KR101335655B1 - Method for manufacturing organic lighting emitting diode combined with metal nano structure and organic lighting emitting diode manufactured using the same - Google Patents
Method for manufacturing organic lighting emitting diode combined with metal nano structure and organic lighting emitting diode manufactured using the same Download PDFInfo
- Publication number
- KR101335655B1 KR101335655B1 KR1020120032166A KR20120032166A KR101335655B1 KR 101335655 B1 KR101335655 B1 KR 101335655B1 KR 1020120032166 A KR1020120032166 A KR 1020120032166A KR 20120032166 A KR20120032166 A KR 20120032166A KR 101335655 B1 KR101335655 B1 KR 101335655B1
- Authority
- KR
- South Korea
- Prior art keywords
- metal
- emitting diode
- layer
- organic light
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002086 nanomaterial Substances 0.000 title claims abstract description 39
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 36
- 239000002184 metal Substances 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 30
- 239000002082 metal nanoparticle Substances 0.000 claims abstract description 19
- 238000002347 injection Methods 0.000 claims abstract description 17
- 239000007924 injection Substances 0.000 claims abstract description 17
- 238000004049 embossing Methods 0.000 claims abstract description 12
- 230000005525 hole transport Effects 0.000 claims abstract description 9
- 230000000737 periodic effect Effects 0.000 claims abstract description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052709 silver Inorganic materials 0.000 claims abstract description 6
- 239000004332 silver Substances 0.000 claims abstract description 6
- 239000002105 nanoparticle Substances 0.000 claims abstract description 5
- 239000000243 solution Substances 0.000 claims abstract description 5
- 238000000151 deposition Methods 0.000 claims abstract description 3
- 230000015572 biosynthetic process Effects 0.000 claims abstract 2
- 239000011521 glass Substances 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000010894 electron beam technology Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 37
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/244—Electrodes made of transparent conductive layers, e.g. transparent conductive oxide [TCO] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
- H10K50/171—Electron injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
본 발명은 전도성 기판 상에 증착방식 및 핫 엠보싱 공정 등을 이용하여 비주기적 또는 주기적인 나노구조를 형성시켜 플라즈몬 공명효과와 휘도 불균일을 감소시킬 수 있는 보조전극으로 사용함으로써, 발광 효율이 향상된 유기발광다이오드를 제조함에 그 목적이 있다.
이러한 목적을 달성하기 위한 본 발명은, 금속 나노 구조가 결합된 유기발광다이오드의 제조방법에 관한 것으로서, (a) 투명 전도성 기판 상에 금속나노입자를 비주기적으로 형성하거나, 상기 투명전도성 기판 상에 은(Ag) 또는 금속나노입자가 용융되어 있는 용액인 금속나노물질을 도포하고, 도포한 금속나노물질 상에 핫 엠보싱 공정을 수행하여 보조전극으로 이용되는 주기적인 금속나노구조의 전극을 형성하는 단계, (b) 상기 비주기적으로 형성시에는 금속나노입자 상에 정공수송층, 발광층, 전자주입층을 차례로 형성하는 단계, (c) 상기 주기적으로 형성시에는 금속나노구조의 전극 상에 정공수송층, 발광층, 전자주입층을 차례로 형성하는 단계 및 (d) 상기 (b) 단계 또는 (c) 단계의 수행 후 전자주입층 상에 음극층을 형성하는 단계를 포함하고, 상기 핫 엠보싱 공정 수행시 나노입자의 크기 및 간격을 조절하는 것을 특징으로 한다.The present invention uses an auxiliary electrode that can reduce the plasmon resonance effect and luminance non-uniformity by forming aperiodic or periodic nanostructures using a deposition method and a hot embossing process on a conductive substrate, thereby improving organic light emission efficiency The purpose is to produce a diode.
The present invention for achieving the above object relates to a method for manufacturing an organic light emitting diode combined with a metal nanostructure, (a) to form a metal nanoparticles on a transparent conductive substrate aperiodic or on the transparent conductive substrate Applying a metal nano material, which is a solution in which silver (Ag) or metal nano particles are molten, and performing a hot embossing process on the coated metal nano material to form an electrode having a periodic metal nano structure used as an auxiliary electrode (b) sequentially forming a hole transport layer, a light emitting layer, and an electron injection layer on the metal nanoparticles when the aperiodic is formed, and (c) a hole transport layer and a light emitting layer on the electrode of the metal nanostructure during the periodic formation. , And sequentially forming the electron injection layer, and (d) forming a cathode layer on the electron injection layer after performing step (b) or (c). When performing hot-embossing process is characterized in that for adjusting the size and spacing of the nanoparticles.
Description
본 발명은 금속 나노 구조가 결합된 유기발광다이오드 제조방법 및 이를 통해 제조된 유기발광다이오드의 발광효율 향상에 관한 것으로서, 더욱 상세하게는 은(Ag)과 같은 금속을 투명 전도성 기판 상에 주기적 또는 비주기적으로 나노 구조를 형성하여, 발광 효율을 향상시키는 유기발광다이오드의 제조에 관한 것이다. The present invention relates to a method of manufacturing an organic light emitting diode combined with a metal nanostructure, and to improving luminous efficiency of the organic light emitting diode manufactured by the same. The present invention relates to the fabrication of organic light emitting diodes that periodically form nanostructures to improve luminous efficiency.
유기발광다이오드는 유기 EL, 또는 OLED(Organic Light Emitting Diode)로 명하며, 유기물 박막에 양극과 음극을 통하여 주입된 정공, 전자가 재결합, 여기하면서 빛을 방출하며 발광하는 다이오드이다. The organic light emitting diode is referred to as an organic EL or OLED (Organic Light Emitting Diode), and is a diode emitting light while emitting light while recombining and exciting holes and electrons injected through an anode and a cathode into an organic thin film.
유기발광다이오드는 외부로 방출되는 빛이 발광량의 20%만 방출하고 80%정도의 빛은 유기발광다이오드에 구성되어 있는 유리나 투명전도성 기판(ITO)과 유기층에서 방출되지 않기 때문에 OLED 효율이 낮게 된다. The organic light emitting diode emits only 20% of the emitted light, and about 80% of the light is not emitted from the glass or transparent conductive substrate (ITO) and the organic layer of the organic light emitting diode, thereby lowering the OLED efficiency.
OLED의 발광효율 향상 기술은 마이크로렌즈 어레이, 외부 광산란층, 저반사 필름을 적용하는 방법의 기술 개발이 진행 중에 있다. The technology of improving the luminous efficiency of OLED is under development of a method of applying a microlens array, an external light scattering layer, and a low reflection film.
또한, 플라즈몬은 금속 내의 자유전자 집단적으로 진동하는 유사 입자를 말하며, 플라즈몬이 표면에 국부적으로 존재하기 때문에 표면 플라즈몬(Surface Plasmon)이라고 한다. 빛에너지가 표면 플라즈몬에 변환되어 금속의 나노 입자표면에 축적되었음을 말하며 빛의 회절 한계보다 작은 영역에서 광 제어가 가능하다. Plasmons also refer to similar particles that collectively vibrate free electrons in metals, and are called surface plasmons because plasmons are local to the surface. Light energy is converted to surface plasmons and accumulated on the surface of metal nanoparticles, and light can be controlled in a region smaller than the diffraction limit of light.
한편, 유기발광다이오드의 제조방법과 관련해서는, 한국공개특허 10-2008-0059807호(이하, '선행문헌')외 다수 출원 및 공개되어 있다. On the other hand, with respect to the manufacturing method of the organic light emitting diode, Korean Patent Publication No. 10-2008-0059807 (hereinafter referred to as "prior literature") and many other applications and publications.
선행문헌에 따른 유기발광다이오드 제조방법은, 제 1 전극을 기판상에 형성하는 단계; 상기 제 1 전극상에 제 1 전하주입층을 형성하는 단계; 상기 제 1 전하주입층상에 제 1 전하수송층을 형성하는 단계; 상기 제 1 전하수송층상에 보조 발광층을 형성하는 단계; 상기 보조발광층상에 상기 보조발광층보다 발광 효율이 큰 유기발광층을 형성하는 단계; 및 상기 유기발광층상에 제 2 전극을 형성하는 단계; 를 포함하여 이루어진다. An organic light emitting diode manufacturing method according to the prior art, comprising: forming a first electrode on a substrate; Forming a first charge injection layer on the first electrode; Forming a first charge transport layer on the first charge injection layer; Forming an auxiliary light emitting layer on the first charge transport layer; Forming an organic light emitting layer having a higher luminous efficiency than the auxiliary light emitting layer on the auxiliary light emitting layer; And forming a second electrode on the organic light emitting layer. .
그러나, 선행기술과 같은 종래 기술은, 유기발광다이오드의 발광 균일도를 향상하기 위해 주로 진공증착방식을 이용한 보조전극 형성을 하는데 주로 크롬이나 은, 알루미늄, 알루미늄 합금을 이용한다. However, in the prior art as in the prior art, chromium, silver, aluminum, and aluminum alloys are mainly used to form an auxiliary electrode mainly using a vacuum deposition method in order to improve the uniformity of emission of the organic light emitting diode.
따라서, 진공증착 방식으로 제조된 보조전극은 도출형으로 균일도가 떨어지는 단점이 있었으며, 보조전극과 플라즈몬 공명효과를 이용할 수 없다는 문제점이 있었다. Therefore, the auxiliary electrode manufactured by the vacuum deposition method has a disadvantage in that the uniformity is lowered as a derived type, and there is a problem in that the auxiliary electrode and the plasmon resonance effect cannot be used.
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 전도성 기판 상에 핫 엠보싱 공정 등을 이용하여 비주기적 또는 주기적인 나노구조를 형성시켜 플라즈몬 공명효과와 휘도 불균일을 감소시킬 수 있는 보조전극으로 사용함으로써, 발광 효율이 향상된 유기발광다이오드를 제조함에 그 목적이 있다. The present invention has been made in view of the above problems, and is used as an auxiliary electrode capable of reducing plasmon resonance effects and luminance unevenness by forming aperiodic or periodic nanostructures using a hot embossing process on a conductive substrate. Thus, the purpose is to produce an organic light emitting diode with improved luminous efficiency.
이러한 기술적 과제를 달성하기 위한 본 발명은 금속 나노 구조가 결합된 유기발광다이오드의 제조방법에 관한 것으로서, (a) 투명 전도성 기판 상에 금속나노입자를 비주기적으로 형성하거나, 상기 투명전도성 기판 상에 은(Ag) 또는 금속나노입자가 용융되어 있는 용액인 금속나노물질을 도포하고, 도포한 금속나노물질 상에 핫 엠보싱 공정을 수행하여 보조전극으로 이용되는 주기적인 금속나노구조의 전극을 형성하는 단계, (b) 상기 비주기적으로 형성시에는 금속나노입자 상에 정공수송층, 발광층, 전자주입층을 차례로 형성하는 단계, (c) 상기 주기적으로 형성시에는 금속나노구조의 전극 상에 정공수송층, 발광층, 전자주입층을 차례로 형성하는 단계 및 (d) 상기 (b) 단계 또는 (c) 단계의 수행 후 전자주입층 상에 음극층을 형성하는 단계를 포함하고, 상기 핫 엠보싱 공정 수행시 나노입자의 크기 및 간격을 조절하는 것을 특징으로 한다. The present invention for achieving the technical problem relates to a method of manufacturing an organic light emitting diode combined with a metal nanostructure, (a) to form a metal nanoparticles on a transparent conductive substrate aperiodic or on the transparent conductive substrate Applying a metal nano material, which is a solution in which silver (Ag) or metal nano particles are molten, and performing a hot embossing process on the coated metal nano material to form an electrode having a periodic metal nano structure used as an auxiliary electrode (b) sequentially forming a hole transport layer, a light emitting layer, and an electron injection layer on the metal nanoparticles when formed aperiodically; And sequentially forming the electron injection layer and (d) forming a cathode layer on the electron injection layer after performing the step (b) or (c). Characterized in that for adjusting the size and spacing of the nanoparticles when performing the hot embossing process.
삭제delete
상기와 같은 본 발명에 따르면, 나노입자의 플라즈몬 공명형상을 이용할 뿐만 아니라 금속 나노입자의 크기 및 간격 조절이 가능한 핫 엠보싱 방식을 이용하여 나노구조를 형성시켜 보조전극으로 사용함으로써, 발광의 균일도와 플라즈몬 공명형상을 이용한 발광효율을 향상시킬 수 있는 효과가 있다. According to the present invention as described above, as well as using the plasmon resonance shape of the nanoparticles as well as forming a nanostructure using a hot embossing method that can control the size and spacing of the metal nanoparticles, by using as an auxiliary electrode, uniformity and plasmon of light emission There is an effect that can improve the luminous efficiency using the resonance shape.
도 1 은 본 발명에 따른 금속 나노 구조가 비주기적으로 결합된 유기발광다이오드의 제 1 제조방법에 관한 전체 흐름도.
도 2 내지 도 3 은 본 발명에 따른 금속 나노 구조가 주기적으로 결합된 유기발광다이오드의 제 2 제조방법에 관한 전체 흐름도. 1 is an overall flow chart of a first method for manufacturing an organic light emitting diode having a metal nanostructure bonded non-periodically in accordance with the present invention.
2 to 3 is an overall flow chart of a second method for manufacturing an organic light emitting diode that is periodically bonded to a metal nanostructure according to the present invention.
본 발명의 구체적 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서 본 발명에 관련된 공지 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 구체적인 설명을 생략하였음에 유의해야 할 것이다.Specific features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings. It is to be noted that the detailed description of known functions and constructions related to the present invention is omitted when it is determined that the gist of the present invention may be unnecessarily blurred.
이하, 첨부된 도면을 참조하여 본 발명을 상세하게 설명한다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the accompanying drawings.
본 발명에 따른 금속 나노 구조가 결합된 유기발광다이오드 제조방법 및 이를 통해 제조된 유기발광다이오드에 관하여 도 1 내지 도 3 을 참조하여 설명하면 다음과 같다. A method of manufacturing an organic light emitting diode coupled to a metal nanostructure according to the present invention and an organic light emitting diode prepared through the same will be described with reference to FIGS. 1 to 3.
본 발명에서는 상술한 바와 같은 목적을 달성하기 위하여, 전도성 기판 상에 금속나노입자를 증착한 후, 열처리하여 금속나노구조층을 비주기적으로 형성시키는 제 1 제조방법, 및 전도성 기판 상에 은(Ag) 또는 금속나노입자 용액을 도포한 후, 핫 엠보싱 공정을 수행하여 보조전극으로 이용되는 금속나노구조층을 주기적으로 형성시키는 제 2 제조방법을 개시하도록 한다.
In the present invention, in order to achieve the object described above, the first manufacturing method for depositing the metal nanoparticles on the conductive substrate, and then heat treatment to form a metal nanostructure layer aperiodic, and silver (Ag) on the conductive substrate Or after the metal nanoparticle solution is applied, a second manufacturing method for periodically forming a metal nanostructure layer used as an auxiliary electrode by performing a hot embossing process is disclosed.
이하에서, 상술한 제조방법을 구체적으로 살피면 다음과 같다. In the following, the manufacturing method described above will be described in detail.
도 1 은 본 발명에 따른 금속 나노 구조가 비주기적으로 결합된 유기발광다이오드의 제 1 제조방법(S100)에 관한 전체 흐름도로서, 도시된 바와 같이 베이스 기판(10) 상에 전도성 물질(ITO)로 이루어진 투명 전도성 기판(20)을 형성한다(S110). 이때, 상기 베이스 기판(10)은 유리(Glass) 또는 유연성(Flexible) 기판일 수 있다.FIG. 1 is an overall flowchart of a first method (S100) of fabricating an organic light emitting diode in which a metal nanostructure is aperiodically bonded according to the present invention, and as a conductive material (ITO) on a
이후, 상기 투명 전도성 기판(20) 상에 금속나노입자(30)를 비주기적으로 형성한다(S120). 이때, 전자빔 증착기(E-beam evaporator)를 이용하여 금속 나노 구조층을 증착 및 가열처리하여 금속나노입자(30)를 형성한다. Thereafter, the
또한, 상기 금속나노입자(30) 상에 정공수송층(40), 발광층(50), 전자주입층(60)을 차례로 형성하며(S130), 상기 전자주입층(60) 상에 음극층(70)을 형성함으로써(S140), 유기발광다이오드를 제조한다.
In addition, a
도 2 내지 도 3 은 본 발명에 따른 금속 나노 구조가 주기적으로 결합된 유기발광다이오드의 제 2 제조방법(S200)에 관한 전체 흐름도로서, 도시된 바와 같이 베이스 기판(10) 상에 전도성 물질(ITO)로 이루어진 투명 전도성 기판(20)을 형성한다(S210). 이때, 상기 베이스 기판(10)은 유리(Glass) 또는 유연성(Flexible) 기판일 수 있다.2 to 3 are overall flowcharts of a second method (S200) of manufacturing an organic light emitting diode having a metal nanostructure periodically bonded thereto according to the present invention, and as illustrated, a conductive material (ITO) is formed on the
이후, 상기 투명 전도성 기판(20) 상에 금속나노물질(30)을 도포한다(S220). 이때, 도포된 금속나노물질(30)은 은(Ag) 또는 금속나노입자가 용융되어 있는 용액일 수 있다. Thereafter, the
또한, 상기 금속나노물질(30) 상에 핫 엠보싱 공정을 수행함으로써(S230), 주기적인 금속나노구조 전극(40)을 형성한다(S240). In addition, by performing a hot embossing process on the metal nanomaterial 30 (S230), a periodic
이후, 상기 금속나노구조 전극(40) 상에 정공수송층(50), 발광층(60), 전자주입층(70)을 차례로 형성하며(S250), 상기 전자주입층(70) 상에 음극층(80)을 형성함으로써(S260), 유기발광다이오드를 제조한다.
Thereafter, a
상술한 바와 같은, 인쇄방식인 핫 엠보싱 공정을 통해 보조전극을 형성하여 균일도를 높임으로써 발광효율을 높일 수 있으며, 나노입자의 간격 및 크기를 조절할 수 있다.
As described above, the light emitting efficiency can be improved by increasing the uniformity by forming the auxiliary electrode through the printing embossing process, and can control the spacing and size of the nanoparticles.
이상으로 본 발명의 기술적 사상을 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 이와 같이 도시되고 설명된 그대로의 구성 및 작용에만 국한되는 것이 아니며, 기술적 사상의 범주를 일탈함이 없이 본 발명에 대해 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서, 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다. While the present invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. It will be appreciated by those skilled in the art that numerous changes and modifications may be made without departing from the invention. Accordingly, all such appropriate modifications and changes, and equivalents thereof, should be regarded as within the scope of the present invention.
-S100-
10: 베이스 기판 20: 투명 전도성 기판
30: 금속나노입자 40: 정공수송층
50: 발광층 60: 전자주입층
70: 음극층
-S200-
10: 베이스 기판 20: 투명 전도성 기판
30: 금속나노물질 40: 금속나노구조 전극
50: 정공수송층 60: 발광층
70: 전자주입층 80: 음극층-S100-
10: base substrate 20: transparent conductive substrate
30: metal nanoparticles 40: hole transport layer
50: light emitting layer 60: electron injection layer
70: cathode layer
-S200-
10: base substrate 20: transparent conductive substrate
30: metal nanomaterial 40: metal nanostructure electrode
50: hole transport layer 60: light emitting layer
70: electron injection layer 80: cathode layer
Claims (11)
(b) 상기 비주기적으로 형성시에는 금속나노입자 상에 정공수송층, 발광층, 전자주입층을 차례로 형성하는 단계,
(c) 상기 주기적으로 형성시에는 금속나노구조의 전극 상에 정공수송층, 발광층, 전자주입층을 차례로 형성하는 단계 및
(d) 상기 (b) 단계 또는 (c) 단계의 수행 후 전자주입층 상에 음극층을 형성하는 단계를 포함하고,
상기 핫 엠보싱 공정 수행시 나노입자의 크기 및 간격을 조절하는 것을 특징으로 하는 금속 나노구조가 결합된 유기발광다이오드 제조방법.
(a) Metal nanoparticles are formed aperiodically on a transparent conductive substrate, or a metal nanomaterial, which is a solution in which silver (Ag) or metal nanoparticles are melted, is coated on the transparent conductive substrate, and then applied. Performing a hot embossing process on the metal to form an electrode having a periodic metal nanostructure used as an auxiliary electrode;
(b) forming the hole transport layer, the light emitting layer, and the electron injection layer in sequence on the metal nanoparticles when the aperiodic formation is performed;
(c) sequentially forming the hole transport layer, the light emitting layer, and the electron injection layer on the metal nanostructure electrode;
(d) forming a cathode layer on the electron injection layer after performing step (b) or (c),
The method of manufacturing an organic light-emitting diode combined with a metal nanostructure, characterized in that to control the size and spacing of nanoparticles during the hot embossing process.
상기 (a) 단계 이전에,
베이스 기판(10) 상에 전도성 물질(ITO)로 이루어진 투명 전도성 기판(20)을 형성하는 단계; 를 더 포함하는 것을 특징으로 하는 금속 나노 구조가 결합된 유기발광다이오드 제조방법.
The method of claim 1,
Before the step (a)
Forming a transparent conductive substrate 20 made of a conductive material (ITO) on the base substrate 10; Organic light-emitting diode manufacturing method is coupled to a metal nanostructure, characterized in that it further comprises a.
상기 베이스 기판(10)은,
유리(Glass) 또는 유연성(Flexible) 기판인 것을 특징으로 하는 금속 나노 구조가 결합된 유기발광다이오드 제조방법.
3. The method of claim 2,
The base substrate 10,
Method of manufacturing an organic light-emitting diode combined with a metal nanostructure, characterized in that the glass (Flexible) or glass (Flexible) substrate.
상기 (a) 단계에서,
전자빔 증착기(E-beam evaporator)를 이용하여 금속 나노 구조층을 증착 및 가열처리하여 금속나노입자(30)를 형성하는 것을 특징으로 하는 금속 나노 구조가 결합된 유기발광다이오드 제조방법.
The method of claim 1,
In the step (a)
Method of manufacturing an organic light-emitting diode combined with a metal nanostructure, characterized in that to form a metal nanoparticles (30) by depositing and heating the metal nanostructure layer using an electron beam evaporator (E-beam evaporator).
An organic light-emitting diode combined with a nanostructure, characterized in that produced by the manufacturing method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120032166A KR101335655B1 (en) | 2012-03-29 | 2012-03-29 | Method for manufacturing organic lighting emitting diode combined with metal nano structure and organic lighting emitting diode manufactured using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120032166A KR101335655B1 (en) | 2012-03-29 | 2012-03-29 | Method for manufacturing organic lighting emitting diode combined with metal nano structure and organic lighting emitting diode manufactured using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130110315A KR20130110315A (en) | 2013-10-10 |
KR101335655B1 true KR101335655B1 (en) | 2013-12-03 |
Family
ID=49632145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120032166A Active KR101335655B1 (en) | 2012-03-29 | 2012-03-29 | Method for manufacturing organic lighting emitting diode combined with metal nano structure and organic lighting emitting diode manufactured using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101335655B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20250045200A (en) | 2023-09-25 | 2025-04-01 | 한림대학교 산학협력단 | Organic light emitting diode with improved light extraction efficiency and manufacturing method for the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115172615A (en) * | 2022-07-15 | 2022-10-11 | 电子科技大学 | OLED device with gold nanoparticle doped layer introduced and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010129544A (en) * | 2008-11-28 | 2010-06-10 | Commissariat A L'energie Atomique | Method for fabricating nanostructured substrate for oled, and method for fabricating oled |
KR20100068777A (en) * | 2008-12-15 | 2010-06-24 | 한국기계연구원 | Organic light emitting display having surface plasmon resonance structure and fabricating method thereof |
-
2012
- 2012-03-29 KR KR1020120032166A patent/KR101335655B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010129544A (en) * | 2008-11-28 | 2010-06-10 | Commissariat A L'energie Atomique | Method for fabricating nanostructured substrate for oled, and method for fabricating oled |
KR20100068777A (en) * | 2008-12-15 | 2010-06-24 | 한국기계연구원 | Organic light emitting display having surface plasmon resonance structure and fabricating method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20250045200A (en) | 2023-09-25 | 2025-04-01 | 한림대학교 산학협력단 | Organic light emitting diode with improved light extraction efficiency and manufacturing method for the same |
Also Published As
Publication number | Publication date |
---|---|
KR20130110315A (en) | 2013-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104319351A (en) | OLED array substrate, preparation method of OLED array substrate, display panel and display device | |
KR20060094429A (en) | Nanoparticle electroluminescent device and manufacturing method thereof | |
CN105161585A (en) | Fibrous quantum dot light emitting diode and manufacturing method thereof | |
CN103474586A (en) | OLED device and manufacturing method thereof | |
US20180034004A1 (en) | Encapsulation structures of oled, encapsulation methods, and oleds | |
CN106058068B (en) | Organic Light Emitting Diode and display base plate and preparation method thereof, display device | |
CN104810436A (en) | Light-emitting diode chip and preparation method thereof | |
KR101335655B1 (en) | Method for manufacturing organic lighting emitting diode combined with metal nano structure and organic lighting emitting diode manufactured using the same | |
CN105449120B (en) | Organic light-emitting device, manufacturing method thereof and display device | |
CN107611272A (en) | A kind of new light emitting diode with quantum dots and preparation method thereof | |
JP6047038B2 (en) | Organic EL device | |
US20150200382A1 (en) | Organic light-emitting diode and manufacturing method thereof | |
CN110690352A (en) | Display panel and preparation method thereof | |
CN106992235A (en) | A kind of light-emitting diode chip for backlight unit | |
CN102201552B (en) | Method for realizing organic light-emitting diode electroluminescence enhanced structure | |
TWI700847B (en) | Metallic mold for manufacturing organic light-emitting diode | |
CN106299053B (en) | Quantum dot light-emitting diode based on photonic crystal structure and preparation method | |
KR101143085B1 (en) | Light emitting diodes and manufacturing method | |
CN104934545A (en) | Organic light-emitting diode device and preparing method thereof | |
CN104078536B (en) | Method of manufacturing a light generating device and light generating device manufactured through the same | |
KR101286211B1 (en) | Method of fabricating light emitting device and light emitting device fabricated by using the same | |
Peng et al. | Improving light extraction of organic light‐emitting devices by attaching nanostructures with self‐assembled photonic crystal patterns | |
KR100720668B1 (en) | Light emitting device with high light extraction rate using transparent anodized alumina film | |
KR20210015344A (en) | Nano patterned oled through imprinting process and its manufacturing method | |
KR101325641B1 (en) | Nano imprint mold manufacturing method, light emitting diode manufacturing method and light emitting diode using the nano imprint mold manufactured by the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20120329 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20130717 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20131120 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20131126 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20131127 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20161026 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20161026 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20171020 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20171020 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20181029 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20181029 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20191113 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20191113 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20201105 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20210126 Start annual number: 9 End annual number: 19 |