KR100925680B1 - Immersion type membrane filtration water treatment device using automatic water level control - Google Patents
Immersion type membrane filtration water treatment device using automatic water level control Download PDFInfo
- Publication number
- KR100925680B1 KR100925680B1 KR1020090042694A KR20090042694A KR100925680B1 KR 100925680 B1 KR100925680 B1 KR 100925680B1 KR 1020090042694 A KR1020090042694 A KR 1020090042694A KR 20090042694 A KR20090042694 A KR 20090042694A KR 100925680 B1 KR100925680 B1 KR 100925680B1
- Authority
- KR
- South Korea
- Prior art keywords
- membrane filtration
- filtration tank
- raw water
- tank
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D35/00—Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
- B01D35/02—Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/008—Control or steering systems not provided for elsewhere in subclass C02F
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/283—Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/40—Devices for separating or removing fatty or oily substances or similar floating material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5227—Processes for facilitating the dissolution of solid flocculants in water
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2315/00—Details relating to the membrane module operation
- B01D2315/06—Submerged-type; Immersion type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/18—Use of gases
- B01D2321/185—Aeration
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Water Treatment By Sorption (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
본 발명은 수위제동제어 수문을 이용한 저전력 침지식 막여과 관한 것으로, 더욱 상세하게는 원수가 유입되는 원수 유입관과; 상기 원수유입관(7)의 내부에 설치되어 원수의 부유물질을 필터링하는 스크린(8)과; 상기 스크린(8)에서 부유물질이 필터링된 원수를 응집시키기 위하여 응집제가 투입되는 응집제투입관과; 제 1막여과조(1)와 일 측에 인접하여 pH의 조절에 의해 응집효율을 향상시키는 응집조(11)와; 상기 응집조(11)와 일측에 인접하고 내부에 침지식분리막(15)이 설치되어 원수를 여과하는 제 1막여과조(1)와; 상기 제 1막여과조(1)와 일 측에 인접하고 내부에 침지식분리막(15)이 설치되어 제 1막여과조(1)로부터 이송된 원수를 정화하는 제 2막여과조(2)와; 상기 응집조(11)와 제 1막여과조(1) 그리고 제 1막여과조(1)와 제 2막여과조(2)의 인접한 벽면 상단에 설치되어 자연유하원리에 의해 원수를 이동시키는 수문과; 상기 제 1막여과조(1)와 제 2막여과조(2)와 각각 관으로 연결되어 여과펌프를 통해 막여과수(13)가 이동하는 활성탄탑(14)과; 제 2막여과조(2)의 하단부에 설치되어 운전 중에 농축된 미처리 원수를 배출하는 배출관(16);으로 구성되는 수위제동제어 수문을 이용한 저전력 침지식 관한 것이다.The present invention relates to a low-power submerged membrane filtration using a water level braking control sluice. A screen 8 installed inside the raw water inlet pipe 7 for filtering the suspended substances of raw water; A coagulant input pipe into which a coagulant is injected to agglomerate the raw water filtered by the suspended solids in the screen (8); An agglomeration tank 11 adjacent to one side of the first membrane filtration tank 1 to improve coagulation efficiency by adjusting pH; A first membrane filtration tank 1 adjacent to one side of the coagulation tank 11 and having an immersion type separation membrane 15 installed therein to filter raw water; A second membrane filtration tank (2) adjacent to one side of the first membrane filtration tank (1) and having an immersion type separation membrane (15) installed therein to purify raw water transferred from the first membrane filtration tank (1); A hydrologic gate installed at an upper wall of the condensing tank 11 and the first membrane filtration tank 1 and adjacent wall surfaces of the first membrane filtration tank 1 and the second membrane filtration tank 2 to move raw water by a natural runoff principle; An activated carbon tower 14 connected to the first membrane filtration tank 1 and the second membrane filtration tank 2 to move the membrane filtration water 13 through a filtration pump; Low power immersion type using a water level braking control hydrology consisting of; discharge pipe (16) installed at the lower end of the second membrane filtration tank (2) to discharge the untreated raw water concentrated during operation It is about.
이를 통해서, 기존의 침지식 고도정수처리 시스템의 침지식 막여과 공정에서 1단에서 2단으로의 원수공급을 펌프(pump)를 통해 이루어졌음에 비해서 본 발명은 응집조(11)와 막여과조 1단과 2단의 사이에 침지식 분리막 운전조건에 따라 통합자동제어장치에 연계되는 수위 자동제어 수문을 설치하고 선행기술의 펌프를 제거함으로써 펌프 설치로 발생되는 배관 등 초기투자비를 절감하고 펌프의 제거를 통한 소요부지면적을 최소화하고 유지관리비를 줄여 에너지 소비를 최적화할 수 있다. In this way, the raw water supply from the first stage to the second stage through the pump (pump) in the immersion membrane filtration process of the conventional immersion type advanced water purification treatment system is the coagulation tank 11 and the membrane filtration tank 1 According to the submerged membrane operating conditions, the water level automatic control gate connected to the integrated automatic control device is installed between the stages and the stage 2, and the pump of the prior art is removed to reduce the initial investment cost, such as piping generated by the pump installation, and to eliminate the pump. The energy consumption can be optimized by minimizing required land area and reducing maintenance costs.
Description
본 발명은 수위제동제어 수문을 이용한 저전력 침지식 막여과 정수처리장치에 관한 것으로서, 더욱 상세하게는 1단과 2단의 사이에 수위 자동제어 수문을 설치하고 선행기술의 펌프를 제거함으로써 펌프와 관련한 배관, 밸브, 유량계 등 초기투자비를 절감하고 펌프의 제거를 통한 소요부지면적을 최소화하고 유지관리비를 줄여 에너지 소비를 최적화할 수 있는 수위제동제어 수문을 이용한 저전력 침지식 막여과 정수처리장치에 관한 것이다.The present invention relates to a low-power submerged membrane filtration water purification apparatus using a water level braking control sluice, and more particularly, a pipe related to a pump by installing an automatic water level control sluice between the first and second stages and removing the pump of the prior art. The present invention relates to a low-power submerged membrane filtration water purification system using a water level braking control hydrology that can reduce initial investment costs such as valves, flowmeters, etc., minimize the required land area by eliminating pumps, and optimize energy consumption by reducing maintenance costs.
침지막 분리막은 가압식 분리막에 사용되는 압력용기 없이 수조 내에 직접 침지시켜 사용하기 때문에, 분리막 시스템에 대한 별도의 공간이 필요 없고, 여과펌프의 진공압에 의해 처리량만큼만 흡입하는 방식이어서 외부순환식에 비해 부지면적과 동력비가 적게 드는 장점이 있으나 다수의 펌프를 사용하여 전력비용과 설치장소에 제약이 있다. 자연유하 방식에 의한 막여과조 운전은 동력비를 줄이고 초기투자비를 절감할 수 있는 장점이 있는 반면, 취수원과 막여과 정수처리장치가 중력식 자연유하 원리를 적용하기 위해서는 중력식 단계별 인공구조물을 형성하는 방법과 자연 지형을 이용하는 방법이 있다. Since the immersion membrane is directly immersed in the water tank without the pressure vessel used for the pressure separation membrane, there is no need for a separate space for the membrane system, and the suction membrane is sucked only as much as the throughput by the vacuum pressure of the filtration pump. Although it has the advantage of low land area and power cost, there are limitations on power cost and installation location using multiple pumps. Membrane filtration operation using the natural flow method has the advantage of reducing the power cost and initial investment cost, while the intake source and the membrane filtration water treatment system can be applied to form the artificial structure by gravity type in order to apply the principle of gravity natural discharge. There is a way to use the terrain.
중력식 인공구조물의 경우 일반적으로 취수원에서 착수정까지 펌프에 의한 이송이 요구되며 인공구조물로 인해 유지관리비는 절감되는 반면 초기투자비가 증가된다. 자연지형을 이용하는 경우 취수원이 일반적으로 저지대에 있기 때문에 기술의 적용이 제한적이고 착수정까지 펌프에 의한 이송이 요구되며 시스템 설치에 있어 많은 제약이 수반된다. Gravity man-made structures generally require pumping from the intake source to the landing well, and the man-made structure reduces maintenance costs while increasing initial investment. In case of using the natural topography, since the water source is generally in the lowlands, the application of the technology is limited, transfer of the pump to the landing well is required, and a lot of restrictions are attached to the system installation.
막여과 정수처리장치가 일반적으로 설치되는 평지 조건에서 각 반응조의 수위조절과 막여과 운전에 따른 수문 개폐제어에 의해 자연유하 방식을 구현함으로써 펌프 대신에 수위 자동제어 수문을 설치하여 자연유하 원리를 이용하여 초기투자비를 개선하고 에너지 소비를 최소화하여 유지관리비를 최적화하여 할 수 있다.In the flat condition where membrane filtration water treatment system is generally installed, the natural flow method is implemented by adjusting the water level of each reactor and controlling the water gate opening and closing according to membrane filtration operation. By improving the initial investment cost and minimizing energy consumption, the maintenance cost can be optimized.
본 발명은 수위제동제어 수문을 이용한 저전력 침지식 막여과 정수처리장치에 관한 것으로서, 기존의 고도정수처리장치의 단점을 개선하기 위하여 응집조(11)와 막여과조사이 그리고 제 1막여과조(1)와 제 2막여과조(2)사이에 수문을 장치하여 자연유하 원리를 이용하여 펌프를 설치함으로써 발생할 수 있는 관련 배관비용을 최소화하고 소요부지면적을 줄여 초기 투자비를 절감할 수 있으며 에너지 소비를 최소화하여 유지관리비까지도 줄일 수 있는 수위제동제어 수문을 이용한 저전력 침지식 막여과 정수처리장치를 제공하는 데 있다.The present invention relates to a low power immersion type membrane filtration water purification apparatus using a water level braking control hydrology, in order to improve the disadvantages of the existing high water treatment system, a coagulation tank (11), a membrane filtration irradiation, and a first membrane filtration tank (1). By installing a water gate between the membrane and the second membrane filtration tank (2), it is possible to minimize the related pipe cost that can be caused by installing the pump using the natural flow principle, reduce the required land area, reduce the initial investment cost, and minimize the energy consumption. The present invention is to provide a low power immersion membrane filtration water treatment device using a water level braking control gate that can reduce maintenance costs.
본 고안은 상기의 기술적 과제를 해결하기 위해서, 원수가 유입되는 원수 유입관과 상기 원수유입관(7)의 내부에 설치되어 원수의 부유물질을 필터링하는 스크린(8)과 상기 스크린(8)에서 부유물질이 필터링된 원수를 응집시키기 위하여 응집제가 투입되는 응집제투입관과 제 1막여과조(1)와 일측에 인접하여 pH의 조절에 의해 응집효율을 향상시키는 응집조(11)와 상기 응집조(11)와 일측에 인접하고 내부에 침지식분리막(15)이 설치되어 원수를 여과하는 제 1막여과조(1)와 상기 제 1막여과조(1)와 일측에 인접하고 내부에 침지식분리막(15)이 설치되어 제 1막여과조(1)로부터 이송된 원수를 정화하는 제 2막여과조(2)와 상기 응집조(11)와 제 1막여과조(1) 그리고 제 1막여과조(1)와 제 2막여과조(2)의 인접한 벽면 상단에 설치되어 자연유하 원리에 의해 원수를 이동시키는 수문과 상기 제 1막여과조(1)와 제 2막여과조(2)와 각각 관으로 연결되어 여과펌프를 통해막여과수(13)가 이동하는 활성탄탑(14)과 제 2막여과조(2)의 하단부에 설치되어 운전 중에 농축된 미처리 원수를 배출하는 배출관(16)으로 구성되는 수위제동제어 수문을 이용한 저전력 침지식 막여과장치를 통해서 해결할 수 있다.In order to solve the above technical problem, the present invention is installed in the raw water inlet pipe and the raw water inlet pipe (7), the
또한, 원수에 응집제를 투입하는 단계와 상기 투입된 응집제와 혼화하기 전에 큰 부유입자를 스크린(8)을 통해 필터링하는 단계와 원수와 응집제를 인라인혼화기(17)에서 혼화하는 단계와 상기 인라인혼화기(17) 및 제 1막여과조(1)의 사이의 응집조(11)를 통해 pH의 조절에 의해 응집효율을 향상시키며 응집시키는 단계와 제 1막여과조(1)에서 원수가 분리막을 통과하며 부유물질을 여과하고 1단 여과펌프(5)를 통해 막여과조의 원수를 강제로 흡입하여 활성탄탑(14)으로 이송시키는 단계와 상기 제 1막여과조(1)와 제 2막여과조(2) 사이에 수문을 설치하여 제 1막여과조(1)에서 미처리된 부유물질이 일부 농축된 미처리 원수를 유입관을 통해 제 2막여과조(2)로 중력에 의한 자연유하 원리로 이송되는 단계와 상기 제 1막여과조(1)와 인접한 제 2막여과조(2)를 통해 미처리 원수를 여과하고 2단 여과펌프(6)를 통해 침지식 분리막을 가지고 분리막과 활성탄탑(14)을 연통시키고 막여과조의 원수를 강제로 흡입하여 활성탄탑(14)으로 이송시키는 단계와 상기 원수의 흐름을 역으로 하여 침지식분리막(15)에 붙을 수 있는 흡착부유물을 탈리시키는 역세단계와 상기 제 2막여과조(2)의 하단부에 형성된 배출관(16)으로 일정 농축 미처리 원수를 배출하는 배출단계와 상기 활성탄탑(14)으로 모아진 원수를 마지막으로 활성탄탑(14)에 적용된 입상활성탄 여과장치를 통해 소독하고 정화하여 공급하는 단계로 구성되는 수위제동제어 수문을 이용한 저전력 침지식 막여과방법을 통해서 해결할 수 있다.In addition, the step of injecting the flocculant into the raw water, the step of filtering the large suspended particles through the screen (8) before mixing with the introduced flocculant, the step of mixing the raw water and the flocculant in the inline mixer 17 and the inline mixer The coagulation efficiency is improved by adjusting the pH through the coagulation tank 11 between the 17 and the first
기존의 고도정수처리장치의 단점을 개선하기 위하여 제 1막여과조(1)와 제 2막여과조(2)사이에 수문을 장치하여 자연유하 원리를 이용하여 펌프를 설치함으로써 발생할 수 있는 관련 배관비용을 최소화하고 소요부지면적을 줄여 초기 투자비를 절감할 수 있으며 에너지 소비 최소화하여 유지관리비까지도 줄일 수 있다. In order to improve the shortcomings of the existing advanced water treatment system, the water pipe is installed between the first membrane filtration tank (1) and the second membrane filtration tank (2) to reduce the related piping cost which may be caused by installing the pump using the natural flow principle. The initial investment can be reduced by minimizing and reducing the required area, and maintenance costs can be reduced by minimizing energy consumption.
상기에서 상술한 과제해결수단을 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 구체적으로 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 장치들의 구성도이다.1 is a block diagram of devices of the present invention.
원수가 유입되는 원수 유입관과 상기 원수유입관(7)의 내부에 설치되어 원수의 부유물질을 필터링하는 스크린(8)과 상기 스크린(8)에서 부유물질이 필터링된 원수를 응집시키기 위하여 응집제가 투입되는 응집제투입관과 제 1막여과조(1)와 일측에 인접하여 pH의 조절에 의해 응집효율을 향상시키는 응집조(11)와 상기 응집조(11)와 일측에 인접하고 내부에 침지식분리막(15)이 설치되어 원수를 여과하는 제 1막여과조(1)와 상기 제 1막여과조(1)와 일측에 인접하고 내부에 침지식분리막(15)이 설치되어 제 1막여과조(1)로부터 이송된 원수를 정화하는 제 2막여과조(2)와 상기 응집조(11)와 제 1막여과조(1) 그리고 제 1막여과조(1)와 제 2막여과조(2)의 인접한 벽면 상단에 설치되어 자연유하 원리에 의해 원수를 이동시키는 수문과 상기 제 1막여과조(1)와 제 2막여과조(2)와 각각 관으로 연결되어 여과펌프를 통해막여과수(13)가 이동하는 활성탄탑(14)과 제 2막여과조(2)의 하단부에 설치되어 운전 중에 농축된 미처리 원수를 배출하는 배출관(16)과 제 1막여과조(1)와 제 2막여과조(2)의 하단에 설치되어 분리막의 흡착 부유물을 탈리시키는 산기관(12)으로 구성된다.A coagulant is installed inside the raw water inflow pipe and the raw water inflow pipe 7 through which raw water is introduced to filter the suspended solids of the raw water, and the flocculant to agglomerate the filtered raw water from the
상기의 장치를 통해서 원수가 유입관을 통하여 공급되어질 때 스크린(8)을 통하여 큰 부유입자를 1차적으로 필터링을 한다. 필터링과 동시에 응집제를 투입한다. 투입된 원수와 응집제는 응집효율을 증가시키기 위하여 인라인혼화기(17)를 통과시켜 미세입자가 큰 입자로 응집되게 한다. 인라인혼화기(17)를 통하여 믹싱되어 응집된 혼합물은 다시 응집조(11)로 이송되어 교반에 의해 응집되게 한다. When raw water is supplied through the inlet pipe through the above apparatus, large suspended particles are primarily filtered through the
응집조(11)에 의해 응집된 원수는 이어서 상단부에 설치된 수문#1(3)에 의해 제 1막여과조(1)로 이동하게 된다. 자연유하의 원리를 이용하여 중력에 의하여 자연스럽게 이동을 도모한다.The raw water aggregated by the coagulation tank 11 is then moved to the first
제 1막여과조(1)로 이동한 원수는 제 1막여과조(1)에서 여과펌프를 통해 침지식 분리막을 이용하여 부유물질을 여과하고 산기관(12)을 통해 분리막 하단에 공기를 공급하여 분리막의 흡착 부유물을 탈리시키는 단계를 거치게 된다.The raw water moved to the first
또한, 상기의 제 1막여과조(1)에서 부유물질이 농축된 미처리 원수는 수문#2(4)를 통하여 제 2막여과조(2)로 이송되어 처리되는데 제 1막여과조(1)와 제 2막여과조(2) 사이에는 수위레벨센서에 연계된 수위자동조절 수문#2(4)를 설치하여 기존의 선행기술들과 달리 자연유하의 원리를 이용하여 중력에 의하여 자연스럽게 이송된다. 이를 통해서 관련배관 비용을 최소화하고 소요부지면적을 최소화하여 초기 투자비를 절감하고 에너지의 소비를 줄여 유지관리비를 절감할 수 있다. 본 발명은 높은 농도의 제 2막여과조(2)의 내부 농축수를 배출관(16)을 통하여 전체 유입원수의 2~3볼륨%의 범위 내에서 배출하여 장치의 운전을 안정적으로 유지할 수 있다.In addition, the raw water in which the suspended solids are concentrated in the first
마지막으로 제 1막여과조(1)와 제 2막여과조(2)에서 여과된 원수는 활성탄탑(14)을 거쳐 미량의 유기성 유해물질을 처리한 후 소독과정을 거쳐서 공급한다.Finally, the raw water filtered in the first membrane filtration tank (1) and the second membrane filtration tank (2) is supplied through the activated carbon tower 14 after treatment with a small amount of organic harmful substances through disinfection.
본 발명은 수문의 설치를 통해서 기존의 전기에너지를 이용한 펌프를 대체하여 자연유하의 원리를 이용하여 중력에너지를 통해 별도의 에너지원의 필요없이 응집조(11)와 제 1막여과조(1)와 제 2막여과조(2) 사이에 수문의 유입관을 통해 이송되도록 하였다. 상기의 수문은 본 발명의 여과 및 역세 운전조건에서 수위레벨센서에 연동되어 MMI(Man Machine Interface)에 의해 수문개폐가 자동제어된다.The present invention is to replace the conventional pump using the electric energy through the installation of the hydrology using the principle of the natural load through the gravity energy without the need of a separate energy source coagulation tank 11 and the first membrane filtration tank (1) and The second membrane filtration tank (2) was to be transferred through the inlet pipe of the hydrologic. The sluice gate is interlocked with the water level sensor in the filtration and backwashing operation conditions of the present invention, the sluice gate is automatically controlled by the MMI (Man Machine Interface).
상기의 MMI(Man Machine Interface)는 HMI(Man Machine Interface)라고도 불리며 사람과 기계의 대화를 도와주는 장치 또는 기능을 두고 MMI라고 말하는데 PLC, NC등과 통신하면서 기계를 조작하고, 그 상태를 파악하도록 보여주거나 기록하고, 경고하는 등의 기능을 갖는 컴퓨터 및 프로그램과 주변장치를 통틀어 MMI라 한다. 이를 통해서 여과시 자연유하 원리를 이용하기 위해 수문을 자동적으로 조절하고 역세시 상승된 수위 이상으로 응집조(11)로의 역류가 방지되도록 응집조(11)에서 수문의 Open 수위 결정하고 이와 연계된 막여과조 Open 수위는 응집조(11)와 이와 연계된 막여과조 수문의 Open 수위보다 낮게 설정하고 조절한다.The MMI (Man Machine Interface) is also called HMI (Man Machine Interface), and it is called MMI with a device or function that helps people and machines to communicate with each other. Computers, programs, and peripherals with functions of giving, recording, and warning are referred to as MMI. Through this, the water gate is automatically adjusted to use the natural flow principle during filtration and the open water level is determined in the coagulation tank 11 so as to prevent backflow into the coagulation tank 11 above the elevated level during backwashing. The open water level of the filtration tank is set and adjusted to be lower than the open water level of the coagulation tank 11 and the associated membrane filtration gate.
도 2는 본 발명의 실제 3D 입체 구조물이다. 2 is a real 3D solid structure of the present invention.
본 발명에 설치되는 수문을 조절하기 위해서 수문개폐핸들을 설치하여 자연 유하의 원리를 이용하는데 수위 레벨센서 뿐만 아니라 수동으로도 수문개폐핸들을 조절하여 이송하게 된다.In order to adjust the water gate installed in the present invention by installing the water gate opening and closing handles to use the principle of natural flow, as well as the water level level sensor to manually control the water gate opening and closing handle.
본 발명은 기존의 다른 기술과 달리 자연유하의 원리를 이용하는데 특별한 지형조건의 구애됨 없이 일반적인 지형에서 적용할 수 있다. 또한, 인공적인 구조물을 이용한 중력식 여과장치의 경우는 취수원부터 별도의 장비와 구조물이 필요해서 초기비용이 많이 들지만 본 발명은 한 장소에서 여과공정이 가능하고 자연유하원리를 이용함에도 별도의 장치의 필요없이 이용할 수 있도록 하고 초기에 별도의 부지가 필요 없어 초기투자비를 개선하고 에너지 소비를 최소화하여 유지관리비를 최적화하여 할 수 있다.Unlike other existing technologies, the present invention can be applied to general terrain without using any special terrain conditions in using the principle of natural inheritance. In addition, in the case of a gravity filtration device using an artificial structure requires a separate equipment and structure from the intake source, the initial cost is high, but the present invention can be filtered in one place and the need for a separate device even when using the natural discharge principle It can be used without any cost and no additional site is required at the beginning, so it is possible to optimize the maintenance cost by improving the initial investment cost and minimizing the energy consumption.
하기의 실시 예를 통해서 본 발명의 기술을 구체화하였다.The embodiment of the present invention is embodied through the following examples.
<실시예><Example>
서울시 구의정수장 내 침지식 막여과 정수처리시설에서 운영되는 처리용량 550/day 규모의 파일럿 설비의 플럭스(flux)는 1단 분리막 0.90 /day, 2단 분리막 0.45 /day이다. 여과 및 역세주기는 15분/30초로 유지세정은 1일 1회 수행된다. The flux of the pilot plant with a processing capacity of 550 / day operating in the immersion membrane filtration water treatment facility in Guui water purification plant in Seoul is 0.90 / day for the first stage and 0.45 / day for the two stage. The filtration and backwash cycles are 15 minutes / 30 seconds and the maintenance wash is performed once a day.
막여과 정수처리장치는 통합자동제어장치 로직에 의한 MMI(Man Machine Interface)에 의해 제어되며 각 유량은 막여과조 내 설치된 수위레벨센서에 의해 감지된다. 감지된 수위조절센서에 의해 정세, 역세 그리고 유지세정시 MMI에 연동된 수위조절이 수문에 의해 수행된다. The membrane filtration water treatment system is controlled by the MMI (Man Machine Interface) by the integrated automatic controller logic. Each flow rate is detected by the water level sensor installed in the membrane filtration tank. The hydrostatic level is linked to the MMI during cleaning, backwashing and maintenance by the sensed water level sensor.
1. 수문의 운전조건1. Operating conditions of floodgate
2.운전방법2. How to operate
인공구조물에 의해 형성된 중력식 자연유하 방식이 아닌 막여과 일반 구조물 내에서 중력식 자연유하 원리를 적용하기 위해 수문 #1(3)의 Open 수위는 1단 역세시 상승된 90 mm를 고려하여 2650 mm로 수위로 결정되었으며 응집조(11)로의 역류가 방지된다. 수문 #2(4)의 Open 수위는 1단 막여과조 low level 수위인 2490 mm와 2단 막여과조 high level 수위인 2400 mm 사이에서 결정된다. 수문 #1(3)과 수문 # 2(4)의 close 수위는 유지세정시 상승하는 수두가 1단의 경우 유지세정시 상승하는 수위 360 mm와 1단 막여과조 high level 수위인 2550 mm를 고려한 3000 mm로 설정되었다. 정세 15분과 역세 30초에 따라 수문의 개폐가 수위레벨센서에 의해 침지식 막여과 통합자동제어장치의 MMI에 연계되어 작동된다. 따라서 수문의 여닫이 구조물의 작동방향은 일반적인 수문의 작동방향과는 다르게 아래에서 위로 운전된다. In order to apply the gravity natural loading principle within the membrane filtration general structure, not the gravity natural loading formed by the artificial structure, the open water level of the sluice # 1 (3) is 2650 mm, considering the 90 mm increased during the first stage backwashing. Is determined and backflow into the coagulation bath 11 is prevented. The open level of sluice # 2 (4) is determined between 2490 mm, the low level of the first stage membrane, and 2400 mm, the high level of the two stage membrane. The close water level of sluice # 1 (3) and sluice # 2 (4) is 3000 considering water level rising at the time of maintenance cleaning in
3. 운전조건에 따른 전력소모량 분석(550톤/일, 구의 정수장)3. Analysis of power consumption according to operating conditions (550 tons / day, gu water purification plant)
* 자동제어 산기방식은 기존 연속산기방식과 간헐 산기방식을 혼합한 방식으로 저탁도 운전기간에는 간헐 산기방식을 적용하고 고탁도 운전기간에는 연속산기방식을 적용하는 분리막 공기세정기술임.* The automatic controlled diffuser method is a mixture of the existing continuous diffuser method and intermittent diffuser method. It is a separator air cleaning technology that applies the intermittent diffuser method during low turbidity operation period and the continuous diffuser type during high turbidity operation period.
영등포 막여과 정수장 2,500 /d 기준으로 기존 연속 산기방식 적용시보다 자동제어 산기방식과 저낙차 중력식 수문제어 적용했을 때 최종적으로 1150 kWh/일이 절감되어 에너지 소비를 최소화할 수 있는 것으로 측정되었다.Based on the Yeongdeungpo Membrane Filtration Plant's 2,500 / d standard, the automatic control and low drop gravitational hydrophobic system were applied to the 2,500 / d standard, resulting in a 1150 kWh / day reduction.
도 1은 본 발명의 장치들의 구성도1 is a block diagram of devices of the present invention
도 2는 본 발명의 실제 장치 도면2 is an actual device diagram of the present invention.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
1 : 제 1막여과조1: 1st membrane filtration tank
2 : 제 2막여과조2: 2nd membrane filtration tank
3 : 수문 #13:
4 : 수문 #2 4:
5 : 1단 여과펌프5: 1 stage filtration pump
6 : 2단 여과펌프6: two stage filtration pump
7 : 원수유입관7: raw water inflow pipe
8 : 스크린8: screen
9 : 응집제 투입관9: flocculant injection tube
10 : pH 조정10: pH adjustment
11 : 응집조11: coagulation tank
12 : 산기관12: diffuser
13 : 막여과수13: membrane filter
14 : 활성탄탑14: activated carbon tower
15 : 침지식분리막15: immersion membrane
16 : 배출관16: discharge pipe
17 : 인라인혼화기17: in-line admixture
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090042694A KR100925680B1 (en) | 2009-05-15 | 2009-05-15 | Immersion type membrane filtration water treatment device using automatic water level control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090042694A KR100925680B1 (en) | 2009-05-15 | 2009-05-15 | Immersion type membrane filtration water treatment device using automatic water level control |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100925680B1 true KR100925680B1 (en) | 2009-11-11 |
Family
ID=41561368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090042694A Active KR100925680B1 (en) | 2009-05-15 | 2009-05-15 | Immersion type membrane filtration water treatment device using automatic water level control |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100925680B1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101091089B1 (en) * | 2011-08-29 | 2011-12-09 | 김규태 | Self-Powered Water Purifier |
KR101199583B1 (en) * | 2010-05-24 | 2012-11-12 | 한국전력기술 주식회사 | Equipment for treating waste water using integrated membrane-clarification system |
KR101223247B1 (en) * | 2010-10-27 | 2013-01-17 | (주)대우건설 | Integrated sewage disposal device for removing total phosphorus in treated sewage |
KR101309990B1 (en) | 2012-03-19 | 2013-09-24 | 주식회사 동양매직 | Water treatment apparatus comprising settling membrane separation tank and water treatment method using thereof |
CN104118952A (en) * | 2014-07-08 | 2014-10-29 | 清华大学 | Sewage synchronous coagulation-adsorption-membrane condensation recycling pretreatment device and method |
KR101522254B1 (en) * | 2013-06-17 | 2015-05-21 | 코웨이 주식회사 | Two stage membrane filtration system having flexible recovery ratio and operation method thereof |
KR20160085982A (en) | 2015-01-08 | 2016-07-19 | 코웨이엔텍 주식회사 | Membrane filtration for advanced water treatment device using hydraulic head differential |
KR20170002095A (en) | 2015-06-29 | 2017-01-06 | 코웨이엔텍 주식회사 | Membrane filtration for advanced water treatment device using hydraulic head differential and method for dynamic pressure conttrolling the same |
KR20170002094A (en) | 2015-06-29 | 2017-01-06 | 코웨이엔텍 주식회사 | Membrane filtration for advanced water treatment device using hydraulic head differential and method for flow conttrolling the same |
KR101770792B1 (en) * | 2013-12-30 | 2017-09-05 | 김성일 | Sewage and wastewater purification system |
KR101926111B1 (en) * | 2015-11-16 | 2018-12-06 | 주식회사 싸이토젠 | Method for recovering target cell |
CN111320304A (en) * | 2020-03-17 | 2020-06-23 | 海口海关技术中心 | A kind of laboratory oil waste liquid treatment equipment |
CN117263429A (en) * | 2023-09-22 | 2023-12-22 | 威海智洁环保技术有限公司 | Membrane method water treatment device and method based on ultrafiltration membrane and efficient cleaning method of ultrafiltration membrane component |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200295835Y1 (en) | 2002-08-26 | 2002-11-22 | 대한통운 주식회사 | Nature flowing and dipping type membrane separation system |
JP2004261711A (en) | 2003-02-28 | 2004-09-24 | Yoshikimi Watanabe | Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method |
KR100843656B1 (en) | 2007-05-16 | 2008-07-03 | 주식회사 한화건설 | Advanced Water Treatment System using Two-Stage Immersion Membrane |
-
2009
- 2009-05-15 KR KR1020090042694A patent/KR100925680B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200295835Y1 (en) | 2002-08-26 | 2002-11-22 | 대한통운 주식회사 | Nature flowing and dipping type membrane separation system |
JP2004261711A (en) | 2003-02-28 | 2004-09-24 | Yoshikimi Watanabe | Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method |
KR100843656B1 (en) | 2007-05-16 | 2008-07-03 | 주식회사 한화건설 | Advanced Water Treatment System using Two-Stage Immersion Membrane |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101199583B1 (en) * | 2010-05-24 | 2012-11-12 | 한국전력기술 주식회사 | Equipment for treating waste water using integrated membrane-clarification system |
KR101223247B1 (en) * | 2010-10-27 | 2013-01-17 | (주)대우건설 | Integrated sewage disposal device for removing total phosphorus in treated sewage |
KR101091089B1 (en) * | 2011-08-29 | 2011-12-09 | 김규태 | Self-Powered Water Purifier |
KR101309990B1 (en) | 2012-03-19 | 2013-09-24 | 주식회사 동양매직 | Water treatment apparatus comprising settling membrane separation tank and water treatment method using thereof |
KR101522254B1 (en) * | 2013-06-17 | 2015-05-21 | 코웨이 주식회사 | Two stage membrane filtration system having flexible recovery ratio and operation method thereof |
KR101770792B1 (en) * | 2013-12-30 | 2017-09-05 | 김성일 | Sewage and wastewater purification system |
CN104118952B (en) * | 2014-07-08 | 2015-12-09 | 清华大学 | Sewage Synchronous Coagulation-Adsorption-Membrane Concentration Recycling Pretreatment Device and Method |
CN104118952A (en) * | 2014-07-08 | 2014-10-29 | 清华大学 | Sewage synchronous coagulation-adsorption-membrane condensation recycling pretreatment device and method |
KR20160085982A (en) | 2015-01-08 | 2016-07-19 | 코웨이엔텍 주식회사 | Membrane filtration for advanced water treatment device using hydraulic head differential |
KR20170002095A (en) | 2015-06-29 | 2017-01-06 | 코웨이엔텍 주식회사 | Membrane filtration for advanced water treatment device using hydraulic head differential and method for dynamic pressure conttrolling the same |
KR20170002094A (en) | 2015-06-29 | 2017-01-06 | 코웨이엔텍 주식회사 | Membrane filtration for advanced water treatment device using hydraulic head differential and method for flow conttrolling the same |
KR101926111B1 (en) * | 2015-11-16 | 2018-12-06 | 주식회사 싸이토젠 | Method for recovering target cell |
CN111320304A (en) * | 2020-03-17 | 2020-06-23 | 海口海关技术中心 | A kind of laboratory oil waste liquid treatment equipment |
CN117263429A (en) * | 2023-09-22 | 2023-12-22 | 威海智洁环保技术有限公司 | Membrane method water treatment device and method based on ultrafiltration membrane and efficient cleaning method of ultrafiltration membrane component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100925680B1 (en) | Immersion type membrane filtration water treatment device using automatic water level control | |
KR20160029272A (en) | a simple structured wastewater treatment system using multi step aerating floation method and the wastewater treatment method | |
KR100843656B1 (en) | Advanced Water Treatment System using Two-Stage Immersion Membrane | |
US8431027B2 (en) | Dissolved air flotation system with bubble separation system and method of use | |
KR20160032067A (en) | a simple structured wastewater treatment system using multi step aerating floation method and the wastewater treatment method | |
CN106881319A (en) | The plastic box purging system and its method of work of a kind of sewage zero-discharge | |
KR101261839B1 (en) | Treatment system for side stream | |
CN201240961Y (en) | Apparatus for processing PVC waste water by catalytic oxidation | |
CN108002639A (en) | Integrated form integration ecological water factory | |
CN104860447A (en) | Novel wet-process flue gas desulfurization wastewater treatment system | |
CN205501073U (en) | Papermaking wastewater treatment system | |
CN101481183A (en) | Efficient precipitation and purification bed | |
CN204384990U (en) | A kind of recirculated cooling water lime soften for sewage clarification filtration treatment system | |
CN208732860U (en) | Sewage disposal system containing active dye printing | |
CN106007040A (en) | Heavy metal wastewater treatment system and method | |
WO2024076248A1 (en) | Low maintenance, gravity powered enhanced coagulation systems | |
CN102616991B (en) | Method and equipment for sewage treatment by means of biochemical pressurized dissolved air flotation | |
CN115925152A (en) | Membrane chemical reaction equipment, coal mine water defluorination treatment system and process | |
KR20200018905A (en) | Small-sacle waterworks system | |
CN114314947A (en) | A kind of desulfurization wastewater treatment system and method | |
KR100816714B1 (en) | Advanced drinking water treatment | |
CN106861257A (en) | Continuous raw streaming active sand filtration treatment device and filter method | |
CN113716827A (en) | Be applicable to cold area row muddy water processing integrated system | |
CN208135985U (en) | A kind of electroplating sewerage processing system | |
CN204874103U (en) | Novel wet flue gas desulfurization effluent disposal system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20090515 |
|
PA0201 | Request for examination | ||
A302 | Request for accelerated examination | ||
PA0302 | Request for accelerated examination |
Patent event date: 20090518 Patent event code: PA03022R01D Comment text: Request for Accelerated Examination Patent event date: 20090515 Patent event code: PA03021R01I Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20090807 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20091023 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20091102 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20091102 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20121031 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20121031 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20131021 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20131021 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20141030 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20141030 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20151019 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20151019 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20161102 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20161102 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20171102 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20171102 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20181101 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20181101 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20191031 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20191031 Start annual number: 11 End annual number: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20201102 Start annual number: 12 End annual number: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20221102 Start annual number: 14 End annual number: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20231030 Start annual number: 15 End annual number: 15 |
|
PR1001 | Payment of annual fee |
Payment date: 20241104 Start annual number: 16 End annual number: 16 |