[go: up one dir, main page]

KR101304852B1 - Steel sheet having excellent weldability, hardness uniformity in the thickness direction and low temperature toughness, and method for manufacturing the same - Google Patents

Steel sheet having excellent weldability, hardness uniformity in the thickness direction and low temperature toughness, and method for manufacturing the same Download PDF

Info

Publication number
KR101304852B1
KR101304852B1 KR1020090132108A KR20090132108A KR101304852B1 KR 101304852 B1 KR101304852 B1 KR 101304852B1 KR 1020090132108 A KR1020090132108 A KR 1020090132108A KR 20090132108 A KR20090132108 A KR 20090132108A KR 101304852 B1 KR101304852 B1 KR 101304852B1
Authority
KR
South Korea
Prior art keywords
steel sheet
less
ceq
weldability
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020090132108A
Other languages
Korean (ko)
Other versions
KR20110075613A (en
Inventor
장성호
홍순택
박재현
노윤조
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020090132108A priority Critical patent/KR101304852B1/en
Publication of KR20110075613A publication Critical patent/KR20110075613A/en
Application granted granted Critical
Publication of KR101304852B1 publication Critical patent/KR101304852B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 우수한 용접성을 가지는 동시에 전 두께 경도값이 우수하고, 두께방향의 경도차가 적으며, 우수한 저온인성을 갖는 강판을 제공하고자 하는 것으로서, 중량%로 C: 0.05~0.18%, Si: 0.15~0.3%, Mn: 0.5~1.5%, Cr: 0.1~1.5%, Mo: 0.1~0.5%, Ni: 0.1~0.5%, B: 0.0005~0.0050%, Ti: 0.01~0.03%, Nb: 0.01~0.05%, Al: 0.005~0.1%, P: 0.015%이하, S: 0.010%이하, 나머지는 Fe 및 불가피한 불순물을 포함하고, 하기 식 1에 의한 Ceq 값이 0.50 이하인 용접성, 두께방향 재질 편차특성 및 저온인성이 우수한 강판 및 그 제조방법을 제공한다.The present invention aims to provide a steel sheet having excellent weldability and excellent overall hardness value, small hardness difference in thickness direction, and excellent low temperature toughness. The weight ratio is C: 0.05 to 0.18% and Si: 0.15 to 0.3%, Mn: 0.5-1.5%, Cr: 0.1-1.5%, Mo: 0.1-0.5%, Ni: 0.1-0.5%, B: 0.0005-0.0050%, Ti: 0.01-0.03%, Nb: 0.01-0.05 %, Al: 0.005 ~ 0.1%, P: 0.015% or less, S: 0.010% or less, the rest contains Fe and unavoidable impurities, weldability of Ceq value of 0.50 or less by Equation 1 below, thickness direction material variation characteristic and low temperature Provided is a steel sheet excellent in toughness and a method of manufacturing the same.

식 1. Ceq = C + Mn/6 + (Cr+Mo+V)/5 + (Ni+Cu)/15Ceq = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15

용접성(weldability), 경도(hardness), 저온인성(low temperature toughness), 탄소당량(Ceq) Weldability, hardness, low temperature toughness, carbon equivalent (Ceq)

Description

용접성, 두께방향 재질 편차특성 및 저온인성이 우수한 강판 및 그 제조방법{STEEL SHEET HAVING EXCELLENT WELDABILITY, HARDNESS UNIFORMITY IN THE THICKNESS DIRECTION AND LOW TEMPERATURE TOUGHNESS, AND METHOD FOR MANUFACTURING THE SAME}STEEL SHEET HAVING EXCELLENT WELDABILITY, HARDNESS UNIFORMITY IN THE THICKNESS DIRECTION AND LOW TEMPERATURE TOUGHNESS, AND METHOD FOR MANUFACTURING THE SAME}

본 발명은 포크레인, 불도져, 굴삭기 등에 이용되는 내마모용 강판에 관한 것으로서, 보다 상세하게는 우수한 용접성을 갖는 동시에 두께방향의 재질 편차 특성 및 저온인성이 우수한 강판 및 그 제조방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear resistant steel sheet used in fork cranes, bulldozers, excavators, and the like, and more particularly, to a steel sheet having excellent weldability and excellent material variation in the thickness direction and low temperature toughness, and a method of manufacturing the same.

건설, 토목, 광산업, 시멘트 산업 등 많은 산업분야에 사용되는 중장비들의 경우 작업 시 마찰에 의한 마모가 심하게 발생됨에 따라 내마모의 특성을 나타내는 소재의 적용이 필요하다. 내마모강은 그 용도상 강도, 경도, 인성 및 내마모성 등 많은 특성을 필요로 한다. 특히 상기 중장비들은 용접을 통하여 제작됨에 따라 적용되는 소재의 경우 우수한 용접성이 요구된다. In the case of heavy equipment used in many industries such as construction, civil engineering, mining, and cement industry, abrasion wear is seriously required, and thus, materials that exhibit wear resistance are required. Wear resistant steels require many properties such as strength, hardness, toughness, and wear resistance. In particular, as the heavy equipment is manufactured through welding, excellent weldability is required for the applied material.

또한, 일반적으로 내마모성은 경도가 높아질수록 향상되므로 포크레인, 불도져, 굴삭기 및 착암기에 적용되는 소재의 경우 브리넬 경도 기준으로 360HB 이상의 경도값이 요구된다. 이러한 고경도를 얻기 위해서 압연 후 Ac3 이상의 온도로 재가열후 소입하는 방법이 일반적으로 널리 사용되고 있다. In addition, since wear resistance is generally improved as hardness increases, hardness values of 360HB or more are required for Brinell hardness standards for materials applied to forklifts, bulldozers, excavators and rock drills. In order to obtain such high hardness, after rolling, reheating to a temperature of Ac3 or higher and then quenching is commonly used.

이와 관련한 종래의 기술로는 일본 특개평 2-179842호, 특개평 8-41535호 및 특개소 61-166954호 등이 있다. 상기 특허들에서는 높은 C함량과 Cr, Mo등의 경화능 향상원소를 다량 첨가함으로써 표면경도를 증가시키는 방법이 제시되어 있다. 그러나 상기의 경우 경도확보를 위하여 C와 경화능 합금을 다량으로 첨가함에 따라 제조비용이 상승하고 용접성 및 인성이 저하되는 문제점이 있다.Conventional techniques in this regard include Japanese Patent Laid-Open Nos. 2-179842, 8-41535, and 61-166954. In the above patents, a method of increasing the surface hardness by adding a high C content and a large amount of hardenability improving elements such as Cr and Mo is proposed. However, in the above case, as the amount of C and the hardenable alloy is added in order to secure the hardness, the manufacturing cost increases and the weldability and the toughness decrease.

한편, 일본 공개특허공보 특개 2002-20837호, 특개 2004-10996호 및 특개 2006-328512호와 대한민국 공개특허공보 특2000-0038156호, 특2001-0060644호 등에는 재가열 소입법을 이용하지 않고 압연 후 직접 소입 및 소려하는 방법을 이용하여 마르텐사이트 조직을 확보함으로써 경도를 증가시키는 방법이 제시되어 있다.On the other hand, Japanese Unexamined Patent Application Publication Nos. 2002-20837, 2004-10996, and 2006-328512, and Korean Patent Publication Nos. 2000-0038156, 2001-01060644, and the like after rolling without using a reheating hardening method A method of increasing the hardness by securing the martensite structure using a direct quenching and treating method has been proposed.

상기 특허들에 의한 방법은 직접 소입법의 우수한 경화능을 이용함으로써, 합금원소의 절감과 이에 따른 용접성의 향상을 얻을 수 있으나, 재가열 소입법과 비교하여 오스테나이트 결정립의 조대화가 발생되어 인성의 감소가 발생되며, 제조조건이 까다로워 생산성의 제약이 발생하며 고온에서부터의 급냉으로 인하여 강판의 형상제어가 힘들다는 문제점이 있다. The method according to the patents can be obtained by using the excellent hardening ability of the direct quenching method, the reduction of alloying elements and the improvement of weldability accordingly, but coarsening of austenite grains occurs compared to the reheating quenching method There is a problem that the reduction occurs, the production conditions are difficult, there is a restriction in the productivity and the shape control of the steel sheet is difficult due to rapid cooling from a high temperature.

또한, 상기 특허들의 경우는 강판의 표면경도 향상에 국한하여 내마모성의 확보를 이루고 있어, 사용 중 고경도 표면영역의 마모시 강판의 내마모성이 현저하게 저하되어 설비수명을 급격하게 감소시키는 문제점이 있다.In addition, in the case of the patents to achieve abrasion resistance is limited to improving the surface hardness of the steel sheet, there is a problem that the wear resistance of the steel sheet is significantly reduced when abrasion of the high hardness surface area during use significantly reduces the life of the equipment.

본 발명의 일측면은 우수한 용접성을 가지는 동시에 전 두께 경도값이 우수하고, 두께방향의 경도차가 적으며, 우수한 저온인성을 갖는 강판을 제공하고자 하는 것이다.One aspect of the present invention is to provide a steel sheet having excellent weldability and excellent total hardness value, small hardness difference in thickness direction, and excellent low temperature toughness.

본 발명은 중량%로 C: 0.05~0.18%, Si: 0.15~0.3%, Mn: 0.5~1.5%, Cr: 0.1~1.5%, Mo: 0.1~0.5%, Ni: 0.1~0.5%, B: 0.0005~0.0050%, Ti: 0.01~0.03%, Nb: 0.01~0.05%, Al: 0.005~0.1%, P: 0.015%이하, S: 0.010%이하, 나머지는 Fe 및 불가피한 불순물을 포함하고, 하기 식 1에 의한 Ceq 값이 0.50 이하인 용접성, 두께방향 재질 편차특성 및 저온인성이 우수한 강판을 제공한다.In the present invention, C: 0.05 to 0.18%, Si: 0.15 to 0.3%, Mn: 0.5 to 1.5%, Cr: 0.1 to 1.5%, Mo: 0.1 to 0.5%, Ni: 0.1 to 0.5%, B: 0.0005 to 0.0050%, Ti: 0.01 to 0.03%, Nb: 0.01 to 0.05%, Al: 0.005 to 0.1%, P: 0.015% or less, S: 0.010% or less, the remainder includes Fe and unavoidable impurities, and the following formula It provides a steel sheet excellent in weldability, thickness direction material variation characteristic and low temperature toughness of Ceq value of 0.50 or less.

식 1. Ceq = C + Mn/6 + (Cr+Mo+V)/5 + (Ni+Cu)/15Ceq = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15

또한, 본 발명은 상기 조성 및 상기 식 1에 의한 Ceq 값이 0.50 이하를 만족하는 강 슬라브를 1100℃~1250℃로 재가열하는 단계;In addition, the present invention comprises the steps of reheating the steel slab satisfies the composition and Ceq value according to the formula 1 0.50 or less to 1100 ℃ ~ 1250 ℃;

재결정온도 이상 영역에서 패스당 10% 이상의 압하율로 누적 압하율 70%이상 강압하 압연을 실시하고 Ar3 온도 이상에서 마무리 열간압연을 종료하는 단계; 및Performing a step-down rolling of at least 70% of the cumulative reduction rate at a reduction ratio of 10% or more per pass in a region above the recrystallization temperature and terminating the finishing hot rolling at an Ar3 temperature or higher; And

850℃ ~ 950℃ 온도로 1.6t +(10~30분)(단, t는 강재의 두께)동안 재가열 후 하기 식 2의 H 값이 2.0 이상을 만족하는 냉각속도로 냉각하는 단계를 포함하는 용접성, 두께방향 재질 편차특성 및 저온인성이 우수한 강판의 제조방법을 제공한다.Weldability including the step of cooling at a cooling rate that satisfies the H value of Equation 2 below 2.0 after reheating at a temperature of 850 ° C. to 950 ° C. for 1.6 t + (10 to 30 minutes) (where t is the thickness of the steel). The present invention provides a method for manufacturing a steel sheet having excellent thickness variation material variation and low temperature toughness.

식 2. H = Ceq ×(QCR)1/2 (단, QCR 은 소입 냉각 속도(Quenching Cooling Rate))Equation 2. H = Ceq × (QCR) 1/2 (QCR is Quenching Cooling Rate)

본 발명의 강판은 합금원소를 최소화하여 우수한 용접성을 가지는 동시에, 압연 후 재가열 소입시 냉각속도의 최적화를 통하여 전 두께의 경도값이 360HB이상이고, 두께 방향의 경도차가 50HB 이하이여, 저온인성이 우수한 효과를 가진다.The steel sheet of the present invention has excellent weldability by minimizing alloying elements and at the same time, the hardness value of the total thickness is 360HB or more, the hardness difference in the thickness direction is 50HB or less, and the low temperature toughness is excellent by optimizing the cooling rate during reheating and quenching after rolling. Has an effect.

이하, 본 발명에 대하여 상세히 설명한다. Hereinafter, the present invention will be described in detail.

이하, 본 발명의 조성범위에 대하여 상세히 설명한다(이하, 중량%)Hereinafter, the composition range of the present invention will be described in detail (hereinafter,% by weight).

C: 0.05%~0.18%C: 0.05% ~ 0.18%

상기 C는 마르텐사이트 조직을 갖는 강에서 강도와 경도를 증가시키는데 효과적인 원소이나, 그 함량이 높을 경우 용접성 및 인성을 저하시키므로, 본 발명에서 요구하는 경도를 확보하기 위해서는 0.05%~0.18%로 제한하는 것이 바람직하다.The C is an element effective in increasing the strength and hardness in the steel having a martensitic structure, but when the content thereof is high, the weldability and toughness are decreased, so that C is limited to 0.05% to 0.18% to secure the hardness required by the present invention. It is preferable.

Si: 0.15%~0.3%Si: 0.15%-0.3%

상기 Si는 탈산과 고용강화에 따른 강도증가를 나타내는 원소이나, 그 함량이 높을 경우 용접성 감소 및 용접부 인성저하는 물론 모재의 인성을 저하시키므로 0.15%~0.3%로 제한하는 것이 바람직하다.The Si is an element exhibiting strength increase due to deoxidation and solid solution strengthening, but when the content thereof is high, it is preferable to limit it to 0.15% to 0.3% because it decreases the toughness of the base metal as well as decreases the weldability and the weld toughness.

Al: 0.005%~0.1%Al: 0.005%-0.1%

상기 Al은 강한 탈산제로 용강중에 산소함량을 낮추어 청정강 제조에 효과적인 원소이나 0.1% 초과하여 첨가 시 제조원가가 상승함으로서, 그 함량을 0.005%~0.1%로 한정하는 것이 바람직하다.The Al is a strong deoxidizer to lower the oxygen content in the molten steel, an element effective for the production of clean steel, but the production cost increases when added in excess of 0.1%, it is preferable to limit the content to 0.005% to 0.1%.

Mn: 0.5%~1.5%Mn: 0.5% ~ 1.5%

상기 Mn은 페라이트 생성을 억제하고 Ar3온도를 낮춤으로써 소입성을 효과적으로 상승시켜 재료의 강도를 증가시키는 원소이나, 탄소당량을 높여 재료의 용접성을 저하시키므로 0.5%~1.5%로 제한하는 것이 바람직하다.The Mn is an element that effectively increases the hardenability by suppressing the formation of ferrite and lowers the Ar3 temperature, and increases the strength of the material, but it is preferable to limit the Mn to 0.5% to 1.5% because the carbon equivalent decreases the weldability of the material.

Cr: 0.1%~1.5%Cr: 0.1%-1.5%

상기 Cr은 소입성을 증가시켜 재료의 강도를 증가시키는 원소이나, 과다하게 첨가되는 경우에는 용접성을 저하시키므로 0.1%~1.5%로 제한하는 것이 바람직하다. The Cr is an element that increases the hardenability to increase the strength of the material, but when excessively added, the Cr decreases the weldability, so it is preferably limited to 0.1% to 1.5%.

Mo: 0.1%~0.5%Mo: 0.1% ~ 0.5%

상기 Mo는 Cr과 같이 재료의 소입성을 증가시켜 강도를 증가시키는데 매우 효과적인 원소이나, 고가의 원소로 다량 첨가시 제조비용이 상승하고 용접성을 저하시키므로 0.1%~0.5%로 제한하는 것이 바람직하다. The Mo is an element that is very effective to increase the strength by increasing the hardenability of the material, such as Cr, but it is preferable to limit to 0.1% to 0.5% because the manufacturing cost increases and the weldability decreases when a large amount is added as an expensive element.

Ni: 0.1%~0.5%Ni: 0.1%-0.5%

상기 Ni은 저온인성 향상과 강도를 증가시키는데 매우 효과적인 원소이나, 고가의 원소이므로 다량 첨가시 제조비용이 상승하고 용접성을 저하시키므로 0.1%~0.5%로 제한하는 것이 바람직하다.Ni is a very effective element for improving low-temperature toughness and increasing strength, but since it is an expensive element, it is preferable to limit it to 0.1% to 0.5% because the production cost increases and the weldability decreases when a large amount is added.

B: 0.0005%~0.0050%B: 0.0005%-0.0050%

상기 B은 소량의 첨가로도 재료의 소입성을 효과적으로 상승시켜 강도를 증가시키며, Mo, V, Ti과의 복합첨가에서 그 효과가 매우 큰 원소이나, 과도한 첨가시 인성 및 용접성을 저하시키므로 0.0005%~0.0050%로 제한하는 것이 바람직하다.The B is effective to increase the hardenability of the material even with the addition of a small amount, and increase the strength, and the effect is very high in the complex addition with Mo, V, Ti, but toughness and weldability when excessive addition is 0.0005% It is desirable to limit to 0.0050%.

Ti: 0.01%~0.03%Ti: 0.01%-0.03%

상기 Ti은 소입성 향상에 중요한 원소인 B의 효과를 극대화 하는 원소로 Ti은 TiN의 형성에 의하여 BN 형성을 억제하므로서 고용 B를 증가시켜 B에 의한 소입성 향상을 극대화시키며, 석출된 TiN은 오스테나이트 결정립에 피닝(Pining)됨에 의하여 결정립의 조대화를 억제시키는 효과를 나타내나, 과도한 첨가시 Ti 석출물의 조대화에 의하여 인성의 저하와 제강시 편석 및 산화물 형성의 문제가 있어, 그 함량을 0.01%~0.03%로 제한하는 것이 바람직하다. Ti is an element maximizing the effect of B, which is an important element for improving the hardenability, and Ti is inhibited by the formation of TiN, thereby increasing the solid solution B to maximize the hardenability improvement by B, and precipitated TiN is austenite. Pinning of nitrite grains has the effect of suppressing coarsening of grains, but due to coarsening of Ti precipitates when excessively added, there are problems of deterioration of toughness and segregation and oxide formation during steelmaking. It is preferable to limit it to%-0.03%.

Nb: 0.01%~0.05%, Nb: 0.01% to 0.05%,

상기 Nb은 오스테나이트에 고용되어 오스테나이트의 경화능을 증대시키고, Nb(C,N)등의 탄질화물을 석출시킴으로써 강도를 증가시키는 중요한 원소이나, 다량으로 첨가할 경우 조대한 석출상의 형성으로 취성파괴의 기점이 되어 인성을 감소시키므로 0.01%~0.05%로 제한하는 것이 바람직하다.The Nb is dissolved in austenite to increase the hardenability of the austenite, and is an important element that increases strength by precipitating carbonitrides such as Nb (C, N), but is brittle due to the formation of coarse precipitated phase when added in large quantities. It is preferable to limit the content to 0.01% to 0.05% because it reduces the toughness as a starting point of fracture.

P: 0.015% 이하 P: not more than 0.015%

상기 P는 저온인성을 저하시키는 원소로 그 함량을 낮게 제어해야 하나 제거를 위한 공정이 까다로워 과다한 비용이 소요되므로 0.015% 이하의 범위로 관리한다.The P is an element that lowers the low temperature toughness, but the content thereof is controlled to be low, but the process for removal is difficult, so excessive cost is managed in the range of 0.015% or less.

S: 0.01% 이하S: not more than 0.01%

상기 S는 P와 같이 저온인성을 감소시키는 원소로 강중 MnS 개재물을 형성하여 강의 물성을 저하시키므로 낮게 관리해야 하나 제거공정이 까다로워 과다한 비용이 소요되므로 0.01% 이하로 관리한다.S is an element that reduces low-temperature toughness, such as P, so that MnS inclusions in steel lower the physical properties of the steel. Therefore, S is managed to be lower than 0.01% because excessive removal costs are required because the removal process is difficult.

나머지는 Fe 및 불가피한 불순물을 포함한다.The remainder contains Fe and unavoidable impurities.

본 발명에서는 상기 조성범위가 하기 식 1의 Ceq 값이 0.5이하인 것이 바람직하다. 상기 Ceq는 탄소당량을 의미하는 것으로서, 그 값이 0.5를 초과하는 경우에는 용접성이 저하되어 용접시 작업조건이 까다로워 생산성이 저하되는 문제가 있다. In the present invention, it is preferable that the Ceq value of the following formula 1 is 0.5 or less. The Ceq refers to a carbon equivalent, when the value exceeds 0.5, the weldability is lowered, the working conditions are difficult during welding, there is a problem that the productivity is lowered.

식 1. Ceq = C + Mn/6 + (Cr+Mo+V)/5 + (Ni+Cu)/15Ceq = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15

본 발명에서는 상기 Ceq와 소입 냉각 속도(QCR, Quenching Cooling Rate)의 관계에 대한 하기 식 2로 정의된 H값이 2.0 이상인 것이 바람직하다. 상기 H 값이 2.0 미만인 경우에는 소입 처리 후 강판의 전두께에서 90% 이상의 마르텐사이트 조직을 가질 수 없으므로, 강판 두께 방향으로 균일한 경도를 갖기 위해서는 상기 H 값이 2.0 이상인 것이 바람직하다.In the present invention, it is preferable that the H value defined by Equation 2 below for the relationship between the Ceq and the quenching cooling rate (QCR) is 2.0 or more. When the H value is less than 2.0, since the martensite structure of 90% or more is not possible in the total thickness of the steel sheet after the hardening treatment, the H value is preferably 2.0 or more in order to have a uniform hardness in the steel plate thickness direction.

식 2. H = Ceq ×(QCR)1/2 (단, QCR 은 소입 냉각 속도(Quenching Cooling Rate))Equation 2. H = Ceq × (QCR) 1/2 (QCR is Quenching Cooling Rate)

본 발명의 강판은 미세조직은 전 두께에서 마르텐사이트상이 부피분율로 90% 이상을 만족하고, 나머지는 베이나이트상 또는 페라이트상으로 이루어진다. 용접성의 향상을 위해서 낮은 Ceq를 갖는 합금설계를 할 경우나 소입냉각속도가 낮을 경우, 강판의 두께방향으로 소입성의 차이가 발생하며, 강판의 중심부로 갈수록 마르텐사이트상의 부피분율이 90%이하로 형성하게 된다. 이와 같이, 중심부의 마르텐사이트상의 분율이 적어지고, 베이나이트상 또는 페라이트상과 같은 연질상이 많아지게 되면, 두께방향으로의 경도값이 크게 감소하여 두께방향으로의 재질차이가 커지게 되어, 이에 따라 설비수명이 단축되는 문제가 있다. 특히 잔부조직이 베이나이트상이 많아지는 경우 베이나이트상내 조대한 탄화물의 형성으로 인하여 저온인성 이 감소되는 문제가 있기 때문에 마르텐사이트상의 부피분율이 90% 이상인 것이 바람직하다.In the steel sheet of the present invention, the microstructure of the martensite phase at a full thickness satisfies 90% or more by volume fraction, and the rest is composed of a bainite phase or a ferrite phase. In the case of alloy design with low Ceq or low quenching cooling rate to improve weldability, the difference in hardenability occurs in the thickness direction of steel sheet, and the volume fraction of martensite phase is less than 90% toward the center of steel sheet. To form. As such, when the fraction of the martensite phase in the center portion decreases, and the soft phase such as the bainite phase or the ferrite phase increases, the hardness value in the thickness direction is greatly reduced, resulting in a large material difference in the thickness direction. There is a problem of shortening the life of the equipment. In particular, when the residual structure is increased in the bainite phase, the low temperature toughness is reduced due to the formation of coarse carbides in the bainite phase, so that the volume fraction of the martensite phase is preferably 90% or more.

본 발명의 강판은 전 두께의 경도값이 브리넬 경도계로 측정할 경우에 360HB 이상이 되고, 두께 방향으로의 표층부와 중심부의 경도차가 50HB 이하를 갖게된다.In the steel sheet of the present invention, when the hardness value of the entire thickness is measured by a Brinell hardness meter, the hardness difference between the surface layer portion and the central portion in the thickness direction is 50 HB or less.

상기 조직 및 경도값을 갖기 위해서는 적절한 압연 및 열처리 공정을 거쳐야 하므로 이하, 본 발명의 제조방법에 대하여 상세히 설명한다.In order to have the structure and the hardness value, an appropriate rolling and heat treatment process must be performed. Hereinafter, the manufacturing method of the present invention will be described in detail.

이 경우, 상기의 조성과 식 1의 Ceq 값이 0.5 이하를 만족하는 강 슬라브를 1100~1250℃로 재가열한다. 재가열 온도가 1100℃ 미만에서는 Nb 등 용질원자의 고용이 어렵고, 1250℃를 초과하는 경우에서는 오스테나이트 결정립의 조대화를 억제하기 어렵기 때문이다. In this case, the steel slab whose composition and Ceq value of Formula 1 satisfy 0.5 or less is reheated at 1100-1250 degreeC. This is because when the reheating temperature is lower than 1100 ° C., solute atoms such as Nb are hardly dissolved, and when the reheating temperature is higher than 1250 ° C., coarsening of austenite grains is difficult to be suppressed.

상기 재가열 후 열간압연을 행한다. 열간압연은 재결정온도 이상 영역에서 패스당 10% 이상의 압하율로 누적 압하율 70%이상 강압하 압연을 실시하고 Ar3 온도 이상에서 마무리 압연을 종료한 후 냉각한다. After reheating, hot rolling is performed. Hot rolling is carried out by rolling down the cumulative reduction rate of 70% or more at a rolling reduction rate of 10% or more per pass in a region above the recrystallization temperature, and cooling after finishing finishing rolling above the Ar3 temperature.

재결정온도 이상의 온도에서 누적 압하율이 70% 미만일 경우, 후물재 강판의 중심부까지 균일한 압연조직을 얻을 수 없으며, 이는 두께 방향으로 재질편차가 적은 후강판을 제작 할 수 없기 때문이다. 또한 마무리 압연온도가 Ar3 미만일 경우 에는 페라이트가 형성되어 목표하는 마르텐사이트 조직을 얻을 수 없기 때문이다.If the cumulative reduction ratio is less than 70% at a temperature above the recrystallization temperature, it is not possible to obtain a uniform rolled structure up to the center of the thick steel sheet, because it is not possible to produce a thick steel sheet with a small material deviation in the thickness direction. When the finish rolling temperature is less than Ar3, ferrite is formed and the target martensite structure cannot be obtained.

상기 열간 압연되고 냉각된 강판을 850~950℃ 온도로 1.6t + (10~30분), (단, t는 강재의 두께)동안 재가열 후 상기 식 2의 H 값이 2.0 이상을 만족하는 냉각속도로 소입(Quenching) 처리를 수행한다. 재가열 온도가 850℃ 미만일 경우 고용원소들의 재고용이 어려워 강도확보가 어려워지고, 950℃를 초과하는 경우 결정립 성장이 발생되어 인성의 저하를 유발하게 된다. Cooling rate at which the H value of Equation 2 satisfies 2.0 or more after reheating the hot rolled and cooled steel sheet at a temperature of 850 to 950 ° C. for 1.6 t + (10 to 30 minutes), where t is the thickness of the steel. Quench processing with. If the reheating temperature is less than 850 ℃ difficult to re-employment of the employment element is difficult to secure strength, if it exceeds 950 ℃ grain growth occurs to cause toughness.

또한 열처리 시간에 제한을 두는 이유는 1.6t + 10분보다 적어지게 되면 조직의 균질화가 어렵고, 1.6t + 30분을 초과하게 되면 생산성을 저해하기 때문이다.In addition, the time limit for the heat treatment time is less than 1.6t + 10 minutes, it is difficult to homogenize the tissue, if it exceeds 1.6t + 30 minutes, productivity is inhibited.

이하, 본 발명의 실시예에 대하여 상세히 설명한다. 다만, 하기 실시예는 본 발명을 한정하는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail. However, the following examples do not limit the present invention.

(실시예)(Example)

하기 표 1의 조성범위 및 Ceq를 만족하는 강 슬라브를 1100℃~1250℃의 온도범위에서 가열하고, 재결정 온도 이상 영역에서 패스당 10% 이상의 압하율로 누적 압하율 70%이상 강압하 압연을 실시한 후, Ar3 온도 이상에서 마무리 압연을 종료하여 냉각한 후 850℃ ~ 950℃ 온도로 1.6t +(10~30분) (단, t는 강재의 두께)동안 재가열하고, 표 2의 다양한 냉각속도로 소입(Quenching)처리를 실시하여 표면경도 와 중심부의 경도를 측정하였고 그 결과를 표 2에 나타내었다.The steel slab that satisfies the composition range and Ceq of Table 1 was heated at a temperature range of 1100 ° C to 1250 ° C, and subjected to rolling reduction of 70% or more at a cumulative reduction ratio of 10% or more per pass in a region above the recrystallization temperature. After the finish rolling over the Ar3 temperature and cooled down, it is reheated at 1.6 to + (10 to 30 minutes) (where t is the thickness of the steel) at a temperature of 850 ° C. to 950 ° C., and at various cooling rates shown in Table 2. The surface hardness and the hardness of the core were measured by the quenching treatment, and the results are shown in Table 2.

강종Steel grade CC MnMn SiSi CrCr PP SS AlAl TiTi NbNb MoMo NiNi BB CeqCeq AA 0.080.08 1.01.0 0.300.30 0.300.30 0.0120.012 0.0100.010 0.0350.035 0.0150.015 00 0.20.2 00 0.00150.0015 0.35 0.35 BB 0.100.10 1.21.2 0.300.30 0.300.30 0.0100.010 0.0100.010 0.0300.030 0.0150.015 0.0100.010 0.20.2 0.300.30 0.00100.0010 0.42 0.42 CC 0.140.14 1.21.2 0.250.25 0.400.40 0.0100.010 0.0050.005 0.0300.030 0.0150.015 0.0150.015 0.20.2 0.300.30 0.00100.0010 0.48 0.48 DD 0.180.18 1.11.1 0.300.30 0.500.50 0.0120.012 0.0060.006 0.0250.025 0.0150.015 00 0.40.4 0.350.35 0.00200.0020 0.57 0.57

상기 경도 측정은 ISO-6506 규격에 준하여 브리넬 경도계로 측정하고, 표층부는 강판표면에서 2mm제거 후 측정하였으며, 중심부는 강판 두께의 1/2t 지점을 절단하여 연마 후 측정하였다. 측정은 랜덤하게 5회를 측정하여 평균치를 가지고 평가하였다.The hardness measurement was measured by a Brinell hardness meter in accordance with the ISO-6506 standard, the surface layer was measured after removal of 2mm from the steel plate surface, the center portion was measured after grinding by cutting 1 / 2t of the steel plate thickness. The measurement was evaluated five times at random and averaged.

한편, 저온인성을 특정하기 위해서, JIS Z 2242에 따라 각 강판의 1/4t 지점에서 10개의 V-notch 시편을 채취하여 샤르피 충격시험을 실시하였으며, 그 평균값을 CVN[-40℃] 저온인성값으로 구하였다. 이 시험에서는 CVN[-40℃]가 50J 이상이면 합격으로 하였다.On the other hand, in order to specify the low temperature toughness, 10 V-notch specimens were taken from 1 / 4t points of each steel sheet according to JIS Z 2242, and the Charpy impact test was performed. The average value was CVN [-40 ° C] Was obtained. In this test, when CVN [-40 degreeC] was 50 J or more, it was set as the pass.

또한, 용접성을 평가하기 위하여, GMAW(CO2 gas) 수동용접법을 이용하여 전류 280~320A, 용접속도 22~30cm/min의 속도로 용접을 실시하였으며, 용접후 용접부 초음파 탐상을 실시하여 결함을 분석하고 크랙(Crack)의 발생여부를 확인하였으며, HAZ부에서 각각 3개의 샤르피 충격시험 시편을 채취하여 CVN[-20℃] 저온인성값을 측정하고 그 평균값을 HAZ부 저온인성값으로 하였다. 초음파 탐상에서 결함 및 Crack의 발생이 없고 HAZ부 CVN[-20℃]값이 50J 이상인 경우 용접성이 양호한 것으로 판단하였다.In addition, in order to evaluate the weldability, welding was performed at a current of 280 to 320 A and a welding speed of 22 to 30 cm / min using a GMAW (CO 2 gas) manual welding method. Cracks were generated, and three Charpy impact test specimens were taken from the HAZ part, and the CVN [-20 ° C.] low temperature toughness value was measured, and the average value was taken as the low temperature toughness value of the HAZ part. The weldability was judged to be good when there were no defects or cracks in the ultrasonic flaw detection and the CVN [-20 ° C] value of the HAZ part was 50J or more.

강종
Steel grade
두께
(t)
thickness
(t)
QCR
(℃/s)
QCR
(° C / s)
H
H
표층부
경도
(HB)
Surface layer
Hardness
(HB)
중심부
경도
(HB)
center
Hardness
(HB)
경도차
(HB)
Hardness difference
(HB)
CVN[-40℃]
(1/4t, J)
CVN [-40 ℃]
(1 / 4t, J)
용접성Weldability 비고
Remarks
초음파
검사
ultrasonic wave
inspection
HAZ
vE[-20℃]
HAZ
vE [-20 ℃]
판단judgment
A




A




1313 3030 1.899 1.899 395395 346346 4949 3232 radish 5555 양호Good 비교예Comparative example
2525 3030 1.899 1.899 389389 321321 6868 2424 radish 5353 양호Good 비교예Comparative example 5050 2020 1.550 1.550 384384 250250 134134 4444 radish 6262 양호Good 비교예Comparative example 5050 1515 1.343 1.343 382382 211211 171171 3434 radish 6767 양호Good 비교예Comparative example 5050 1010 1.096 1.096 376376 195195 181181 3232 radish 5454 양호Good 비교예Comparative example 5050 55 0.775 0.775 371371 180180 191191 2525 radish 5252 양호Good 비교예Comparative example B




B




1313 3030 2.300 2.300 405405 398398 77 6565 radish 7474 양호Good 발명예Honor
2525 3030 2.300 2.300 408408 386386 2222 6464 radish 6262 양호Good 발명예Honor 5050 2020 1.8781.878 397397 241241 156156 3737 radish 5555 양호Good 비교예Comparative example 5050 1515 1.6271.627 395395 228228 167167 3434 radish 5858 양호Good 비교예Comparative example 5050 1010 1.328 1.328 395395 212212 183183 3535 radish 6666 양호Good 비교예Comparative example 5050 55 0.939 0.939 392392 196196 196196 2424 radish 7878 양호Good 비교예Comparative example C




C




1313 3030 2.629 2.629 420420 415415 55 5454 radish 6262 양호Good 발명예Honor
2525 3030 2.629 2.629 422422 412412 1010 5656 radish 6767 양호Good 발명예Honor 5050 2020 2.147 2.147 418418 385385 3333 6464 radish 7373 양호Good 발명예Honor 5050 1515 1.8591.859 410410 341341 6969 4242 radish 6464 양호Good 비교예Comparative example 5050 1010 1.518 1.518 406406 323323 8383 3232 radish 6666 양호Good 비교예Comparative example 5050 55 1.073 1.073 405405 259259 146146 2727 radish 5252 양호Good 비교예Comparative example D

D

1313 3030 3.104 3.104 438438 435435 33 3434 발생Occur 1515 불량Bad 비교예Comparative example
2525 3030 3.104 3.104 435435 431431 44 3232 발생Occur 1414 불량Bad 비교예Comparative example 5050 2020 2.534 2.534 433433 425425 88 3737 발생Occur 2121 불량Bad 비교예Comparative example

상기 표 2에서 본 발명의 조성 및 조건을 만족하는 발명예의 경우에는 표층부와 중심부의 경도값이 360HB 이상이고, 경도값의 차이가 50HB 이하이며, 우수한 용접성을 갖는 것을 알 수 있다.In the case of the invention example satisfying the composition and conditions of the present invention in Table 2, it can be seen that the hardness value of the surface layer portion and the central portion is 360HB or more, the difference in hardness value is 50HB or less, and has excellent weldability.

그러나, A,B,C 강종 중 비교예의 경우는 H값이 2.0 이하로 전 두께에서 360HB 이상의 경도값을 확보 할 수 없으며 표면과 중심부의 경도값이 큰 차이를 보여 균일한 재질값의 확보를 기대할 수 없다. However, in the case of comparative examples among A, B, and C grades, the H value is 2.0 or less, so the hardness value of 360HB or more cannot be secured at all thicknesses, and the hardness value of the surface and the central part shows a big difference, so it is expected to secure uniform material values. Can't.

한편, 상기 표 2에서의 H값과 경도값 차이의 관계를 도 1에 나타내었다. 도 1에 나타난 바와 같이, 표면부와 중심부의 경도값의 차이는 H의 값이 2.0 미만인 경우에 50HB 이상이 되어 두께 방향의 재질 편차가 심한 것을 확인할 수 있다.In addition, the relationship between the H value and hardness value difference in Table 2 is shown in FIG. As shown in Figure 1, the difference in hardness between the surface portion and the central portion is 50HB or more when the value of H is less than 2.0 it can be confirmed that the material deviation in the thickness direction is severe.

용접성을 관찰한 결과, A, B, C 강종은 H 값과는 무관하게 양호한 용접성을 가지는 것을 알 수 있으나, D 강종은 H값이 2.0 이상을 나타내지만, 표 1에 나타난 바와 같이, 탄소당량(Ceq)이 0.5 이상으로 경도값이 지나치게 높아 용접성이 저하되는 것을 알 수 있다. As a result of observing weldability, it can be seen that A, B, and C steels have good weldability irrespective of H value, but D steels have H value of 2.0 or more, but as shown in Table 1, Ceq) is 0.5 or more and hardness value is too high, and it turns out that weldability falls.

도 1은 H 값에 따른 강판 중심부와 표층부의 경도차를 나타낸 것이다.Figure 1 shows the hardness difference between the center of the steel sheet and the surface layer according to the H value.

Claims (4)

중량%로 C: 0.05~0.18%, Si: 0.15~0.3%, Mn: 0.5~1.5%, Cr: 0.1~1.5%, Mo: 0.1~0.5%, Ni: 0.1~0.5%, B: 0.0005~0.0050%, Ti: 0.01~0.03%, Nb: 0.01~0.05%, Al: 0.005~0.1%, P: 0.015%이하, S: 0.010%이하, 나머지는 Fe 및 불가피한 불순물을 포함하고, 하기 식 1에 의한 Ceq 값이 0.50 이하이며, 전 두께 경도값이 360HB 이상이며, 표층부와 중심부의 경도차가 50HB 이하인 용접성, 두께방향 재질 편차특성 및 저온인성이 우수한 강판.By weight% C: 0.05 ~ 0.18%, Si: 0.15 ~ 0.3%, Mn: 0.5 ~ 1.5%, Cr: 0.1 ~ 1.5%, Mo: 0.1 ~ 0.5%, Ni: 0.1 ~ 0.5%, B: 0.0005 ~ 0.0050 %, Ti: 0.01% to 0.03%, Nb: 0.01% to 0.05%, Al: 0.005% to 0.1%, P: 0.015% or less, S: 0.010% or less, the remainder includes Fe and unavoidable impurities, A steel sheet having a Ceq value of 0.50 or less, a total thickness hardness value of 360 HB or more, and a hardness difference between the surface portion and the center portion of 50 HB or less, excellent weldability, thickness direction material variation, and low temperature toughness. 식 1. Ceq = C + Mn/6 + (Cr+Mo+V)/5 + (Ni+Cu)/15 (단, 상기 C, Mn, Cr, Mo, V, Ni, Cu는 강판의 합금원소이며, 단위는 중량%임)Ceq = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15, wherein C, Mn, Cr, Mo, V, Ni, Cu are alloy elements of the steel sheet In weight percent) 삭제delete 청구항 1에 있어서,The method according to claim 1, 상기 강판의 미세조직은 전 두께에서 마르텐사이트상이 부피분율로 90%이상인 용접성, 두께방향 재질 편차특성 및 저온인성이 우수한 강판.The microstructure of the steel sheet is excellent in weldability, thickness direction material variation characteristics and low temperature toughness of the martensite phase in volume fraction of more than 90% at full thickness. 중량%로 C: 0.05~0.18%, Si: 0.15~0.3%, Mn: 0.5~1.5%, Cr: 0.1~1.5%, Mo: 0.1~0.5%, Ni: 0.1~0.5%, B: 0.0005~0.0050%, Ti: 0.01~0.03%, Nb: 0.01~0.05%, Al: 0.005~0.1%, P: 0.015%이하, S: 0.010%이하, 나머지는 Fe 및 불가피한 불순물을 포함하고, 하기 식 1에 의한 Ceq 값이 0.50 이하를 만족하는 강 슬라브를 1100℃~1250℃로 재가열하는 단계;By weight% C: 0.05 ~ 0.18%, Si: 0.15 ~ 0.3%, Mn: 0.5 ~ 1.5%, Cr: 0.1 ~ 1.5%, Mo: 0.1 ~ 0.5%, Ni: 0.1 ~ 0.5%, B: 0.0005 ~ 0.0050 %, Ti: 0.01% to 0.03%, Nb: 0.01% to 0.05%, Al: 0.005% to 0.1%, P: 0.015% or less, S: 0.010% or less, the remainder includes Fe and unavoidable impurities, Reheating the steel slab having a Ceq value of 0.50 or less to 1100 ° C to 1250 ° C; 재결정온도 이상 영역에서 패스당 10% 이상의 압하율로 누적 압하율 70%이상 강압하 압연을 실시하고 Ar3 온도 이상에서 마무리 열간압연을 종료하는 단계; 및Performing a step-down rolling of at least 70% of the cumulative reduction rate at a reduction ratio of 10% or more per pass in a region above the recrystallization temperature and terminating the finishing hot rolling at an Ar3 temperature or higher; And 상기 열간압연된 열연강판을 850℃ ~ 950℃ 온도로 1.6t + (10~30분)(단, t는 강재의 두께)동안 재가열한 후, 하기 식 2의 H 값이 2.0 이상을 만족하는 냉각속도로 냉각하는 단계After reheating the hot rolled hot rolled steel sheet at a temperature of 850 ° C. to 950 ° C. for 1.6t + (10 to 30 minutes) (where t is the thickness of steel), the H value of Equation 2 below satisfies 2.0 or more. Cooling down at speed 를 포함하는 용접성, 두께방향 재질 편차특성 및 저온인성이 우수한 강판의 제조방법.The manufacturing method of the steel sheet excellent in weldability, thickness direction material deviation characteristics and low temperature toughness comprising a. 식 1. Ceq = C + Mn/6 + (Cr+Mo+V)/5 + (Ni+Cu)/15 (단, 상기 C, Mn, Cr, Mo, V, Ni, Cu는 강판의 합금원소이며, 단위는 중량%임)Ceq = C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15, wherein C, Mn, Cr, Mo, V, Ni, Cu are alloy elements of the steel sheet In weight percent) 식 2. H = Ceq ×(QCR)1/2 (단, QCR 은 소입 냉각 속도(Quenching Cooling Rate))Equation 2. H = Ceq × (QCR) 1/2 (QCR is Quenching Cooling Rate)
KR1020090132108A 2009-12-28 2009-12-28 Steel sheet having excellent weldability, hardness uniformity in the thickness direction and low temperature toughness, and method for manufacturing the same Active KR101304852B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090132108A KR101304852B1 (en) 2009-12-28 2009-12-28 Steel sheet having excellent weldability, hardness uniformity in the thickness direction and low temperature toughness, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090132108A KR101304852B1 (en) 2009-12-28 2009-12-28 Steel sheet having excellent weldability, hardness uniformity in the thickness direction and low temperature toughness, and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20110075613A KR20110075613A (en) 2011-07-06
KR101304852B1 true KR101304852B1 (en) 2013-09-05

Family

ID=44915593

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090132108A Active KR101304852B1 (en) 2009-12-28 2009-12-28 Steel sheet having excellent weldability, hardness uniformity in the thickness direction and low temperature toughness, and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR101304852B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101899687B1 (en) 2016-12-22 2018-10-04 주식회사 포스코 Wear resistant steel having high hardness and method for manufacturing same
KR101899686B1 (en) 2016-12-22 2018-10-04 주식회사 포스코 Wear resistant steel havinh high hardness and method for manufacturing the same
CN108546873A (en) * 2018-04-17 2018-09-18 包头钢铁(集团)有限责任公司 The manufacturing method of high-wearing feature steel plate and high-wearing feature steel plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136042A (en) * 1997-07-18 1999-02-09 Sumitomo Metal Ind Ltd High tensile steel excellent in arrestability and weldability and manufacturing method
JP2007092155A (en) * 2005-09-30 2007-04-12 Jfe Steel Kk Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136042A (en) * 1997-07-18 1999-02-09 Sumitomo Metal Ind Ltd High tensile steel excellent in arrestability and weldability and manufacturing method
JP2007092155A (en) * 2005-09-30 2007-04-12 Jfe Steel Kk Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same

Also Published As

Publication number Publication date
KR20110075613A (en) 2011-07-06

Similar Documents

Publication Publication Date Title
EP2397570B1 (en) Steel plate for line pipes with excellent strength and ductility and process for production of same
EP2264205B1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
KR101490567B1 (en) High manganese wear resistance steel having excellent weldability and method for manufacturing the same
KR101271888B1 (en) Thick Plate Having Excellent Wear Resistant And Low-Temperature Toughness, And Method For Manufacturing The Same
EP3631032B1 (en) High-strength, hot rolled abrasive wear resistant steel strip and method of manufacturing thereof
KR100833035B1 (en) Steel plate for high strength and high toughness line pipe with excellent deformability and manufacturing method
JP6691967B2 (en) High hardness and wear resistant steel excellent in toughness and cutting crack resistance, and method for producing the same
EP3825435B1 (en) Wire rod and steel wire for spring, having enhanced toughness and corrosion fatigue properties, and respective manufacturing methods therefor
EP3733905B1 (en) High-strength structural steel material having excellent fatigue crack propagation inhibitory characteristics and manufacturing method therefor
KR101304852B1 (en) Steel sheet having excellent weldability, hardness uniformity in the thickness direction and low temperature toughness, and method for manufacturing the same
KR101999015B1 (en) Steel for structure having superior resistibility of brittle crack arrestability and manufacturing method thereof
KR20100067509A (en) Method for producing steel plate for offshore structures having excellent ctod properties in heat affected zone
KR101560943B1 (en) Hot rolled steel sheet having a good low temperature toughness and method for manufacturing the same
JP7088235B2 (en) Wear-resistant steel sheet and its manufacturing method
KR102357082B1 (en) High strength steel sheet having excellent heat affected zone toughness and method for manufacturing the same
KR101439629B1 (en) Wear resistant steel having excellent wear-resistance and method for manufacturing the same
KR101246466B1 (en) METHOD OF MANUFACTURING EXCELLENT FORMABILITY HOT ROLLED STEEL SHEET HAVING 1000MPa GRADE AND HOT ROLLED STEEL SHEET FABRICATED USING THEREOF
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
KR102811114B1 (en) Thick steel plate and method of manufacturing the same
KR20200047081A (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR101435319B1 (en) Method of manufacturing steel sheet
KR101467030B1 (en) Method for manufacturing high strength steel plate
KR101443445B1 (en) Non-heated type high strength hot-rolled steel sheet and method of manufacturing the same
KR101185271B1 (en) High strength steel sheet for line pipe with excellent resistance to hydrogen induced cracking properties and method of manufacturing the same
EP4450663A1 (en) Steel having excellent hydrogen-induced craking resistance and low-temperature impact toughness, and method for manufacturing same

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20091228

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20110512

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20091228

Comment text: Patent Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20130201

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20130801

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20130830

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20130830

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20160816

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20160816

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20170828

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20170828

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20180829

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20180829

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20190828

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20190828

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20200827

Start annual number: 8

End annual number: 8