[go: up one dir, main page]

KR101140112B1 - 올레핀 중합 촉매용 디알콕시마그네슘 담체의 제조 방법, 이를 이용한 올레핀 중합 촉매의 제조 방법 및 이를 이용한 올레핀 중합 방법 - Google Patents

올레핀 중합 촉매용 디알콕시마그네슘 담체의 제조 방법, 이를 이용한 올레핀 중합 촉매의 제조 방법 및 이를 이용한 올레핀 중합 방법 Download PDF

Info

Publication number
KR101140112B1
KR101140112B1 KR1020090044778A KR20090044778A KR101140112B1 KR 101140112 B1 KR101140112 B1 KR 101140112B1 KR 1020090044778 A KR1020090044778 A KR 1020090044778A KR 20090044778 A KR20090044778 A KR 20090044778A KR 101140112 B1 KR101140112 B1 KR 101140112B1
Authority
KR
South Korea
Prior art keywords
temperature
reactor
polymerization
olefin polymerization
catalyst
Prior art date
Application number
KR1020090044778A
Other languages
English (en)
Other versions
KR20100125849A (ko
Inventor
김은일
김종식
이영주
박준려
Original Assignee
삼성토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성토탈 주식회사 filed Critical 삼성토탈 주식회사
Priority to KR1020090044778A priority Critical patent/KR101140112B1/ko
Priority to US12/686,734 priority patent/US20100298509A1/en
Priority to JP2010011164A priority patent/JP2010270300A/ja
Priority to CN2010101159093A priority patent/CN101891846A/zh
Priority to DE102010007743A priority patent/DE102010007743A1/de
Priority to ITMI2010A000233A priority patent/IT1398304B1/it
Priority to FR1053544A priority patent/FR2945810A1/fr
Publication of KR20100125849A publication Critical patent/KR20100125849A/ko
Application granted granted Critical
Publication of KR101140112B1 publication Critical patent/KR101140112B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/655Pretreating with metals or metal-containing compounds with aluminium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerization Catalysts (AREA)

Abstract

본 발명은 올레핀 중합 촉매용 디알콕시마그네슘 담체의 제조 방법, 이를 이용한 올레핀 중합 촉매의 제조 방법 및 이를 이용한 올레핀 중합 방법에 관한 것이다. 본 발명의 담체 제조 방법에 따르면, 생성된 디알콕시마그네슘 담체 내의 거대입자 함량을 조절할 수 있고, 구형의 입자 모양을 갖게 되어, 이를 이용하여 제조한 고체 촉매는 고활성, 고입체규칙성 및 높은 겉보기 밀도를 가지게 되어 다양한 공정의 상업 적용을 가능하게 한다.
올레핀, 구형 담체, 개시제, N-클로로숙신이미드

Description

올레핀 중합 촉매용 디알콕시마그네슘 담체의 제조 방법, 이를 이용한 올레핀 중합 촉매의 제조 방법 및 이를 이용한 올레핀 중합 방법{A PREPARATION METHOD OF DIALKOXYMAGNESIUM SUPPORT FOR CATALYST FOR OLEFIN POLYMERIZATION, A PREPARATION METHOD OF CATALYST FOR OLEFIN POLYMERIZATION USING THE SAME AND A POLYMERIZATION METHOD OF OLEFIN USING THE SAME}
본 발명은 올레핀 중합 촉매용 디알콕시마그네슘 담체의 제조 방법, 이를 이용한 올레핀 중합 촉매의 제조 방법 및 이를 이용한 올레핀 중합 방법에 관한 것이다.
올레핀 중합 촉매로는 염화마그네슘 담지형 지글러-나타(Ziegler-Natta) 촉매가 현재 가장 널리 사용되고 있다. 일반적으로, 염화마그네슘 담지형 지글러-나타 촉매는 마그네슘, 티타늄, 할로겐 및 전자공여성 유기화합물로 구성된 고체 촉매 성분으로 이루어지며, 프로필렌과 같은 알파-올레핀 중합에 사용될 때에는 조촉매인 유기알루미늄 화합물 및 입체규칙성 조절제인 유기실란 화합물과 함께 적절한 비율로 혼합되어 투입되기도 한다. 올레핀 중합용의 담지형 고체 촉매는 슬러리중합, 벌크중합, 기상중합 등과 같은 다양한 상업화된 공정에 적용되기 때문에, 기본 적으로 요구되는 촉매의 높은 활성과 입체규칙성 이외에도, 입자 형상에 대한 요구조건들, 즉, 적절한 입자 크기와 모양, 입도 분포의 균일성, 거대입자 및 미세입자의 극소화, 높은 겉보기 밀도 등을 충족시켜야만 한다.
올레핀 중합 촉매용 담체의 입자 형상을 개선하기 위한 방법으로, 지금까지는 재결정화 및 재침전 방법, 스프레이건조 방법, 화학적 반응을 이용한 방법 등이 알려져 있으나, 이 중에서 재결정화 및 재침전 방법은 담체 제조시 임의로 크기를 조절하기가 어렵다.
화학적 반응을 이용한 방법의 하나인 마그네슘과 알코올을 반응시켜 얻어지는 디알콕시마그네슘을 담체로 사용하여 촉매를 제조하는 방법은 여타의 방법들에 비해 훨씬 높은 활성을 갖는 촉매와 높은 입체규칙성을 갖는 결과 중합체를 제공할 수 있을 뿐만 아니라, 공정 특성 및 제품에 요구되는 담체의 크기 조절이 가능하여, 최근 이에 대한 관심이 커지고 있다.
그러나, 디알콕시마그네슘을 담체로 사용하는 경우에는, 담체로 사용되는 디알콕시마그네슘의 입자 모양, 입도 분포, 겉보기 밀도 등이 촉매 및 중합체의 입자특성에 직접적으로 영향을 미치게 되므로, 마그네슘과 알코올의 반응과정에서 크기가 균일하고, 구형이면서 겉보기 밀도가 충분히 높은 디알콕시마그네슘 담체를 제조해야 한다. 특히 많은 양의 거대입자는 폴리머의 흐름성을 나쁘게 하여 생산 공장에 적용을 어렵게 할 수 있다.
균일한 형상의 디알콕시마그네슘을 제조하기 위한 여러 가지 방법들이 종래의 기술문헌들에 개시되어 있다. 미합중국특허 제5,162,277호 및 제5,955,396호에 서는 부정형의 디에톡시마그네슘을 이산화탄소로 카르복실화시켜 만든 마그네슘에틸카보네이트를 여러 종류의 첨가물 및 용매를 사용하여 용액 중에서 재결정하므로써 5~10㎛ 크기의 담체를 제조하는 방법을 제안하고 있다. 또한, 일본국공개특허 평06-87773호에서는 이산화탄소에 의해 카르복실화된 디에톡시마그네슘의 알코올 용액을 스프레이건조하고, 이를 탈카르복실화하여 구형의 입자를 제조하는 방법을 개시하고 있다. 그러나, 이러한 종래의 방법들은 많은 종류의 원료를 사용하는 복잡한 과정을 요구할 뿐만 아니라, 담체의 입자크기 및 형태를 만족할 만한 수준으로 제공하지 못하고 있다.
한편, 일본국공개특허 평03-74341호, 평04-368391호 및 평08-73388호에 의하면, 요오드의 존재하에서 금속마그네슘을 에탄올과 반응시켜 구형 또는 타원형의 디에톡시마그네슘을 합성하는 방법이 제공되고 있다. 그러나, 이 방법에 의해서 제조되는 디에톡시마그네슘은 반응과정에서 많은 반응열과 함께 다량의 수소가 발생하면서 반응이 매우 급격히 일어나기 때문에 반응속도를 적절하게 조절하는데 어려움이 있을 뿐 아니라, 결과물인 디알콕시마그네슘 담체에 다량의 미세입자 또는 여러 개의 입자가 응집된 이형의 거대입자를 다량 포함하고 있는 문제가 있으며, 상기의 결과물 담체로부터 제조된 촉매를 올레핀의 중합에 그대로 사용할 경우, 중합체의 입자크기가 과도하게 커지거나, 중합과정의 중합열에 의한 입자형상의 파괴현상에 의해 공정상에 심각한 장애를 야기하는 등의 문제가 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명이 해결하고자 하는 과제는 슬러리중합, 벌크중합, 기상중합 등과 같은 상용 올레핀 중합 공정에서 요구되는 입자 특성을 충분히 만족시킬 수 있는 촉매를 제조하기 위하여, 담체의 거대입자 양을 최소화하여, 균일하면서도 표면이 매끄러운 구형의 입자 모양을 갖는 올레핀 중합 촉매용 디알콕시마그네슘 담체의 제조 방법, 상기 디알콕시마그네슘 담체를 이용한 올레핀 중합 촉매의 제조 방법 및 이러한 촉매를 사용하여 올레핀을 중합하는 방법을 제공하는 것이다.
상기와 같은 과제를 해결하기 위한 본 발명의 올레핀 중합 촉매용 디알콕시마그네슘 담체의 제조 방법은, 개시제의 존재하에 금속 마그네슘과 알코올을 반응시켜 올레핀 중합 촉매용 디알콕시마그네슘 담체를 제조하는 방법으로서, 상기 개시제는 N-클로로숙신이미드(N-chlorosuccinimide)이고, 초기 반응 온도는 40~60℃인 것을 특징으로 한다.
상기 담체 제조 방법에서 사용되는 금속 마그네슘은 그 형태에 있어서는 제한이 없으나, 크기에 있어서는 평균 입경이 10~300㎛인 분말상인 것이 바람직하며, 50~200㎛인 분말상의 것이 보다 바람직하다. 상기 금속 마그네슘의 평균 입경이 10㎛ 미만이면 생성물인 담체의 평균 입자 크기가 너무 미세해지고, 300㎛를 초과하면 담체의 평균 입자 크기가 너무 커지고, 담체의 모양이 균일한 구형의 형태로 되 기 어려워지는 문제점이 있다.
상기 담체 제조 방법에서 사용되는 알코올은 특별히 한정되지는 않으나, 메탄올, 에탄올, 노말프로판올, 이소프로판올, 노말부탄올, 이소부탄올, 노말펜탄올, 이소펜탄올, 네오펜탄올, 시클로펜탄올, 시클로헥산올 등과 같이 일반식 ROH(여기에서, R은 탄소수 1~6의 알킬기이다)로 표시되는 지방족 알코올 또는 페놀과 같은 방향족 알코올로부터 선택된 1종 이상을 단독 또는 혼합하여 사용하는 것이 바람직하고, 메탄올, 에탄올, 프로판올 및 부탄올로부터 선택된 1종 이상의 알코올을 단독 또는 혼합하여 사용하는 것이 보다 바람직하며, 에탄올을 단독으로 사용하는 것이 가장 바람직하다.
상기 알코올의 사용량은 상기 금속 마그네슘 1중량부에 대하여 5~50중량부인 것이 바람직하고, 7~20중량부인 것이 보다 바람직하다. 상기 사용량이 5중량부 미만이면 슬러리의 점도가 급격히 증가하여 균일한 교반이 어렵게 되고, 50중량부를 초과하면 생성되는 담체의 겉보기 밀도가 급격히 감소하거나, 입자표면이 거칠어지는 문제가 발생한다.
상기 담체 제조 방법에서 사용되는 개시제는 N-클로로숙신이미드이다. 개시제로서 N-클로로숙신이미드를 사용하는 경우, N-브로모숙신이미드(N-bromosuccinimide)와 같은 기존의 개시제를 사용하는 경우와 달리 거대입자가 형성되지 않는 우수한 효과를 나타낸다.
상기 개시제로서의 N-클로로숙신이미드의 사용량은 상기 금속 마그네슘 1중량부에 대하여 0.001~0.2중량부인 것이 바람직하다. 사용량이 0.001중량부 미만인 경우에는 반응 속도가 너무 느려지고, 0.2중량부를 초과하는 경우에는 생성물의 입자 크기가 너무 커지거나, 미세입자가 다량 생성되는 문제점이 있다.
상기 담체 제조 과정은 개시제의 존재하에, 금속 마그네슘과 알코올을 혼합하고, 이를 특정 온도에서 초기 반응시키고, 이후 온도를 높여 숙성시키는 과정을 거치게 된다. 반응의 초기 온도는 40~60℃에서 이루어지며, 이후 숙성 처리 시에는 75~90℃에서 이루어지는 것이 바람직하다. 초기 반응 온도가 40℃ 미만인 경우에는 반응의 개시가 쉽게 이루어지지 않으므로 반응 시간이 길어지는 문제점이 있고, 60℃를 초과하는 경우에는 원하는 낮은 거대입자 함량을 얻을 수 없다. 교반 속도는 50~300rpm이 바람직하며, 70~250rpm인 것이 보다 바람직하다. 교반 속도가 상기 번위를 벗어나는 경우에는 생성되는 입자가 균일하지 않는 단점이 있다.
또한, 본 발명의 올레핀 중합 촉매의 제조 방법은 상기 본 발명의 담체 제조 방법으로부터 제조된 올레핀 중합 촉매용 디알콕시마그네슘 담체와 티타늄할라이드 화합물 및 내부 전자공여체를 접촉 반응시키는 것을 특징으로 한다.
상기 촉매 제조는 균일한 구형 입자형태의 디알콕시마그네슘을 유기용매의 존재하에 티타늄할라이드 화합물과 일차 반응시켜 디알콕시마그네슘의 알콕시기를 할로겐기로 치환시켜 준 다음, 유기용매의 존재 하에 티타늄할라이드 화합물 및 내부 전자공여체를 0~130℃의 범위에서 반응시킴으로써 다공성의 고체촉매입자를 얻을 수 있다.
상기 촉매 제조에 사용되는 티타늄할라이드 화합물은 그 종류에 제한이 없으나, 사염화티타늄을 사용하는 것이 바람직하다.
상기 촉매 제조에 사용되는 유기용매는 탄소수 6~12의 지방족 탄화수소 또는 방향족 탄화수소가 사용될 수 있으며, 보다 바람직하게는 탄소수 7~10인 포화 지방족 탄화수소 또는 방향족 탄화수소가 사용될 수 있고, 구체적인 예로는 옥탄, 노난, 데칸 또는 톨루엔, 크실렌 등이 사용될 수 있다.
상기 촉매 제조에 사용되는 내부 전자공여체로는, 바람직하게는 디에스테르류이고, 보다 바람직하게는 방향족 디에스테르류이며, 가장 바람직하게는 프탈산디에스테르류이다. 프탈산디에스테르류의 예로는, 디메틸프탈레이트, 디에틸프탈레이트, 디노말프로필프탈레이트, 디이소프로필프탈레이트, 디노말부틸프탈레이트, 디이소부틸프탈레이트, 디노말펜틸프탈레이트, 디(2-메틸부틸)프탈레이트, 디(3-메틸부틸)프탈레이트, 디네오펜틸프탈레이트, 디노말헥실프탈레이트, 디(2-메틸펜틸)프탈레이트, 디(3-메틸펜틸)프탈레이트, 디이소헥실프탈레이트, 디네오헥실프탈레이트, 디(2,3-디메틸부틸)프탈레이트, 디노말헵틸프탈레이트, 디(2-메틸헥실)프탈레이트, 디(2-에틸펜틸)프탈레이트, 디이소헵틸프탈레이트, 디네오헵틸프탈레이트, 디노말옥틸프탈레이트, 디(2-메틸헵틸)프탈레이트, 디이소옥틸프탈레이트, 디(3-에틸헥실)프탈레이트, 디네오헥실프탈레이트, 디노말헵틸프탈레이트, 디이소헵틸프탈레이트, 디네오헵틸프탈레이트, 디노말옥틸프탈레이트, 디이소옥틸프탈레이트, 디네오옥틸프탈레이트, 디노말노닐프탈레이트, 디이소노닐프탈레이트, 디노말데실프탈레이트, 디이소데실프탈레이트 등과 같은 다음의 일반식으로 표시되는 화합물로부터 선택된 1종 이상을 단독 또는 혼합하여 사용할 수 있다.
Figure 112009030689728-pat00001
(여기에서, R은 탄소수 1~10의 알킬기이다)
상기 촉매 제조에 있어서, 상기 각 성분의 접촉 및 반응은 불활성 기체 분위기에서 수분 등을 충분히 제거시킨 교반기가 장착된 반응기 중에서 수행된다. 상기 디알콕시마그네슘과 티타늄할라이드 화합물의 접촉은 지방족 또는 방향족 용매에 현탁시킨 상태에서 0~50℃, 좀더 구체적으로는 10~30℃의 범위에서 이루어지며, 만일 접촉하는 온도가 이 범위를 벗어나게 되면 담체입자의 형상이 파괴되어 미세입자가 다량 생성되는 문제가 발생할 수 있다. 이 때 사용하는 티타늄할라이드 화합물의 양은 디알콕시마그네슘 1몰에 대하여 0.1~10몰, 보다 바람직하게는 0.3~2몰이며, 티타늄할라이드 화합물의 주입속도는 30분 내지 3시간에 걸쳐 서서히 투입하는 것이 바람직하며, 투입이 완료된 후에는 온도를 서서히 40 내지 80℃까지 올려 줌으로써 반응을 완결시킨다. 반응이 완결된 슬러리 상태의 혼합물은 톨루엔으로 1회 이상 세척한 다음, 다시 티타늄할라이드 화합물을 투입하여 90 내지 130℃까지 승온하여 숙성시킨다. 이 때 사용하는 티타늄할라이드 화합물의 양은 처음에 사용된 디알콕시마그네슘 1몰에 대하여 0.5~10몰을 사용하는 것이 바람직하며, 보다 바람직하게는 1~5몰을 사용한다. 승온과정에서 내부 전자공여체를 투입하여야 하는데, 이 때 내부 전자공여체의 투입온도 및 투입횟수는 크게 제한되지 않으나, 내부 전자공여체의 전체 사용량은 사용된 디알콕시마그네슘 1중량부에 대하여 0.1~1.0중량부를 사용하는 것이 바람직하다. 내부 전자공여체의 양이 이 범위를 벗어나면 결과물인 촉매의 중합활성 또는 중합체의 입체규칙성이 낮아지는 문제점이 있다. 반응종료 후의 혼합 슬러리는 티타늄할라이드 화합물과의 3차 접촉과정 및 유기용매에 의한 세척과정, 건조과정을 거쳐 결과물인 올레핀 중합용 촉매를 얻을 수 있다.
상기의 방법으로 제조한 올레핀 중합용 촉매는 마그네슘, 티타늄, 전자공여성 화합물, 할로겐원자를 함유하며, 각 성분의 함유량은 특별히 구체적인 제조 공정의 차이에 따라 달라질 수 있으나, 바람직하게는 마그네슘 20~30중량%, 티타늄 1~10중량%, 전자공여성 화합물 5~20중량%, 할로겐원자 40~70중량%이다.
또한, 본 발명의 올레핀 중합 방법은 상기 본 발명의 촉매 제조 방법으로부터 제조된 올레핀 중합 촉매와 알킬알루미늄 및 외부 전자공여체를 혼합 사용하는 것을 특징으로 한다.
상기 올레핀은 일반적인 올레핀 중합 방법에 통상적으로 사용되는 종류이면 제한이 없으며, 바람직하게는 프로필렌이다.
상기 올레핀 중합 방법은 상기 성분들을 혼합하여 벌크중합법, 슬러리중합법 또는 기상중합법에 의하여 수행될 수 있다.
상기 성분 중 알킬알루미늄은 일반식 AlR1 3(여기에서, R1은 탄소수 1~4의 알킬기이다)로 표시되는 화합물로서, 구체적인 예로는 트리메틸알루미늄, 트리에틸알 루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 트리이소부틸알루미늄 등을 들 수 있다.
상기 성분 중 외부 전자공여체는 일반식 R2 mSi(OR3)4-m(여기에서, R2는 탄소수 1~10의 알킬기 또는 시클로알킬기, 또는 아릴기를 나타내며, R3은 탄소수 1~3의 알킬기이고, m은 1 또는 2이고, m이 2일 경우 2개의 R2는 동일하거나 다를 수 있다)로 표시되는 화합물로서, 구체적인 예로는 n-C3H7Si(OCH3)3, (n-C3H7)2Si(OCH3)2, i-C3H7Si(OCH3)3, (i-C3H7)2Si(OCH3)2, n-C4H9Si(OCH3)3, (n-C4H9)2Si(OCH3)2, i-C4H9Si(OCH3)3, (i-C4H9)2Si(OCH3)2, t-C4H9Si(OCH3)3, (t-C4H9)2Si(OCH3)2, n-C5H11Si(OCH3)3, (n-C5H11)2Si(OCH3)2, (시클로펜틸)Si(OCH3)3, (시클로펜틸)2Si(OCH3)2, (시클로펜틸)(CH3)Si(OCH3)2, (시클로펜틸)(C2H5)Si(OCH3)2, (시클로펜틸)(C3H7)Si(OCH3)2, (시클로헥실)Si(OCH3)3, (시클로헥실)2Si(OCH3)2, (시클로헥실)(CH3)Si(OCH3)2, (시클로헥실)(C2H5)Si(OCH3)2, (시클로헥실)(C3H7)Si(OCH3)2, (시클로헵틸)Si(OCH3)3, (시클로헵틸)2Si(OCH3)2, (시클로헵틸)(CH3)Si(OCH3)2, (시클로헵틸)(C2H5)Si(OCH3)2, (시클로헵틸)(C3H7)Si(OCH3)2, (페닐)Si(OCH3)3, (페닐)2Si(OCH3)2, n-C3H7Si(OC2H5)3, (n-C3H7)2Si(OC2H5)2, i-C3H7Si(OC2H5)3, (i-C3H7)2Si(OC2H5)2, n-C4H9Si(OC2H5)3, (n-C4H9)2Si(OC2H5)2, i-C4H9Si(OC2H5)3, (i-C4H9)2Si(OC2H5)2, t-C4H9Si(OC2H5)3, (t-C4H9)2Si(OC2H5)2, n-C5H11Si(OC2H5)3, (n-C5H11)2Si(OC2H5)2, (시클로펜틸)Si(OC2H5)3, (시클로펜틸)2Si(OC2H5)2, (시클로펜틸)(CH3)Si(OC2H5)2, (시클로펜틸)(C2H5)Si(OC2H5)2, (시클로펜틸)(C3H7)Si(OC2H5)2, (시클로헥실)Si(OC2H5)3, (시클로헥실)2Si(OC2H5)2, (시클로헥실)(CH3)Si(OC2H5)2, (시클로헥실)(C2H5)Si(OC2H5)2, (시클로헥실)(C3H5)Si(OC2H5)2, (시클로헵틸)Si(OC2H5)3, (시클로헵틸)2Si(OC2H5)2, (시클로헵틸)(CH3)Si(OC2H5)2, (시클로헵틸)(C2H5)Si(OC2H5)2, (시클로헵틸)(C3H7)Si(OC2H5)2, (페닐)Si(OC2H5)3, (페닐)2Si(OC2H5)2 등이 있다.
올레핀 중합에 있어서, 상기 촉매에 대한 조촉매 성분인 알킬알루미늄의 적절한 비율은 중합 방법에 따라서 다소 차이는 있으나, 촉매 중의 티타늄원자에 대한 알루미늄원자의 몰비로서 1 내지 1000의 범위이며, 보다 바람직하게는 10 내지 300의 범위이다. 만일, 촉매에 대한 알킬알루미늄의 비율이 상기의 비율을 벗어나게 되면 중합활성이 급격히 저하되는 문제가 있다.
올레핀 중합에 있어서, 상기 촉매에 대한 외부 전자공여체의 적절한 비율은 촉매 중의 티타늄원자에 대한 외부 전자공여체 중의 실리콘원자의 몰비로서 1 내지 200의 범위이며, 보다 바람직하게는 10 내지 100의 범위이다. 만일, 촉매에 대한 외부 전자공여체의 비율이 상기의 범위 미만이면 생성되는 폴리프로필렌 중합체의 입체규칙성이 현저히 낮아지며, 상기 범위를 초과하면 촉매의 중합활성이 현저히 떨어지는 문제점이 있다.
본 발명의 제조 방법에 따르면, 생성된 디알콕시마그네슘 담체 내의 거대입자 함량을 조절할 수 있고, 구형의 입자 모양을 갖게 되어, 이를 이용하여 제조한 고체 촉매는 고활성, 고입체규칙성 및 높은 겉보기 밀도를 가지게 되어 다양한 공정의 상업 적용을 가능하게 한다.
이하에서는, 실시예 및 비교예를 통하여 본 발명을 더욱 상세하게 설명한다.
실시예 1
[구형 담체의 제조]
교반기와 오일히터, 냉각환류기가 장착된 5L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, N-클로로숙신이미드 4.5g, 금속마그네슘(평균입경 100㎛인 분말제품) 60g, 무수 에탄올 1000ml를 투입하고, 교반속도를 240rpm으로 작동하면서 반응기의 온도를 60℃로 유지하였다. 약 10분이 경과하면 반응이 시작되면서 수소가 발생하므로, 발생되는 수소가 빠져 나가도록 반응기의 출구를 열린 상태로 두어 반응기에 압력을 상압으로 유지하였다. 수소 발생이 끝나면 반응기 온도를 60℃로 2시간 동안 유지하였다. 2시간 경과 후 반응 온도를 75℃로 상승시키고, 2시간 동안 숙성시켰다. 숙성 처리가 끝난 후, 50℃에서 세정 1회당 노말헥산 2,000ml를 사용하여 결과물을 3회 세정하였다. 세정된 결과물을 흐르는 질소 하에서 24시간 동안 건조시켜 흐름성이 좋은 백색 분말상의 고체 생성물 262g(수율 93.3%)을 얻었다. 건조된 생성물의 입자크기 및 75㎛ 이상의 거대입자 함량을 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정결과 평균 입자크기는 17.8㎛이고, 거대입자 함량은 4.6중량%이었다.
[고체촉매성분의 제조]
질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 150ml와 상기에서 제조한 평균입경 17.8㎛인 구형이고, 입도분포지수가 0.80이고, 겉보기 밀도가 0.29g/cc인 디에톡시마그네슘 25g을 투입하고 10℃로 유지하였다. 사염화티타늄 25ml를 톨루엔 50ml에 묽혀 1시간에 걸쳐 투입한 후, 반응기의 온도를 60℃까지 분당 0.5℃의 속도로 올려 주었다. 반응 혼합물을 60℃에서 1시간 동안 유지한 다음, 교반을 멈추어 고체생성물이 침전되기를 기다려 상등액을 제거하고, 새로운 톨루엔 200ml를 사용하여 15분간 교반시킨 후 동일한 방법으로 1회 세척하였다.
상기의 사염화티타늄으로 처리된 고체생성물에 톨루엔 150ml를 첨가하여 온도를 30℃로 유지한 상태에서 250rpm으로 교반시키면서 사염화티타늄 50ml를 1시간에 걸쳐 일정한 속도로 투입하였다. 사염화티타늄의 투입이 완료되면, 디이소부틸프탈레이트 2.5ml를 투입하고, 반응기의 온도를 110℃까지 80분간에 걸쳐 일정한 속도로 올려주었다(분당 1℃의 속도로 승온). 승온과정에서 반응기의 온도가 40℃와 60℃에 도달하였을 때 각각 디이소부틸프탈레이트 2.5ml를 추가로 투입하였다. 110℃에서 1시간 동안 유지한 다음, 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 동일한 방법으로 1회 세척하였다. 여기에 톨루엔 150ml와 사염화티타늄 50ml를 투입하여 온도를 110℃까지 올려 1시간 동안 유지하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 노말헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 2.12중량%이었고, 노말헥산에 현탁시킨 상태의 고체 촉매를 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정결과 평균 입자크기는 18.2㎛이었다.
[프로필렌 중합]
2리터 크기의 고압용 스테인레스제 반응기내에 상기의 촉매 5mg이 채워진 작은 유리관을 장착한 후, 반응기를 질소로 충분히 치환시켰다. 트리에틸알루미늄 3 mmol을 시클로헥실-메틸디메톡시실란 0.15mmol과 함께 투입하였다(여기에서, 시클로헥실-메틸디메톡시실란은 외부 전자공여체로서 사용됨). 이어서 수소 1000ml와 액체상태의 프로필렌 1.2L를 차례로 투입한 후 온도를 70℃까지 올리고 교반기를 작동시켜 내부에 장착되었던 유리관이 깨어져 중합이 시작되도록 하였다. 중합 개시 후 1시간이 경과하면, 반응기의 온도를 상온까지 떨어뜨리면서 밸브를 열어 반응기내부의 프로필렌을 완전히 탈기시켰다.
실시예 2
[구형 담체의 제조]
교반기와 오일히터, 냉각환류기가 장착된 5L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, N-클로로숙신이미드 4.5g, 금속마그네슘(평균입경 100㎛인 분말제품) 60g, 무수 에탄올 1000ml를 투입하고, 교반속도를 240rpm으로 작동하면서 반응기의 온도를 50℃로 유지하였다. 약 10분이 경과하면 반응이 시작되면서 수소가 발생하므로, 발생되는 수소가 빠져 나가도록 반응기의 출구를 열린 상태로 두어 반응기에 압력을 상압으로 유지하였다. 수소 발생이 끝나면 반응기 온도를 50℃로 2시간 동안 유지하였다. 2시간 경과 후 반응 온도를 75℃로 상승시키고, 2시간 동안 숙성시켰다. 숙성처리가 끝난 후, 50℃에서 세정 1회당 노말헥산 2,000ml를 사용하여 결과물을 3회 세정하였다. 세정된 결과물을 흐르는 질소 하에서 24시간 동안 건조시켜 흐름성이 좋은 백색 분말상의 고체 생성물 273g(수율 97.2%)을 얻었다. 건조된 생성물의 입자크기 및 75㎛ 이상의 거대입자 함량을 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정결과 평균 입자크기는 17.2㎛이고, 거대입자 함량은 4.3중량%이었다.
[고체촉매성분의 제조]
질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 150ml와 상기에서 제조한 평균입경 17.2㎛인 구형이고, 입도분포지수가 0.78이고, 겉보기 밀도가 0.30g/cc인 디에톡시마그네슘 25g을 투입하고 10℃로 유지하였다. 사염화티타늄 25ml를 톨루엔 50ml에 묽혀 1시간에 걸쳐 투입한 후, 반응기의 온도를 60℃까지 분당 0.5℃의 속도로 올려 주었다. 반응 혼합물을 60℃에서 1시간 동안 유지한 다음, 교반을 멈추어 고체생성물이 침전되기를 기다려 상등액을 제거하고, 새로운 톨루엔 200ml를 사용하여 15분간 교반시킨 후 동일한 방법으로 1회 세 척하였다.
상기의 사염화티타늄으로 처리된 고체생성물에 톨루엔 150ml를 첨가하여 온도를 30℃로 유지한 상태에서 250rpm으로 교반시키면서 사염화티타늄 50ml를 1시간에 걸쳐 일정한 속도로 투입하였다. 사염화티타늄의 투입이 완료되면, 디이소부틸프탈레이트 2.5ml를 투입하고, 반응기의 온도를 110℃까지 80분간에 걸쳐 일정한 속도로 올려 주었다(분당 1℃의 속도로 승온). 승온과정에서 반응기의 온도가 40℃와 60℃에 도달하였을 때 각각 디이소부틸프탈레이트 2.5ml를 추가로 투입하였다. 110℃에서 1시간 동안 유지한 다음 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 동일한 방법으로 1회 세척하였다. 여기에 톨루엔 150ml와 사염화티타늄 50ml를 투입하여 온도를 110℃까지 올려 1시간 동안 유지하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 노말헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 2.26중량%이었고, 건조된 생성물을 노말헥산에 현탁시킨 상태의 입자크기를 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정결과 평균 입자크기는 17.7㎛이었다.
[프로필렌 중합]
2리터 크기의 고압용 스테인레스제 반응기내에 상기의 촉매 5mg이 채워진 작은 유리관을 장착한 후, 반응기를 질소로 충분히 치환시켰다. 트리에틸알루미늄 3 mmol을 시클로헥실-메틸디메톡시실란 0.15mmol과 함께 투입하였다(여기에서, 시클 로헥실-메틸디메톡시실란은 외부 전자공여체로서 사용됨). 이어서 수소 1000ml와 액체상태의 프로필렌 1.2L를 차례로 투입한 후 온도를 70℃까지 올리고 교반기를 작동시켜 내부에 장착되었던 유리관이 깨어져 중합이 시작되도록 하였다. 중합 개시 후 1시간이 경과하면, 반응기의 온도를 상온까지 떨어뜨리면서 밸브를 열어 반응기내부의 프로필렌을 완전히 탈기시켰다.
실시예 3
[구형 담체의 제조]
교반기와 오일히터, 냉각환류기가 장착된 5L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, N-클로로숙신이미드 4.5g, 금속마그네슘(평균입경 100㎛인 분말제품) 60g, 무수 에탄올 1000ml를 투입하고, 교반속도를 240rpm으로 작동하면서 반응기의 온도를 45℃로 유지하였다. 약 10분이 경과하면 반응이 시작되면서 수소가 발생하므로, 발생되는 수소가 빠져 나가도록 반응기의 출구를 열린 상태로 두어 반응기에 압력을 상압으로 유지시켰다. 수소 발생이 끝나면 반응기 온도를 45℃로 2시간 동안 유지하였다. 2시간 경과 후 반응 온도를 75℃로 상승시키고, 2시간 동안 숙성을 하였다. 숙성처리가 끝난 후, 50℃에서 세정 1회당 노말헥산 2,000ml를 사용하여 결과물을 3회 세정하였다. 세정된 결과물을 흐르는 질소 하에서 24시간 동안 건조시켜 흐름성이 좋은 백색 분말상의 고체 생성물 265g(수율 94.4%)을 얻었다. 건조된 생성물의 입자크기 및 75㎛ 이상의 거대입자 함량을 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정결과 평균 입자크기는 17.7㎛이고, 거대입자 함량은 4.7중량%이었다.
[고체촉매성분의 제조]
질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 150ml와 상기에서 제조한 평균입경 17.7㎛인 구형이고, 입도분포지수가 0.79이고, 겉보기 밀도가 0.31g/cc인 디에톡시마그네슘 25g을 투입하고 10℃로 유지하였다. 사염화티타늄 25ml를 톨루엔 50ml에 묽혀 1시간에 걸쳐 투입한 후, 반응기의 온도를 60℃까지 분당 0.5℃의 속도로 올려 주었다. 반응 혼합물을 60℃에서 1시간 동안 유지한 다음, 교반을 멈추어 고체생성물이 침전되기를 기다려 상등액을 제거하고, 새로운 톨루엔 200ml를 사용하여 15분간 교반시킨 후 동일한 방법으로 1회 세척하였다.
상기의 사염화티타늄으로 처리된 고체생성물에 톨루엔 150ml를 첨가하여 온도를 30℃로 유지한 상태에서 250rpm으로 교반시키면서 사염화티타늄 50ml를 1시간에 걸쳐 일정한 속도로 투입하였다. 사염화티타늄의 투입이 완료되면, 디이소부틸프탈레이트 2.5ml를 투입하고, 반응기의 온도를 110℃까지 80분간에 걸쳐 일정한 속도로 올려 주었다(분당 1℃의 속도로 승온). 승온과정에서 반응기의 온도가 40℃와 60℃에 도달하였을 때 각각 디이소부틸프탈레이트 2.5ml를 추가로 투입하였다. 110℃에서 1시간 동안 유지한 다음 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 동일한 방법으로 1회 세척하였다. 여기에 톨루엔 150ml와 사염화티타늄 50ml를 투입하여 온도를 110℃까지 올려 1시간 동안 유지하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 노말헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉 매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 2.23중량%이었고, 건조된 생성물을 노말헥산에 현탁시킨 상태의 입자크기를 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정결과 평균 입자크기는 18.1㎛이었다.
[프로필렌 중합]
2리터 크기의 고압용 스테인레스제 반응기내에 상기의 촉매 5mg이 채워진 작은 유리관을 장착한 후, 반응기를 질소로 충분히 치환시켰다. 트리에틸알루미늄 3 mmol을 시클로헥실-메틸디메톡시실란 0.15mmol과 함께 투입하였다(여기에서, 시클로헥실-메틸디메톡시실란은 외부 전자공여체로서 사용됨). 이어서 수소 1000ml와 액체상태의 프로필렌 1.2L를 차례로 투입한 후 온도를 70℃까지 올리고 교반기를 작동시켜 내부에 장착되었던 유리관이 깨어져 중합이 시작되도록 하였다. 중합 개시 후 1시간이 경과하면, 반응기의 온도를 상온까지 떨어뜨리면서 밸브를 열어 반응기내부의 프로필렌을 완전히 탈기시켰다.
실시예 4
[구형 담체의 제조]
교반기와 오일히터, 냉각환류기가 장착된 5L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, N-클로로숙신이미드 4.5g, 금속마그네슘(평균입경 100㎛인 분말제품) 60g, 무수 에탄올 1000ml를 투입하고, 교반속도를 240rpm으로 작동하면서 반응기의 온도를 40℃로 유지하였다. 약 10분이 경과하면 반응이 시작되면서 수소가 발생하므로, 발생되는 수소가 빠져 나가도록 반응기의 출구를 열린 상태로 두어 반응기에 압력을 상압으로 유지한다. 수소 발생이 끝나면 반응기 온도를 40℃로 2시간 동안 유지하였다. 2시간 경과 후 반응 온도를 75℃로 상승시키고, 2시간 동안 숙성하였다. 숙성처리가 끝난 후, 50℃에서 세정 1회당 노말헥산 2,000ml를 사용하여 결과물을 3회 세정하였다. 세정된 결과물을 흐르는 질소 하에서 24시간 동안 건조시켜 흐름성이 좋은 백색 분말상의 고체 생성물 277g(수율 98.3%)을 얻었다. 건조된 생성물의 입자크기 및 75㎛ 이상의 거대입자 함량을 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정결과 평균 입자크기는 16.8㎛이고, 거대입자 함량은 3.6중량%이었다.
[고체촉매성분의 제조]
질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 150ml와 상기에서 제조한 평균입경 16.8㎛인 구형이고, 입도분포지수가 0.76이고, 겉보기 밀도가 0.30g/cc인 디에톡시마그네슘 25g을 투입하고 10℃로 유지하였다. 사염화티타늄 25ml를 톨루엔 50ml에 묽혀 1시간에 걸쳐 투입한 후, 반응기의 온도를 60℃까지 분당 0.5℃의 속도로 올려 주었다. 반응 혼합물을 60℃에서 1시간 동안 유지한 다음, 교반을 멈추어 고체생성물이 침전되기를 기다려 상등액을 제거하고, 새로운 톨루엔 200ml를 사용하여 15분간 교반시킨 후 동일한 방법으로 1회 세척하였다.
상기의 사염화티타늄으로 처리된 고체생성물에 톨루엔 150ml를 첨가하여 온도를 30℃로 유지한 상태에서 250rpm으로 교반시키면서 사염화티타늄 50ml를 1시간에 걸쳐 일정한 속도로 투입하였다. 사염화티타늄의 투입이 완료되면, 디이소부틸 프탈레이트 2.5ml를 투입하고, 반응기의 온도를 110℃까지 80분간에 걸쳐 일정한 속도로 올려 주었다(분당 1℃의 속도로 승온). 승온과정에서 반응기의 온도가 40℃와 60℃에 도달하였을 때 각각 디이소부틸프탈레이트 2.5ml를 추가로 투입하였다. 110℃에서 1시간 동안 유지한 다음 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 동일한 방법으로 1회 세척하였다. 여기에 톨루엔 150ml와 사염화티타늄 50ml를 투입하여 온도를 110℃까지 올려 1시간 동안 유지하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 노말헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 2.17중량%이었고, 건조된 생성물을 노말헥산에 현탁시킨 상태의 입자크기를 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정결과 평균 입자크기는 17.3㎛이었다.
[프로필렌 중합]
2리터 크기의 고압용 스테인레스제 반응기내에 상기의 촉매 5mg이 채워진 작은 유리관을 장착한 후, 반응기를 질소로 충분히 치환시켰다. 트리에틸알루미늄 3 mmol을 시클로헥실-메틸디메톡시실란 0.15mmol과 함께 투입하였다(여기에서, 시클로헥실-메틸디메톡시실란은 외부 전자공여체로서 사용됨). 이어서 수소 1000ml와 액체상태의 프로필렌 1.2L를 차례로 투입한 후 온도를 70℃까지 올리고 교반기를 작동시켜 내부에 장착되었던 유리관이 깨어져 중합이 시작되도록 하였다. 중합 개시 후 1시간이 경과하면, 반응기의 온도를 상온까지 떨어뜨리면서 밸브를 열어 반 응기내부의 프로필렌을 완전히 탈기시켰다.
비교예 1
[구형 담체의 제조]
교반기와 오일히터, 냉각환류기가 장착된 5L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, N-클로로숙신이미드 4.5g, 금속마그네슘(평균입경 100㎛인 분말제품) 60g, 무수 에탄올 1000ml를 투입하고, 교반속도를 240rpm으로 작동하면서 반응기의 온도를 환류 상태인 75℃로 유지하였다. 약 5분이 경과하면 반응이 시작되면서 수소가 발생하므로, 발생되는 수소가 빠져 나가도록 반응기의 출구를 열린 상태로 두어 반응기에 압력을 상압으로 유지하였다. 수소 발생이 끝나면 반응기 온도를 환류 상태인 75℃로 2시간 동안 유지하였다(숙성처리). 숙성처리가 끝난 후, 50℃에서 세정 1회당 노말헥산 2,000ml를 사용하여 결과물을 3회 세정하였다. 세정된 결과물을 흐르는 질소 하에서 24시간 동안 건조시켜 흐름성이 좋은 백색 분말상의 고체 생성물 264g(수율 94.0%)을 얻었다. 건조된 생성물의 입자크기 및 75㎛ 이상의 거대입자 함량을 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정결과 평균 입자크기는 17.5㎛이고, 거대입자 함량은 25.4중량%이었다.
[고체촉매성분의 제조]
질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 150ml와 상기에서 제조한 평균입경 17.5㎛인 구형이고, 입도분포지수가 0.81이고, 겉보기 밀도가 0.31g/cc인 디에톡시마그네슘 25g을 투입하고 10℃로 유지하였다. 사염화티타늄 25ml를 톨루엔 50ml에 묽혀 1시간에 걸쳐 투입한 후, 반응기의 온도를 60℃까지 분당 0.5℃의 속도로 올려 주었다. 반응 혼합물을 60℃에서 1시간 동안 유지한 다음, 교반을 멈추어 고체생성물이 침전되기를 기다려 상등액을 제거하고, 새로운 톨루엔 200ml를 사용하여 15분간 교반시킨 후 동일한 방법으로 1회 세척하였다.
상기의 사염화티타늄으로 처리된 고체생성물에 톨루엔 150ml를 첨가하여 온도를 30℃로 유지한 상태에서 250rpm으로 교반시키면서 사염화티타늄 50ml를 1시간에 걸쳐 일정한 속도로 투입하였다. 사염화티타늄의 투입이 완료되면, 디이소부틸프탈레이트 2.5ml를 투입하고, 반응기의 온도를 110℃까지 80분간에 걸쳐 일정한 속도로 올려 주었다(분당 1℃의 속도로 승온). 승온과정에서 반응기의 온도가 40℃와 60℃에 도달하였을 때 각각 디이소부틸프탈레이트 2.5ml를 추가로 투입하였다. 110℃에서 1시간 동안 유지한 다음 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 동일한 방법으로 1회 세척하였다. 여기에 톨루엔 150ml와 사염화티타늄 50ml를 투입하여 온도를 110℃까지 올려 1시간 동안 유지하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 노말헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 2.17중량%이었고, 건조된 생성물을 노말헥산에 현탁시킨 상태의 입자크기를 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정결과 평균 입자크기는 17.8㎛이었다.
[프로필렌 중합]
2리터 크기의 고압용 스테인레스제 반응기내에 상기의 촉매 5mg이 채워진 작은 유리관을 장착한 후, 반응기를 질소로 충분히 치환시켰다. 트리에틸알루미늄 3 mmol을 시클로헥실-메틸디메톡시실란 0.15mmol과 함께 투입하였다(여기에서, 시클로헥실-메틸디메톡시실란은 외부 전자공여체로서 사용됨). 이어서 수소 1000ml와 액체상태의 프로필렌 1.2L를 차례로 투입한 후 온도를 70℃까지 올리고 교반기를 작동시켜 내부에 장착되었던 유리관이 깨어져 중합이 시작되도록 하였다. 중합 개시 후 1시간이 경과하면, 반응기의 온도를 상온까지 떨어뜨리면서 밸브를 열어 반응기내부의 프로필렌을 완전히 탈기시켰다.
비교예 2
[구형 담체의 제조]
교반기와 오일히터, 냉각환류기가 장착된 5L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, N-브로모숙신이미드 5.5g, 금속마그네슘(평균입경 100㎛인 분말제품) 60g, 무수 에탄올 1000ml를 투입하고, 교반속도를 240rpm으로 작동하면서 반응기의 온도를 환류 상태인 75℃로 유지하였다. 약 5분이 경과하면 반응이 시작되면서 수소가 발생하므로, 발생되는 수소가 빠져 나가도록 반응기의 출구를 열린 상태로 두어 반응기에 압력을 상압으로 유지한다. 수소 발생이 끝나면 반응기 온도를 환류 상태인 75℃로 2시간 동안 유지하였다(숙성처리). 숙성처리가 끝난 후, 50℃에서 세정 1회당 노말헥산 2,000ml를 사용하여 결과물을 3회 세정하였다. 세정된 결과물을 흐르는 질소 하에서 24시간 동안 건조시켜 흐름성이 좋은 백색 분말상의 고체 생성물 264g(수율 94.0%)을 얻었다. 건조된 생성물의 입자크기 및 75㎛ 이상의 거대입자 함량을 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정결과 평균 입자크기는 17.1㎛이고, 거대입자 함량은 47.5중량%이었다.
[고체촉매성분의 제조]
질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 150ml와 상기에서 제조한 평균입경 17.1㎛인 구형이고, 입도분포지수가 0.81이고, 겉보기 밀도가 0.31g/cc인 디에톡시마그네슘 25g을 투입하고 10℃로 유지하였다. 사염화티타늄 25ml를 톨루엔 50ml에 묽혀 1시간에 걸쳐 투입한 후, 반응기의 온도를 60℃까지 분당 0.5℃의 속도로 올려 주었다. 반응 혼합물을 60℃에서 1시간 동안 유지한 다음, 교반을 멈추어 고체생성물이 침전되기를 기다려 상등액을 제거하고, 새로운 톨루엔 200ml를 사용하여 15분간 교반시킨 후 동일한 방법으로 1회 세척하였다.
상기의 사염화티타늄으로 처리된 고체생성물에 톨루엔 150ml를 첨가하여 온도를 30℃로 유지한 상태에서 250rpm으로 교반시키면서 사염화티타늄 50ml를 1시간에 걸쳐 일정한 속도로 투입하였다. 사염화티타늄의 투입이 완료되면, 디이소부틸프탈레이트 2.5ml를 투입하고, 반응기의 온도를 110℃까지 80분간에 걸쳐 일정한 속도로 올려 주었다(분당 1℃의 속도로 승온). 승온과정에서 반응기의 온도가 40℃와 60℃에 도달하였을 때 각각 디이소부틸프탈레이트 2.5ml를 추가로 투입하였다. 110℃에서 1시간 동안 유지한 다음 90℃로 온도를 내려 교반을 멈추고 상등액을 제 거하고, 추가로 톨루엔 200ml를 사용하여 동일한 방법으로 1회 세척하였다. 여기에 톨루엔 150ml와 사염화티타늄 50ml를 투입하여 온도를 110℃까지 올려 1시간 동안 유지하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 노말헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 2.10중량%이었고, 건조된 생성물을 노말헥산에 현탁시킨 상태의 입자크기를 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정결과 평균 입자크기는 17.6㎛이었다.
[프로필렌 중합]
2리터 크기의 고압용 스테인레스제 반응기내에 상기의 촉매 5mg이 채워진 작은 유리관을 장착한 후, 반응기를 질소로 충분히 치환시켰다. 트리에틸알루미늄 3 mmol을 시클로헥실-메틸디메톡시실란 0.15mmol과 함께 투입하였다(여기에서, 시클로헥실-메틸디메톡시실란은 외부 전자공여체로서 사용됨). 이어서 수소 1000ml와 액체상태의 프로필렌 1.2L를 차례로 투입한 후 온도를 70℃까지 올리고 교반기를 작동시켜 내부에 장착되었던 유리관이 깨어져 중합이 시작되도록 하였다. 중합 개시 후 1시간이 경과하면, 반응기의 온도를 상온까지 떨어뜨리면서 밸브를 열어 반응기내부의 프로필렌을 완전히 탈기시켰다.
비교예 3
[구형 담체의 제조]
교반기와 오일히터, 냉각환류기가 장착된 5L 크기의 초자반응기를 질소로 충분히 환기시킨 다음, N-브로모숙신이미드 5.5g, 금속마그네슘(평균입경 100㎛인 분말제품) 60g, 무수 에탄올 1000ml를 투입하고, 교반속도를 240rpm으로 작동하면서 반응기의 온도를 50℃로 유지하였다. 약 10분이 경과하면 반응이 시작되면서 수소가 발생하므로, 발생되는 수소가 빠져 나가도록 반응기의 출구를 열린 상태로 두어 반응기에 압력을 상압으로 유지하였다. 수소 발생이 끝나면 반응기 온도를 50℃로 2시간 동안 유지하였다. 다음으로, 온도를 환류 상태인 75℃로 올려서 2시간 동안 교반하였다. 숙성처리가 끝난 후, 50℃에서 세정 1회당 노말헥산 2,000ml를 사용하여 결과물을 3회 세정하였다. 세정된 결과물을 흐르는 질소 하에서 24시간 동안 건조시켜 흐름성이 좋은 백색 분말상의 고체 생성물 270g(수율 96.0%)을 얻었다. 건조된 생성물의 입자크기 및 75㎛ 이상의 거대입자 함량을 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정결과 평균 입자크기는 17.7㎛이고, 거대입자 함량은 38.1중량%이었다.
[고체촉매성분의 제조]
질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 150ml와 상기에서 제조한 평균입경 17.7㎛인 구형이고, 입도분포지수가 0.83이고, 겉보기 밀도가 0.30g/cc인 디에톡시마그네슘 25g을 투입하고 10℃로 유지하였다. 사염화티타늄 25ml를 톨루엔 50ml에 묽혀 1시간에 걸쳐 투입한 후, 반응기의 온도를 60℃까지 분당 0.5℃의 속도로 올려 주었다. 반응 혼합물을 60℃에서 1시간 동안 유지한 다음, 교반을 멈추어 고체생성물이 침전되기를 기다려 상등액을 제거하고, 새로운 톨루엔 200ml를 사용하여 15분간 교반시킨 후 동일한 방법으로 1회 세 척하였다.
상기의 사염화티타늄으로 처리된 고체생성물에 톨루엔 150ml를 첨가하여 온도를 30℃로 유지한 상태에서 250rpm으로 교반시키면서 사염화티타늄 50ml를 1시간에 걸쳐 일정한 속도로 투입하였다. 사염화티타늄의 투입이 완료되면, 디이소부틸프탈레이트 2.5ml를 투입하고, 반응기의 온도를 110℃까지 80분간에 걸쳐 일정한 속도로 올려 주었다(분당 1℃의 속도로 승온). 승온과정에서 반응기의 온도가 40℃와 60℃에 도달하였을 때 각각 디이소부틸프탈레이트 2.5ml를 추가로 투입하였다. 110℃에서 1시간 동안 유지한 다음 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 동일한 방법으로 1회 세척하였다. 여기에 톨루엔 150ml와 사염화티타늄 50ml를 투입하여 온도를 110℃까지 올려 1시간 동안 유지하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 노말헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 2.10중량%이었고, 건조된 생성물을 노말헥산에 현탁시킨 상태의 입자크기를 광투과법에 의해 레이저 입자분석기(Mastersizer X:Malvern Instruments사 제조)로 측정결과 평균 입자크기는 18.1㎛이었다.
[프로필렌 중합]
2리터 크기의 고압용 스테인레스제 반응기내에 상기의 촉매 5mg이 채워진 작은 유리관을 장착한 후, 반응기를 질소로 충분히 치환시켰다. 트리에틸알루미늄 3 mmol을 시클로헥실-메틸디메톡시실란 0.15mmol과 함께 투입하였다(여기에서, 시클 로헥실-메틸디메톡시실란은 외부 전자공여체로서 사용됨). 이어서 수소 1000ml와 액체상태의 프로필렌 1.2L를 차례로 투입한 후 온도를 70℃까지 올리고 교반기를 작동시켜 내부에 장착되었던 유리관이 깨어져 중합이 시작되도록 하였다. 중합 개시 후 1시간이 경과하면, 반응기의 온도를 상온까지 떨어뜨리면서 밸브를 열어 반응기내부의 프로필렌을 완전히 탈기시켰다.
이상의 실시예 1 내지 실시예 4 및 비교예 1 내지 비교예 3으로부터 얻어진 구형 담체내의 거대입자 함량, 촉매 활성 및 폴리머 겉보기 밀도를 표 1에 정리하였다.
여기에서, 촉매활성 및 겉보기 밀도(BD)는 다음과 같은 방법으로 결정하였다.
① 촉매활성(kg-PP/g-cat) = 중합체의 생성량(kg)÷촉매의 양(g)
② 겉보기 밀도(BD) = ASTM D1895에 의해 측정된 값
개시제 종류 거대입자함량
(중량%)
초기반응온도
(℃)
활성
(kg-PP/g-cat)
겉보기 밀도
(BD)
실시예 1 NCS 4.6 60 55.4 0.46
실시예 2 NCS 4.3 50 57.3 0.45
실시예 3 NCS 4.7 45 55.8 0.46
실시예 4 NCS 3.6 40 54.7 0.46
비교예 1 NCS 25.4 75 52.1 0.45
비교예 2 NBS 47.5 75 53.5 0.45
비교예 3 NBS 38.1 50 55.1 0.44
* NCS: N-클로로숙신이미드, NBS: N-브로모숙신이미드
* 거대입자: 사이즈 75㎛ 이상
상기 표 1에 나타난 바와 같이, 개시제로 NCS를 사용하고, 초기 반응온도를 40~60℃로 낮추어 반응시킨 실시예 1 내지 실시예 4의 경우, 온도를 75℃에서 반응한 비교예 1의 경우보다 현저하게 낮은 5중량% 미만의 거대입자 함량이 생성됨을 알 수 있다. 또한, 온도를 낮추어도 NBS를 개시제로 사용한 비교예 3의 경우, 30중량% 이상의 거대입자가 형성되어 개시제에 따라 거대입자의 생성량이 변함을 알 수 있다. 따라서, 실시예 1 내지 실시예 4와 같이, NCS를 사용하여 낮은 온도에서 만들어진 담체를 사용하여 제조한 프로필렌 중합용 고체 촉매조성물을 알킬알루미늄 및 외부 전자공여체와 혼합하여 올레핀의 중합에 사용하면, 활성이 기존의 촉매와 대비하여 동등 이상이며, 또한 상업 생산성에 크게 영향을 주는 겉보기 밀도도 기존의 촉매와 대비하여 우수한 올레핀 중합체를 고수율로 제조할 수 있다.

Claims (4)

  1. 개시제로서 N-클로로숙신이미드의 존재하에 금속 마그네슘과 알코올을, 초기 반응 온도 40~60℃에서 반응시킨 후, 온도를 높여 75~90℃에서 숙성시키는 것을 포함하는 것을 특징으로 하는 올레핀 중합 촉매용 디알콕시마그네슘 담체의 제조 방법.
  2. 제1항에 있어서, 상기 개시제의 사용량은 상기 금속 마그네슘 1중량부에 대하여 0.001~0.2중량부인 것을 특징으로 하는 올레핀 중합 촉매용 디알콕시마그네슘 담체의 제조 방법.
  3. 제1항 또는 제2항의 방법으로 제조된 올레핀 중합 촉매용 디알콕시마그네슘 담체와 티타늄할라이드 화합물 및 방향족 디에스테르계 내부 전자공여체를 접촉 반응시키는 것을 특징으로 하는 올레핀 중합 촉매의 제조 방법.
  4. 제3항의 방법으로 제조된 올레핀 중합 촉매와 알킬알루미늄 및 일반식 R2 mSi(OR3)4-m(여기에서, R2는 탄소수 1~10의 알킬기 또는 시클로알킬기, 또는 아릴기를 나타내며, R3은 탄소수 1~3의 알킬기이고, m은 1 또는 2이고, m이 2일 경우 2개의 R2기는 동일하거나 다를 수 있다)으로 표시되는 외부 전자공여체를 혼합 사용하여 올레핀을 중합하는 것을 특징으로 하는 올레핀 중합 방법.
KR1020090044778A 2009-05-22 2009-05-22 올레핀 중합 촉매용 디알콕시마그네슘 담체의 제조 방법, 이를 이용한 올레핀 중합 촉매의 제조 방법 및 이를 이용한 올레핀 중합 방법 KR101140112B1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020090044778A KR101140112B1 (ko) 2009-05-22 2009-05-22 올레핀 중합 촉매용 디알콕시마그네슘 담체의 제조 방법, 이를 이용한 올레핀 중합 촉매의 제조 방법 및 이를 이용한 올레핀 중합 방법
US12/686,734 US20100298509A1 (en) 2009-05-22 2010-01-13 Method of producing dialkoxymagnesium support for catalyst for olefin polymerization, method of producing catalyst for olefin polymerization using the same and method of polymerizing olefin using the same
JP2010011164A JP2010270300A (ja) 2009-05-22 2010-01-21 オレフィン重合触媒用ジアルコキシマグネシウム担体の製造方法、これを利用したオレフィン重合触媒の製造方法およびこれを利用したオレフィン重合方法
CN2010101159093A CN101891846A (zh) 2009-05-22 2010-02-09 用于烯烃聚合催化剂的二烷氧基镁载体的生产方法,烯烃聚合催化剂生产方法及烯烃聚合法
DE102010007743A DE102010007743A1 (de) 2009-05-22 2010-02-12 Verfahren zum Erzeugen eines Dialkoxymagnesiumträgers für einen Katalysator für Olefinpolymerisation, Verfahren zum Erzeugen eines Katalysators für Olefinpolymerisation unter Verwenden desselben und Verfahren zum Polymerisieren von Olefin unter Verwenden desselben
ITMI2010A000233A IT1398304B1 (it) 2009-05-22 2010-02-16 Procedimento di produzione di supporto di dialcossimagnesio per catalizzatore per la polimerizzazione di olefine, procedimento di produzione di catalizzatore per la polimerizzazione di olefine impiegante il medesimo e procedimento di polimerizzazione di olefine impiegante il medesimo.
FR1053544A FR2945810A1 (fr) 2009-05-22 2010-05-06 Procede de production d'un support dialcoxymagnesium pour un catalyseur destine a la polymerisation d'olefines, procede de production d'un catalyseur destine a la polymerisation d'olefines l'utilisant et procede de polymerisation d'une olefine l'utilisant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090044778A KR101140112B1 (ko) 2009-05-22 2009-05-22 올레핀 중합 촉매용 디알콕시마그네슘 담체의 제조 방법, 이를 이용한 올레핀 중합 촉매의 제조 방법 및 이를 이용한 올레핀 중합 방법

Publications (2)

Publication Number Publication Date
KR20100125849A KR20100125849A (ko) 2010-12-01
KR101140112B1 true KR101140112B1 (ko) 2012-04-30

Family

ID=43064519

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090044778A KR101140112B1 (ko) 2009-05-22 2009-05-22 올레핀 중합 촉매용 디알콕시마그네슘 담체의 제조 방법, 이를 이용한 올레핀 중합 촉매의 제조 방법 및 이를 이용한 올레핀 중합 방법

Country Status (7)

Country Link
US (1) US20100298509A1 (ko)
JP (1) JP2010270300A (ko)
KR (1) KR101140112B1 (ko)
CN (1) CN101891846A (ko)
DE (1) DE102010007743A1 (ko)
FR (1) FR2945810A1 (ko)
IT (1) IT1398304B1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954056B1 (ko) * 2007-12-12 2010-04-20 삼성토탈 주식회사 올레핀 중합 촉매용 구형 담체의 제조방법
WO2013051006A1 (en) * 2011-06-28 2013-04-11 Reliance Industries Ltd. Precursor for polyolefin catalyst
CN104045756B (zh) * 2013-03-13 2016-08-10 中国石油天然气股份有限公司 一种高密度聚乙烯共聚物及其制备和应用
CN104098818B (zh) * 2013-04-03 2016-07-06 中国石油天然气股份有限公司 一种高密度聚乙烯组合物及其制备和应用
KR102332083B1 (ko) * 2014-05-22 2021-11-26 릴라이언스 인더스트리즈 리미티드 형상 제어된 전구 촉매 및 이의 제조 공정
US10259896B2 (en) * 2014-05-22 2019-04-16 Reliance Industries Limited Shape controlled pro-catalyst and a single pot process for preparing the same
KR102178630B1 (ko) * 2018-12-20 2020-11-13 한화토탈 주식회사 프로필렌 중합용 고체 촉매 및 이를 이용한 블록 공중합체의 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100807895B1 (ko) * 2006-08-30 2008-02-27 삼성토탈 주식회사 올레핀 중합 촉매용 구형 담체의 제조방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720898B2 (ja) 1989-08-16 1995-03-08 コルコートエンジニアリング株式会社 球形で粒度分布の狭いマグネシウムアルコラートの合成方法
DE4000697A1 (de) 1990-01-12 1991-07-18 Huels Chemische Werke Ag Verfahren zur herstellung sphaerischer partikel von magnesiumalkoxid
US5162277A (en) * 1990-10-18 1992-11-10 Shell Oil Company Olefin polymerization catalyst
JP3772331B2 (ja) 1994-09-07 2006-05-10 日本曹達株式会社 マグネシウムエチラート球状微粒品の製造方法
US5955396A (en) * 1995-10-17 1999-09-21 Bp Amoco Corporation Morphology-controlled olefin polymerization catalyst formed from an emulsion
JP3926097B2 (ja) * 1999-12-15 2007-06-06 出光興産株式会社 マグネシウム化合物の製造方法、オレフィン重合触媒及びオレフィン重合体の製造方法
KR101088945B1 (ko) * 2001-11-01 2011-12-01 이데미쓰 고산 가부시키가이샤 올레핀 중합용 고체 촉매 성분, 올레핀 중합용 촉매 및올레핀 중합체의 제조방법
JP4123465B2 (ja) * 2001-11-01 2008-07-23 出光興産株式会社 オレフィン重合用固体触媒成分、オレフィン重合用触媒及びオレフィン重合体の製造方法
DE10352138A1 (de) * 2003-11-04 2005-06-16 Degussa Ag Sphärische Partikel
KR100874089B1 (ko) * 2007-04-25 2008-12-16 삼성토탈 주식회사 프로필렌 중합용 촉매의 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100807895B1 (ko) * 2006-08-30 2008-02-27 삼성토탈 주식회사 올레핀 중합 촉매용 구형 담체의 제조방법

Also Published As

Publication number Publication date
CN101891846A (zh) 2010-11-24
FR2945810A1 (fr) 2010-11-26
JP2010270300A (ja) 2010-12-02
ITMI20100233A1 (it) 2010-11-23
DE102010007743A1 (de) 2011-07-21
IT1398304B1 (it) 2013-02-22
KR20100125849A (ko) 2010-12-01
US20100298509A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
KR100874089B1 (ko) 프로필렌 중합용 촉매의 제조방법
KR101140112B1 (ko) 올레핀 중합 촉매용 디알콕시마그네슘 담체의 제조 방법, 이를 이용한 올레핀 중합 촉매의 제조 방법 및 이를 이용한 올레핀 중합 방법
KR100624027B1 (ko) 올레핀 중합 촉매용 구형 담체의 제조방법
EP3083723B1 (en) Catalyst system for polymerisation of an olefin
KR20100007076A (ko) 올레핀 중합 촉매용 구형 담체의 크기를 조절하는 방법
KR100807895B1 (ko) 올레핀 중합 촉매용 구형 담체의 제조방법
JP2008534730A (ja) 高い溶融流れ性を有するプロピレン重合体の製造方法
KR100822610B1 (ko) 올레핀 중합 촉매용 구형 담체의 제조방법
KR101262512B1 (ko) 올레핀 중합 촉매용 구형 담체의 제조방법 및 이를 이용한 고체 촉매 및 프로필렌 중합체 제조방법
KR101207622B1 (ko) 올레핀 중합 촉매용 구형 담체의 제조방법 및 이를 이용한 고체 촉매 및 프로필렌 중합체
KR101309457B1 (ko) 올레핀 중합 촉매용 구형 담체의 제조방법 및 이를 이용한 고체 촉매 및 프로필렌 중합체의 제조방법
KR101169861B1 (ko) 올레핀 중합 촉매용 구형 담체의 제조방법 및 이를 이용한 고체 촉매
KR100572616B1 (ko) 올레핀 중합용 고체촉매 및 그 제조방법
KR20090071718A (ko) 올레핀 중합 촉매용 구형 담체의 제조방법
KR100954056B1 (ko) 올레핀 중합 촉매용 구형 담체의 제조방법
KR100583629B1 (ko) 올레핀 중합 촉매용 구형 담체의 제조방법
JP2008518075A (ja) プロピレン重合用触媒およびこれを利用したプロピレンの重合方法
CN100400554C (zh) 用于丙烯聚合的催化剂组分及其催化剂
KR101491231B1 (ko) 올레핀 중합촉매용 구형 담체의 제조방법과 상기 담체를 이용한 고체 촉매 및 프로필렌 중합체
KR100612106B1 (ko) 프로필렌의 중합방법
KR20100058126A (ko) 프로필렌 중합체의 제조방법
KR100833777B1 (ko) 올레핀 중합 촉매용 구형 담체의 제조방법
CN116041218A (zh) 化合物及其制备方法和应用

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20090522

PA0201 Request for examination
AMND Amendment
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20110408

Patent event code: PE09021S01D

AMND Amendment
E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20111229

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20110408

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

J201 Request for trial against refusal decision
PJ0201 Trial against decision of rejection

Patent event date: 20120130

Comment text: Request for Trial against Decision on Refusal

Patent event code: PJ02012R01D

Patent event date: 20111229

Comment text: Decision to Refuse Application

Patent event code: PJ02011S01I

Appeal kind category: Appeal against decision to decline refusal

Decision date: 20120402

Appeal identifier: 2012101001094

Request date: 20120130

AMND Amendment
PB0901 Examination by re-examination before a trial

Comment text: Amendment to Specification, etc.

Patent event date: 20120227

Patent event code: PB09011R02I

Comment text: Request for Trial against Decision on Refusal

Patent event date: 20120130

Patent event code: PB09011R01I

Comment text: Amendment to Specification, etc.

Patent event date: 20110530

Patent event code: PB09011R02I

Comment text: Amendment to Specification, etc.

Patent event date: 20100122

Patent event code: PB09011R02I

B701 Decision to grant
PB0701 Decision of registration after re-examination before a trial

Patent event date: 20120402

Comment text: Decision to Grant Registration

Patent event code: PB07012S01D

Patent event date: 20120306

Comment text: Transfer of Trial File for Re-examination before a Trial

Patent event code: PB07011S01I

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20120418

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20120418

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20150303

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20150303

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20160329

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20160329

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20170329

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20170329

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20190325

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20190325

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20210322

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20220322

Start annual number: 11

End annual number: 11

PR1001 Payment of annual fee

Payment date: 20240327

Start annual number: 13

End annual number: 13