the metal nanoparticles 30.

또한, 상기 금속나노입자(30) 상에 정공수송층(40), 발광층(50), 전자주입층(60)을 차례로 형성하며(S130), 상기 전자주입층(60) 상에 음극층(70)을 형성함으로써(S140), 유기발광다이오드를 제조한다.
In addition, a hole transport layer 40, a light emitting layer 50, and an electron injection layer 60 are sequentially formed on the metal nanoparticles 30 (S130), and the cathode layer 70 is formed on the electron injection layer 60. By forming (S140), an organic light emitting diode is manufactured.

도 2 내지 도 3 은 본 발명에 따른 금속 나노 구조가 주기적으로 결합된 유기발광다이오드의 제 2 제조방법(S200)에 관한 전체 흐름도로서, 도시된 바와 같이 베이스 기판(10) 상에 전도성 물질(ITO)로 이루어진 투명 전도성 기판(20)을 형성한다(S210). 이때, 상기 베이스 기판(10)은 유리(Glass) 또는 유연성(Flexible) 기판일 수 있다.2 to 3 are overall flowcharts of a second method (S200) of manufacturing an organic light emitting diode having a metal nanostructure periodically bonded thereto according to the present invention, and as illustrated, a conductive material (ITO) is formed on the base substrate 10. To form a transparent conductive substrate 20 made of a (S210). In this case, the base substrate 10 may be a glass or a flexible substrate.

이후, 상기 투명 전도성 기판(20) 상에 금속나노물질(30)을 도포한다(S220). 이때, 도포된 금속나노물질(30)은 은(Ag) 또는 금속나노입자가 용융되어 있는 용액일 수 있다. Thereafter, the metal nanomaterial 30 is coated on the transparent conductive substrate 20 (S220). In this case, the coated metal nanomaterial 30 may be a solution in which silver (Ag) or metal nanoparticles are melted.

또한, 상기 금속나노물질(30) 상에 핫 엠보싱 공정을 수행함으로써(S230), 주기적인 금속나노구조 전극(40)을 형성한다(S240). In addition, by performing a hot embossing process on the metal nanomaterial 30 (S230), a periodic metal nanostructure electrode 40 is formed (S240).

이후, 상기 금속나노구조 전극(40) 상에 정공수송층(50), 발광층(60), 전자주입층(70)을 차례로 형성하며(S250), 상기 전자주입층(70) 상에 음극층(80)을 형성함으로써(S260), 유기발광다이오드를 제조한다.
Thereafter, a hole transport layer 50, a light emitting layer 60, and an electron injection layer 70 are sequentially formed on the metal nanostructure electrode 40 (S250), and the cathode layer 80 is formed on the electron injection layer 70. (S260) to form an organic light emitting diode.

상술한 바와 같은, 인쇄방식인 핫 엠보싱 공정을 통해 보조전극을 형성하여 균일도를 높임으로써 발광효율을 높일 수 있으며, 나노입자의 간격 및 크기를 조절할 수 있다.
As described above, the light emitting efficiency can be improved by increasing the uniformity by forming the auxiliary electrode through the printing embossing process, and can control the spacing and size of the nanoparticles.

이상으로 본 발명의 기술적 사상을 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 이와 같이 도시되고 설명된 그대로의 구성 및 작용에만 국한되는 것이 아니며, 기술적 사상의 범주를 일탈함이 없이 본 발명에 대해 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서, 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다. While the present invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. It will be appreciated by those skilled in the art that numerous changes and modifications may be made without departing from the invention. Accordingly, all such appropriate modifications and changes, and equivalents thereof, should be regarded as within the scope of the present invention.

-S100-
10: 베이스 기판 20: 투명 전도성 기판
30: 금속나노입자 40: 정공수송층
50: 발광층 60: 전자주입층
70: 음극층
-S200-
10: 베이스 기판 20: 투명 전도성 기판
30: 금속나노물질 40: 금속나노구조 전극
50: 정공수송층 60: 발광층
70: 전자주입층 80: 음극층
-S100-
10: base substrate 20: transparent conductive substrate
30: metal nanoparticles 40: hole transport layer
50: light emitting layer 60: electron injection layer
70: cathode layer
-S200-
10: base substrate 20: transparent conductive substrate
30: metal nanomaterial 40: metal nanostructure electrode
50: hole transport layer 60: light emitting layer
70: electron injection layer 80: cathode layer

Claims (11)

(a) 투명 전도성 기판 상에 금속나노입자를 비주기적으로 형성하거나, 상기 투명전도성 기판 상에 은(Ag) 또는 금속나노입자가 용융되어 있는 용액인 금속나노물질을 도포하고, 도포한 금속나노물질 상에 핫 엠보싱 공정을 수행하여 보조전극으로 이용되는 주기적인 금속나노구조의 전극을 형성하는 단계,
(b) 상기 비주기적으로 형성시에는 금속나노입자 상에 정공수송층, 발광층, 전자주입층을 차례로 형성하는 단계,
(c) 상기 주기적으로 형성시에는 금속나노구조의 전극 상에 정공수송층, 발광층, 전자주입층을 차례로 형성하는 단계 및
(d) 상기 (b) 단계 또는 (c) 단계의 수행 후 전자주입층 상에 음극층을 형성하는 단계를 포함하고,
상기 핫 엠보싱 공정 수행시 나노입자의 크기 및 간격을 조절하는 것을 특징으로 하는 금속 나노구조가 결합된 유기발광다이오드 제조방법.
(a) Metal nanoparticles are formed aperiodically on a transparent conductive substrate, or a metal nanomaterial, which is a solution in which silver (Ag) or metal nanoparticles are melted, is coated on the transparent conductive substrate, and then applied. Performing a hot embossing process on the metal to form an electrode having a periodic metal nanostructure used as an auxiliary electrode;
(b) forming the hole transport layer, the light emitting layer, and the electron injection layer in sequence on the metal nanoparticles when the aperiodic formation is performed;
(c) sequentially forming the hole transport layer, the light emitting layer, and the electron injection layer on the metal nanostructure electrode;
(d) forming a cathode layer on the electron injection layer after performing step (b) or (c),
The method of manufacturing an organic light-emitting diode combined with a metal nanostructure, characterized in that to control the size and spacing of nanoparticles during the hot embossing process.
제 1 항에 있어서,
상기 (a) 단계 이전에,
베이스 기판(10) 상에 전도성 물질(ITO)로 이루어진 투명 전도성 기판(20)을 형성하는 단계; 를 더 포함하는 것을 특징으로 하는 금속 나노 구조가 결합된 유기발광다이오드 제조방법.
The method of claim 1,
Before the step (a)
Forming a transparent conductive substrate 20 made of a conductive material (ITO) on the base substrate 10; Organic light-emitting diode manufacturing method is coupled to a metal nanostructure, characterized in that it further comprises a.
제 2 항에 있어서,
상기 베이스 기판(10)은,
유리(Glass) 또는 유연성(Flexible) 기판인 것을 특징으로 하는 금속 나노 구조가 결합된 유기발광다이오드 제조방법.
3. The method of claim 2,
The base substrate 10,
Method of manufacturing an organic light-emitting diode combined with a metal nanostructure, characterized in that the glass (Flexible) or glass (Flexible) substrate.
제 1 항에 있어서,
상기 (a) 단계에서,
전자빔 증착기(E-beam evaporator)를 이용하여 금속 나노 구조층을 증착 및 가열처리하여 금속나노입자(30)를 형성하는 것을 특징으로 하는 금속 나노 구조가 결합된 유기발광다이오드 제조방법.
The method of claim 1,
In the step (a)
Method of manufacturing an organic light-emitting diode combined with a metal nanostructure, characterized in that to form a metal nanoparticles (30) by depositing and heating the metal nanostructure layer using an electron beam evaporator (E-beam evaporator).
제 1 항에 의한 제조방법에 의해 제조되는 것을 특징으로 하는 나노 구조가 결합된 유기발광다이오드.
An organic light-emitting diode combined with a nanostructure, characterized in that produced by the manufacturing method according to claim 1.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020120032166A 2012-03-29 2012-03-29 Method for manufacturing organic lighting emitting diode combined with metal nano structure and organic lighting emitting diode manufactured using the same Active KR101335655B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120032166A KR101335655B1 (en) 2012-03-29 2012-03-29 Method for manufacturing organic lighting emitting diode combined with metal nano structure and organic lighting emitting diode manufactured using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120032166A KR101335655B1 (en) 2012-03-29 2012-03-29 Method for manufacturing organic lighting emitting diode combined with metal nano structure and organic lighting emitting diode manufactured using the same

Publications (2)

Publication Number Publication Date
KR20130110315A KR20130110315A (en) 2013-10-10
KR101335655B1 true KR101335655B1 (en) 2013-12-03

Family

ID=49632145

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120032166A Active KR101335655B1 (en) 2012-03-29 2012-03-29 Method for manufacturing organic lighting emitting diode combined with metal nano structure and organic lighting emitting diode manufactured using the same

Country Status (1)

Country Link
KR (1) KR101335655B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20250045200A (en) 2023-09-25 2025-04-01 한림대학교 산학협력단 Organic light emitting diode with improved light extraction efficiency and manufacturing method for the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172615A (en) * 2022-07-15 2022-10-11 电子科技大学 OLED device with gold nanoparticle doped layer introduced and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129544A (en) * 2008-11-28 2010-06-10 Commissariat A L'energie Atomique Method for fabricating nanostructured substrate for oled, and method for fabricating oled
KR20100068777A (en) * 2008-12-15 2010-06-24 한국기계연구원 Organic light emitting display having surface plasmon resonance structure and fabricating method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129544A (en) * 2008-11-28 2010-06-10 Commissariat A L'energie Atomique Method for fabricating nanostructured substrate for oled, and method for fabricating oled
KR20100068777A (en) * 2008-12-15 2010-06-24 한국기계연구원 Organic light emitting display having surface plasmon resonance structure and fabricating method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20250045200A (en) 2023-09-25 2025-04-01 한림대학교 산학협력단 Organic light emitting diode with improved light extraction efficiency and manufacturing method for the same

Also Published As

Publication number Publication date
KR20130110315A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
CN104319351A (en) OLED array substrate, preparation method of OLED array substrate, display panel and display device
KR20060094429A (en) Nanoparticle electroluminescent device and manufacturing method thereof
CN105161585A (en) Fibrous quantum dot light emitting diode and manufacturing method thereof
CN103474586A (en) OLED device and manufacturing method thereof
US20180034004A1 (en) Encapsulation structures of oled, encapsulation methods, and oleds
CN106058068B (en) Organic Light Emitting Diode and display base plate and preparation method thereof, display device
CN104810436A (en) Light-emitting diode chip and preparation method thereof
KR101335655B1 (en) Method for manufacturing organic lighting emitting diode combined with metal nano structure and organic lighting emitting diode manufactured using the same
CN105449120B (en) Organic light-emitting device, manufacturing method thereof and display device
CN107611272A (en) A kind of new light emitting diode with quantum dots and preparation method thereof
JP6047038B2 (en) Organic EL device
US20150200382A1 (en) Organic light-emitting diode and manufacturing method thereof
CN110690352A (en) Display panel and preparation method thereof
CN106992235A (en) A kind of light-emitting diode chip for backlight unit
CN102201552B (en) Method for realizing organic light-emitting diode electroluminescence enhanced structure
TWI700847B (en) Metallic mold for manufacturing organic light-emitting diode
CN106299053B (en) Quantum dot light-emitting diode based on photonic crystal structure and preparation method
KR101143085B1 (en) Light emitting diodes and manufacturing method
CN104934545A (en) Organic light-emitting diode device and preparing method thereof
CN104078536B (en) Method of manufacturing a light generating device and light generating device manufactured through the same
KR101286211B1 (en) Method of fabricating light emitting device and light emitting device fabricated by using the same
Peng et al. Improving light extraction of organic light‐emitting devices by attaching nanostructures with self‐assembled photonic crystal patterns
KR100720668B1 (en) Light emitting device with high light extraction rate using transparent anodized alumina film
KR20210015344A (en) Nano patterned oled through imprinting process and its manufacturing method
KR101325641B1 (en) Nano imprint mold manufacturing method, light emitting diode manufacturing method and light emitting diode using the nano imprint mold manufactured by the method

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20120329

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20130717

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20131120

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20131126

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20131127

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20161026

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20161026

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20171020

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20171020

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20181029

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20181029

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20191113

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20191113

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20201105

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20210126

Start annual number: 9

End annual number: 19