KR100806681B1 - Method for producing high conductivity zinc oxide by periodic rapid heat treatment - Google Patents
Method for producing high conductivity zinc oxide by periodic rapid heat treatment Download PDFInfo
- Publication number
- KR100806681B1 KR100806681B1 KR1020060085630A KR20060085630A KR100806681B1 KR 100806681 B1 KR100806681 B1 KR 100806681B1 KR 1020060085630 A KR1020060085630 A KR 1020060085630A KR 20060085630 A KR20060085630 A KR 20060085630A KR 100806681 B1 KR100806681 B1 KR 100806681B1
- Authority
- KR
- South Korea
- Prior art keywords
- zinc oxide
- thin film
- zno
- substrate
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000000737 periodic effect Effects 0.000 title claims abstract description 20
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 title claims description 98
- 239000011787 zinc oxide Substances 0.000 title claims description 49
- 238000010438 heat treatment Methods 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000000758 substrate Substances 0.000 claims abstract description 39
- 239000010409 thin film Substances 0.000 claims abstract description 33
- 239000011521 glass Substances 0.000 claims abstract description 7
- 229910052738 indium Inorganic materials 0.000 claims abstract description 6
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 5
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910052796 boron Inorganic materials 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 238000002844 melting Methods 0.000 abstract description 8
- 230000008018 melting Effects 0.000 abstract description 8
- 238000004151 rapid thermal annealing Methods 0.000 abstract description 3
- 238000000137 annealing Methods 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 abstract 2
- 238000000151 deposition Methods 0.000 description 10
- 239000002019 doping agent Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 230000004913 activation Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000007669 thermal treatment Methods 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 230000005355 Hall effect Effects 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/086—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
-
- H01L21/203—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
도 1a는 본 발명의 일실시예를 설명하기 위한 공정도이다.1A is a flowchart illustrating an embodiment of the present invention.
도 1b는 본 발명의 주기적 급속 열처리(PRTA)방식을 설명하기 위한 모식도이다.Figure 1b is a schematic diagram for explaining the periodic rapid heat treatment (PRTA) method of the present invention.
도 2는 본 발명의 일실시예에 따른 온도별 주기적 급속 열처리(PRTA)가 가해진 산화아연 박막의 결정성의 변화를 도시한 도면이다.FIG. 2 is a view illustrating a change in crystallinity of a zinc oxide thin film subjected to periodic rapid thermal treatment (PRTA) for each temperature according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 온도별 주기적 급속 열처리(PRTA)가 가해진 산화아연 박막의 전기적 특성의 변화를 도시한 도면이다.3 is a view showing a change in the electrical properties of the zinc oxide thin film subjected to the periodic rapid thermal treatment (PRTA) for each temperature according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 온도별 주기적 급속 열처리(PRTA)가 가해진 산화아연 박막의 전기적 특성의 변화를 도시한 도면이다.4 is a view showing a change in the electrical properties of the zinc oxide thin film subjected to the periodic rapid thermal treatment (PRTA) for each temperature according to an embodiment of the present invention.
본 발명은 주기적 급속 열처리에 의한 고전도성 산화아연의 제조방법에 관한 것이다.The present invention relates to a method for producing highly conductive zinc oxide by periodic rapid heat treatment.
현재 널리 사용 중인, ITO(indium tin oxide)는 주원료인 인듐(In)의 재료비, 소자열화, 불안정성 등에 기인하는 많은 문제점을 가지고 있으며, 그리하여 알루미늄(Al), 인듐(In), 갈륨(Ga) 등의 3족 금속원소를 산화아연(ZnO)에 도핑하여 사용하는 방법의 연구가 진행되고 있다. 이들은 기존의 투명전극에 비하여 저가의 제조가 가능하고 내구성과 열적 안정성을 가지며 특성 조절을 쉽게 할 수 있기 때문에 LCD, OLED 등의 디스플레이 전극과 태양전지 등으로의 응용을 위한 연구가 이루어지고 있다. 인듐(In)을 도핑한 IZO(ZnO:In)의 경우에는 이미 ITO를 대신하여 TFT-LCD의 투명전극으로 쓰이고 있다. Currently in use, indium tin oxide (ITO) has many problems due to material cost, device deterioration, instability, etc. of indium (In), the main raw material, and thus aluminum (Al), indium (In), gallium (Ga), etc. A study of a method of doping zinc oxide (ZnO) with a Group 3 metal element is underway. Since they can be manufactured at a lower cost than conventional transparent electrodes, have durability and thermal stability, and can easily control characteristics, research for application to display electrodes such as LCD, OLED, and solar cells is being made. In the case of IZO (ZnO: In) doped with indium (In), it is already used as a transparent electrode of a TFT-LCD instead of ITO.
이들 연구에 대한 공정을 잠시 살펴보면, 이미 3족 원소들이 도핑되어 있는 ZnO 타겟을 사용하여 증착하거나 ZnO 타겟과 3족 원소 타겟을 따로 사용하여 동시에 증착하는 방법을 사용하기도 한다. For a moment, the process for these studies may be deposited using a ZnO target already doped with Group 3 elements, or simultaneously deposited using a ZnO target and a Group 3 element target separately.
특성향상을 위한 방법으로, 주로 후처리로 열처리를 사용하며, 증착단계에서 도핑농도를 조절하거나 Ar:O2 비율을 조절하거나, 기판의 온도를 높게 올리기도 한다. 물론, 다른 성분의 첨가 없이 낮은 비저항을 갖는 ZnO 박막을 제조하는 것도 가능하지만, 이 박막이 대기 중에 노출되면 표면과 결정립계에 과다 산소 흡착으로 인해 시간에 따라 비저항이 급격히 커지는 특성을 가지기 때문에 전극 등에 실제로 응용하기에는 문제가 있는 것으로 알려져 있으며, 따라서 주로 금속원소를 도핑하는 방법을 사용하고 있다. As a method for improving the characteristics, heat treatment is mainly used as a post-treatment, and the doping concentration is controlled during the deposition step, the Ar: O 2 ratio is adjusted, or the temperature of the substrate is increased. Of course, it is also possible to produce a ZnO thin film having a low resistivity without adding other components.However, when the thin film is exposed to the air, the resistivity increases rapidly with time due to excessive oxygen adsorption on the surface and grain boundaries. It is known that there is a problem in the application, and therefore, mainly doping the metal element is used.
그러나, 도핑된 금속원소의 활성화를 위해 적용되는 열처리 온도가 매우 높은 편이므로 낮은 녹는점을 갖는 기판을 사용시에는 증착단계에서 파라미터를 조절하여 박막의 특성을 개선시킬 수 밖에 없다. However, since the heat treatment temperature applied for the activation of the doped metal element is very high, when using a substrate having a low melting point, it is inevitable to improve the properties of the thin film by adjusting parameters in the deposition step.
즉, 한국등록특허 제0421800호는 도판트 활성화를 위하여 고온에서 열처리를 시행하고 있기 때문에 상용 유리 기판을 비롯한 낮은 온도의 녹는점을 갖는 기판을 사용하기에는 어려운 단점을 가지고 있다. That is, Korean Patent No. 0421800 has a disadvantage in that it is difficult to use a substrate having a low melting point, including a commercial glass substrate, because the heat treatment is performed at a high temperature to activate the dopant.
또한, 일부 문헌(High electron concentration and mobility in Al-doped n-ZnO epilayer achieved via dopant activation using rapid-thermal annealing, Kyoung-Kook Kim, Shigeru Niki, Jin-Yong Oh, June-O Song, Tae-Yeon Seong, Seong-Ju Park, Shizuo Fujita, Sang-Woo Kim, JAP97(2005)066103)에는 기판에 증착된 산화아연 박막에 3족 원소를 도핑한 후, 800 ∼ 900 ℃에 가까운 높은 온도의 열처리를 실시하여 캐리어농도의 증가, 비저항의 감소, 그리고 결정성을 향상시킨 기술을 개시하고 있다. 즉, 도판트를 활성화하기 위해서는 800 ∼ 900 ℃에 가까운 높은 온도의 열처리를 실시할 경우 보다 전기적, 광학적, 결정학적으로 좋은 특성을 얻어낼 수 있다. In addition, some literatures have reported high electron concentration and mobility in Al-doped n-ZnO epilayer achieved via dopant activation using rapid-thermal annealing, Kyoung-Kook Kim, Shigeru Niki, Jin-Yong Oh, June-O Song, Tae-Yeon Seong , Seong-Ju Park, Shizuo Fujita, Sang-Woo Kim, JAP97 (2005) 066103) doped a group III element to a zinc oxide thin film deposited on a substrate, followed by heat treatment at a high temperature close to 800-900 ° C. Techniques for increasing carrier concentration, decreasing resistivity, and improving crystallinity are disclosed. That is, in order to activate the dopant, when the heat treatment at a high temperature close to 800 to 900 ° C. is performed, better electrical, optical, and crystallographic properties can be obtained.
그러나, 상기와 같이 높은 열처리 온도는 유리 기판을 사용하고 있는 실제 평판 디스플레이에 적용하기에는 너무 높은 온도이며, 이렇게 높은 열처리 온도는 여러 가지 기판을 사용하는데 제한적인 요인이다. However, such a high heat treatment temperature is too high to be applied to an actual flat panel display using a glass substrate, and such a high heat treatment temperature is a limiting factor in using various substrates.
이에, 본 발명의 발명자들은 상기한 문제점을 해결하기 위하여 연구노력한 결과, 도너형성을 위한 원소가 도핑된 산화아연 박막을 일정 온도를 유지하면서 펄스형식으로 반복하여 고온을 인가하는 주기적 급속 열처리(PRTA)를 수행할 경우 저온의 열처리로도 지속적인 고온 열처리에 의한 효과를 얻을 수 있으며, 기존의 지속적인 고온 열처리법을 적용할 경우보다 기판에 손상을 주지 않으면서도 상기 도핑된 원소가 효과적으로 활성화되어 전기적, 광학적, 결정학적 특성 및 전도성이 향상된 산화아연을 제조할 수 있음을 알게되어 본 발명을 완성하였다.Therefore, the inventors of the present invention have made efforts to solve the above problems, the periodic rapid heat treatment (PRTA) to repeatedly apply a high temperature in the form of pulse while maintaining a constant temperature of the element-doped zinc oxide thin film for donor formation In the case of performing the low temperature heat treatment, it is possible to obtain the effect of the continuous high temperature heat treatment, and the doped element is effectively activated without damaging the substrate than the conventional high temperature heat treatment method. It was found that zinc oxide with improved crystallographic properties and conductivity can be prepared to complete the present invention.
즉, 본 발명에 의하면 고온 열처리에 의한 기존의 공정에 비해 기판에 열손상을 주지 않으면서도 고온에서 열처리시 얻을 수 있는 전도성이 향상되는 등의 우수한 특성의 산화아연을 제조할 수 있으므로, 녹는점에 제한없이 다양한 기판을 사용할 수 있는 효과를 동시에 얻을 수 있다.That is, according to the present invention, it is possible to produce zinc oxide having excellent properties such as improved conductivity obtained during heat treatment at a high temperature without causing thermal damage to the substrate compared to the existing process by high temperature heat treatment. The effect that various substrates can be used without limitation can be obtained at the same time.
따라서, 본 발명은 녹는점이 낮으면서 저렴한 기판의 사용이 가능하면서 높은 전도성을 갖는 산화아연의 제조가 가능하도록 개선된 주기적 급속 열처리에 의한 고전도성 산화아연의 제조방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for producing highly conductive zinc oxide by periodic rapid heat treatment, which enables the use of an inexpensive substrate having a low melting point and enabling the production of zinc oxide having high conductivity.
본 발명은 도너 형성용 원소가 도핑된 산화아연계 박막을,The present invention is a zinc oxide thin film doped with a donor forming element,
0 ∼ 500 ℃ 범위의 베이스 온도 조건을 유지하면서 500 ∼ 1000 ℃ 범위의 피크 온도를 반복적으로 인가하여 열처리하는 과정을 포함하여 이루어지는 고전도 성 산화아연의 제조방법을 그 특징으로 한다.Characterized by a method for producing a highly conductive zinc oxide comprising the step of repeatedly applying a heat treatment by applying a peak temperature in the range of 500 to 1000 ℃ while maintaining the base temperature conditions in the range of 0 to 500 ℃.
이하, 본 발명의 산화아연의 제조방법을 구체적으로 설명하면 다음과 같다.Hereinafter, the method for producing zinc oxide of the present invention will be described in detail.
본 발명은 도너형성을 위한 원소가 도핑된 산화아연 박막을 주기적 급속 열처리(Pulsed Rapid Thermal Annealing, PRTA)에 의하여 도판트를 활성화시킴으로써, 산화아연의 전기적, 광학적, 결정학적 특성이 향상된 투명한 전도성 산화아연을 제조할 수 있으며, 기판의 제한 없이 낮은 온도의 녹는점을 갖는 기판의 사용을 가능하게 하는 고전도성 산화아연의 제조방법에 관한 것이다.The present invention provides a transparent conductive zinc oxide having improved electrical, optical and crystallographic properties of zinc oxide by activating a dopant of a zinc oxide thin film doped with an element for donor formation by pulsed rapid thermal annealing (PRTA). The present invention relates to a method for producing highly conductive zinc oxide, which enables the use of a substrate having a low melting point without limiting the substrate.
본 발명의 고전도성 산화아연의 제조방법은, 기판에 산화하연 박막을 증착시킨 후 도너형성을 위한 원소를 도판트로서 도핑하고, 상기 도판트의 활성화를 위해 저온의 베이스 온도 조건을 유지하면서 고온의 피크 온도를 펄스형식으로 반복적으로 인가함으로써 기판의 손상을 억제하면서 산화아연의 전기적, 광학적, 결정학적 특성 및 전도성 등의 특성을 향상시킨데 그 기술상의 특징이 있다.In the method of manufacturing a highly conductive zinc oxide of the present invention, after depositing a thin zinc oxide thin film on a substrate, the doping element for the donor formation as a dopant, and the high temperature while maintaining a low base temperature conditions for the activation of the dopant By repeatedly applying the peak temperature in the form of pulse, it is possible to suppress damage to the substrate while improving the electrical, optical, crystallographic and conductivity characteristics of zinc oxide.
이하 본 발명의 고전도성 산화아연의 제조방법을 각 과정별로 구체적으로 설명한다.Hereinafter, the manufacturing method of the highly conductive zinc oxide of the present invention will be described in detail for each process.
먼저, 기판에 도너형성을 위한 도판트가 도핑된 산화아연 박막을 증착한다.First, a zinc oxide thin film doped with a dopant for donor formation is deposited on a substrate.
상기 산화아연의 증착은 공지된 다양한 박막 형성 방식, 예를 들면, 전자빔 증착기, 스퍼터링(sputtering) 방식, PVD(physical vapor deposition), CVD(chemical vapor deposition), PLD(plasma laser deposition), 열증착기(thermal evaporator), 이중형의 열증착기(dual-type thermal evaporator) 등에 의하여 형성할 수 있으며, 증착온도는 통상 상온 ∼ 500 ℃ 범위 내에서 수행되고, 반응기 내의 압력은 대기압 내지 수십 밀리 토르(mtorr) 정도에서 수행된다.The deposition of the zinc oxide is a variety of known thin film formation methods, for example, electron beam evaporator, sputtering method, physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma laser deposition (PLD), thermal evaporator ( thermal evaporator, dual-type thermal evaporator, etc., and the deposition temperature is usually performed in the range of room temperature to 500 ° C., and the pressure in the reactor is between atmospheric pressure and tens of millitorr. Is performed.
이를 도 1a로 나타낸 일 구현예를 참고하여 설명하면, 기판을 증착장비에 장입하여 도너형성을 목적으로 하는 원소가 미량 첨가되어 있는 타겟으로부터 n형 산화아연 박막을 증착한다(F1). 이 때, 기판은 녹는점에 제한없이 당업계에서 통상적으로 사용하는 소재의 기판을 선택할 수 있으며, 특히 기존의 경우와는 달리 600 ℃ 이하의 녹는점을 가지는 기판도 제한없이 모두 사용가능하다.1A, the n-type zinc oxide thin film is deposited from a target containing a small amount of an element for donor formation by charging a substrate into a deposition apparatus (F1). At this time, the substrate can be selected of the substrate of the material commonly used in the art without limitation, melting point, in particular, unlike the conventional case, all substrates having a melting point of less than 600 ℃ can be used without limitation.
상기 도너 형성용 원소는 도너 형성을 위하여 사용되는 모든 원소를 사용할 수 있으며, 구체적으로 원소주기율표상 3족 금속원소인 알루미늄(Al), 갈륨(Ga), 인듐(In), 붕소(B) 등 3족 원소 중에서 선택된 것을 사용할 수 있다.The donor-forming element may be any element used for donor formation, and specifically, aluminum (Al), gallium (Ga), indium (In), boron (B), etc. One selected from the group elements can be used.
상기한 도판트의 도핑은 도핑된 타겟(target)을 이용하거나, 산화아연의 증착단계에서 동시에 도핑하거나, 산화아연을 증착 후 도핑 하는 등 다양한 방법을 선택할 수 있으며, 바람직하기로는 3족 원소가 도핑된 타겟을 사용하여 박막을 증착하는 방법을 선택하는 것이 좋다.The doping of the dopant may be performed using a doped target, simultaneously doping in the deposition step of zinc oxide, or doping after depositing zinc oxide, and a variety of methods may be selected. It is a good idea to choose a method of depositing thin films using the targeted targets.
도판트를 활성화시키기 위하여 급속열처리 장치에 산화아연 박막이 증착된 기판을 장입시키고 주기적 급속 열처리(PRTA) 공정을 수행한다(도 1a의 F2). In order to activate the dopant, a substrate on which a zinc oxide thin film is deposited is charged into a rapid heat treatment apparatus, and a periodic rapid heat treatment (PRTA) process is performed (F2 in FIG. 1A).
상기 주기적 급속 열처리(PRTA)는 수행되며, 0 ∼ 500 ℃ 범위에서 저온의 베이스 온도 조건을 유지하며, 주기적으로 펄스형식으로 500 ∼ 1000 ℃ 범위의 고온 피크 온도를 인가하는 방식으로 수행된다. 도 1b는 본 발명의 주기적 급속 열처리(PRTA) 방식의 일구현예를 나타낸 모식도이다.The periodic rapid heat treatment (PRTA) is performed, maintaining a low base temperature condition in the range of 0 ~ 500 ℃, it is performed by applying a high temperature peak temperature in the range of 500 ~ 1000 ℃ in a pulse form periodically. Figure 1b is a schematic diagram showing an embodiment of the periodic rapid heat treatment (PRTA) method of the present invention.
즉, 주기적 급속 열처리(PRTA) 공정은 0 ∼ 500 ℃ 범위의 베이스 온도를 수 초 내지 수시간 동안, 바람직하기로는 5 ∼ 300초간 유지하며, 이어서 유지되는 베이스 온도에서 펄스형식으로 500 ∼ 1000 ℃ 범위의 피크 온도를 수초 내지 수분간, 바람직하기로는 0.001 ∼ 30 초간 가하는 열처리 주기를 1회로 하며, 이러한 주기를 1회에서 수백회, 바람직하기로는 1 ∼ 100 회 이내로 반복 수행한다.That is, the periodic rapid heat treatment (PRTA) process maintains a base temperature in the range of 0 to 500 ° C. for several seconds to several hours, preferably 5 to 300 seconds, followed by 500 to 1000 ° C. in a pulse form at the maintained base temperature. The heat treatment cycle of adding a peak temperature of several seconds to several minutes, preferably 0.001 to 30 seconds is performed once, and the cycle is repeatedly performed within one to several hundred times, preferably within 1 to 100 times.
상기와 같은 본 발명에 의하면 유리 기판과 같은 값싼 기판을 사용하여 높은 전도성을 갖는 투명전도성 박막의 제작이 가능하므로 디스플레이의 투명전극과 같은 곳으로의 응용이 가능하다. 또한, 열처리를 낮은 온도에서 실시 가능하므로 열적, 비용적 측면에서 높은 효율을 얻을 수 있다.According to the present invention as described above it is possible to manufacture a transparent conductive thin film having a high conductivity by using an inexpensive substrate such as a glass substrate it is possible to apply to a transparent electrode of the display. In addition, the heat treatment can be performed at a low temperature it is possible to obtain a high efficiency in terms of thermal and cost.
이하, 본 발명을 실시예에 의거하여 구체적으로 설명하겠는 바, 본 발명이 다음 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the following Examples.
실시예Example ..
상온에서 알루미늄이 2 중량% 도핑된 산화아연을 타겟으로 하는 고주파 마그네트론 스퍼터링을 사용하여, 베이스 압력은 5 × 10-6 torr까지 진공을 확보하였고, 20 mtorr의 순수 아르곤 분위기를 만든 후, 고주파를 기판과 타겟 사이에 인가하여 플라즈마를 생성하였으며, 기판온도는 상온, 타겟과 기판과의 거리는 5 cm로 유지하는 조건으로 유리 기판 위에 n형 산화아연을 증착하였다.Using high frequency magnetron sputtering targeting 2 wt% aluminum oxide doped zinc at room temperature, the base pressure was maintained to 5 × 10 -6 torr, and a 20 mtorr pure argon atmosphere was created. The plasma was generated by applying between and the target, and n-type zinc oxide was deposited on the glass substrate under the condition that the substrate temperature was maintained at room temperature and the distance between the target and the substrate was 5 cm.
상기 알루미늄이 도핑된 산화아연 박막을 주기적 급속 열처리(PRTA) 튜브에 장입하고, 질소 분위기를 유지하면서 300 ℃의 베이스 온도를 2분간 유지 후, 650 ℃의 피크 온도를 3 ∼ 7초간 인가하고, 다시 300 ℃의 베이스 온도를 2분간 유지 후 750 ℃의 피크 온도를 3 ∼ 7초간 인가하는 주기적 열처리를 수행하였다.The aluminum oxide-doped zinc oxide thin film was charged into a periodic rapid heat treatment (PRTA) tube, the base temperature of 300 ° C. was maintained for 2 minutes while maintaining a nitrogen atmosphere, and then a peak temperature of 650 ° C. was applied for 3 to 7 seconds. After maintaining the base temperature of 300 ° C. for 2 minutes, a periodic heat treatment was performed to apply a peak temperature of 750 ° C. for 3 to 7 seconds.
상기와 같이 제조된 본 발명의 고전도성 산화아연 박막을 XRD와 홀 효과 측정을 통해 분석된 결정성과 전기적 특성을 도 2와 도 3에 각각 도시하였다.Crystalline and electrical characteristics of the highly conductive zinc oxide thin film of the present invention prepared as described above through XRD and Hall effect measurements are shown in FIGS. 2 and 3, respectively.
도 2를 참조하면 각 기판들은 c축으로 배향된 면을 가지며 주기적 급속 열처리(PRTA)가 가해짐에 따라 결정성이 점점 좋아지고 있음을 알 수 있다. 이는 저온의 베이스 온도(300 ℃)를 유지하면서 짧은 시간동안 피크 온도(650 ∼ 750 ℃)를 통해 기존의 기속적인 높은 열처리 온도가 아닌 저온에서도 결정립 성장을 촉진 시켜 결정학적 특성이 향상됨을 알 수 있다. Referring to FIG. 2, each substrate has a surface oriented in the c-axis, and it can be seen that the crystallinity is gradually improved as the periodic rapid heat treatment (PRTA) is applied. It can be seen that the crystallographic characteristics are improved by promoting the grain growth at low temperature, not the existing high thermal annealing temperature, through the peak temperature (650 ~ 750 ℃) for a short time while maintaining a low base temperature (300 ℃). .
도 3 및 도 4는 각 기판들의 전기적 특성을 나타낸 것으로, 초기 증착된 산화아연은 n형을 나타내며, 3.06 × 1019 cm-3의 캐리어 농도와 1.40 ㎠V-1s-1의 이동도를 나타내었다. 주기적 급속 열처리에 따라 각 기판들의 전기적 특성은 급격히 변화하였다. 각각 캐리어 농도는 300 ℃ 에서는 3.76 × 1019 cm-3, 300 - 650 ℃[베이스 온도- 피크 온도] 에서는 8.26 × 1019 cm-3, 300 - 750 ℃[베이스 온도- 피크 온도] 에서는 5.27 × 1019 cm-3의 값을 보였다. 홀(Hall)의 이동도는 300 ℃에서는 1.63 ㎠V-1s-1, 300 - 650 ℃[베이스 온도- 피크 온도] 에서는 2.37 ㎠V-1s-1, 300 - 750 ℃[베이스 온도- 피크 온도]에서는 3.60 ㎠V-1s-1 의 값을 보였다. 또한 초기 증착된 산화아연의 비저항은 낮아지는 경향을 보였다.3 and 4 show the electrical characteristics of each substrate, the initial deposited zinc oxide is n-type, showed a carrier concentration of 3.06 × 10 19 cm -3 and mobility of 1.40 cm 2 V-1 s-1 . The electrical characteristics of the substrates changed drastically with periodic rapid heat treatment. Carrier concentrations were 3.76 × 10 19 cm -3 and 300-650 ℃ [300-650 ℃ [base temperature-peak temperature] 8.26 × 10 19 cm -3 and 300-750 ℃ [base temperature-peak temperature] 5.27 × 10 respectively. The value was 19 cm -3 . The mobility of the Hall is 1.63 cm 2 V-1s-1 at 300 ° C. and 300-650 ° C. [base temperature-peak temperature] 2.37 cm 2 V-1s-1, 300-750 ° C. [base temperature-peak temperature] Showed a value of 3.60 cm 2 V-1 s -1. In addition, the resistivity of zinc oxide deposited initially tended to be lower.
이때, 주기적 급속 열처리(PRTA)가 행하여진 모든 기판에는 어떠한 손상도 없었으며, n형 전기적 특성을 갖는 산화아연 박막은 300 ℃를 베이스온도로 하여 750 ℃를 순간적으로 인가하는 주기적 급속 열처리(PRTA)를 통하여 낮은 온도에서 초기 증착된 n형 산화아연에 비하여 훨씬 좋은 전기적 특성과 결정성을 갖는 산화아연을 얻을 수 있었다. At this time, all the substrates subjected to the periodic rapid heat treatment (PRTA) did not have any damage, and the zinc oxide thin film having n-type electrical characteristics was subjected to the periodic rapid heat treatment (PRTA) which instantaneously applied 750 ° C. at 300 ° C. as the base temperature. The zinc oxide having much better electrical properties and crystallinity was obtained than the n-type zinc oxide initially deposited at low temperature.
상술한 바와 같이, 본 발명에 의하면 증착된 n형의 산화아연 박막은 낮은 온도에서 도판트의 활성화를 가능하게 하여 높은 전도성과 결정성을 갖는 산화아연 박막으로 쉽게 전환시킬 수 있다.As described above, according to the present invention, the deposited n-type zinc oxide thin film enables activation of the dopant at a low temperature and can be easily converted into a zinc oxide thin film having high conductivity and crystallinity.
이러한 본 발명에 의하면 녹는점이 낮은 유리 기판과 같은 값싼 기판을 사용하여 높은 전도성을 갖는 투명전도성 박막의 제작이 가능하므로 디스플레이의 투명전극과 같은 곳으로의 응용이 가능하다. According to the present invention, it is possible to manufacture a transparent conductive thin film having high conductivity by using an inexpensive substrate such as a glass substrate having a low melting point, thereby enabling application to a transparent electrode of a display.
또한, 열처리를 낮은 온도에서 실시 가능하므로 열적, 비용적 측면에서 높은 효율을 얻을 수 있다.In addition, the heat treatment can be performed at a low temperature it is possible to obtain a high efficiency in terms of thermal and cost.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060085630A KR100806681B1 (en) | 2006-09-06 | 2006-09-06 | Method for producing high conductivity zinc oxide by periodic rapid heat treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060085630A KR100806681B1 (en) | 2006-09-06 | 2006-09-06 | Method for producing high conductivity zinc oxide by periodic rapid heat treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100806681B1 true KR100806681B1 (en) | 2008-02-26 |
Family
ID=39383093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060085630A Expired - Fee Related KR100806681B1 (en) | 2006-09-06 | 2006-09-06 | Method for producing high conductivity zinc oxide by periodic rapid heat treatment |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100806681B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100999501B1 (en) | 2008-09-04 | 2010-12-09 | 한국전자통신연구원 | Method of manufacturing a metal-doped transparent conductive oxide thin film and a thin film transistor using the same |
CN101985741A (en) * | 2009-07-29 | 2011-03-16 | 中国科学院福建物质结构研究所 | Method for improving conductivity of indium-doped zinc oxide transparent conductive film |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1070077A (en) | 1996-07-24 | 1998-03-10 | Internatl Business Mach Corp <Ibm> | Polycrystalline silicon growth method by pulsed rapid thermal annealing. |
KR100421800B1 (en) | 2001-04-02 | 2004-03-10 | 한국과학기술연구원 | Method of manufacturing zinc oxide semiconductor |
KR100524815B1 (en) | 2002-11-23 | 2005-10-31 | 학교법인 한양학원 | Formation of Polycrystalline Silicon Thin Film using Field Aided Rapided Thermal Annealing(FARTA) |
-
2006
- 2006-09-06 KR KR1020060085630A patent/KR100806681B1/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1070077A (en) | 1996-07-24 | 1998-03-10 | Internatl Business Mach Corp <Ibm> | Polycrystalline silicon growth method by pulsed rapid thermal annealing. |
KR100421800B1 (en) | 2001-04-02 | 2004-03-10 | 한국과학기술연구원 | Method of manufacturing zinc oxide semiconductor |
KR100524815B1 (en) | 2002-11-23 | 2005-10-31 | 학교법인 한양학원 | Formation of Polycrystalline Silicon Thin Film using Field Aided Rapided Thermal Annealing(FARTA) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100999501B1 (en) | 2008-09-04 | 2010-12-09 | 한국전자통신연구원 | Method of manufacturing a metal-doped transparent conductive oxide thin film and a thin film transistor using the same |
CN101985741A (en) * | 2009-07-29 | 2011-03-16 | 中国科学院福建物质结构研究所 | Method for improving conductivity of indium-doped zinc oxide transparent conductive film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gomez et al. | Gallium-doped ZnO thin films deposited by chemical spray | |
Song et al. | Rapid thermal annealing of ITO films | |
US20070184573A1 (en) | Method of making a thermally treated coated article with transparent conductive oxide (TCO) coating for use in a semiconductor device | |
US7989072B2 (en) | Coated article with transparent conductive oxide film doped to adjust Fermi level, and method of making same | |
Xu et al. | Laser annealing effect on optical and electrical properties of Al doped ZnO films | |
Jeong et al. | Study on the doping effect of Li-doped ZnO film | |
Huang et al. | Influence of deposition parameters and annealing treatment on the properties of GZO films grown using rf magnetron sputtering | |
Hsu et al. | Effect of deposition parameters and annealing temperature on the structure and properties of Al-doped ZnO thin films | |
Yusof et al. | Fabrication and characterization of copper doped zinc oxide by using Co-sputtering technique | |
KR100806681B1 (en) | Method for producing high conductivity zinc oxide by periodic rapid heat treatment | |
KR101582200B1 (en) | A method for preparing CZTS thin film for solar cell | |
CN113005412A (en) | Preparation method of ITO film for silicon heterojunction battery | |
Aliyu et al. | High quality indium tin oxide (ITO) film growth by controlling pressure in RF magnetron sputtering | |
Ikhmayies et al. | Electrical and optical properties of ZnO: Al thin films prepared by the spray pyrolysis technique | |
CN102212780B (en) | Method for preparing p-type cadmium sulfide film | |
CN109082631A (en) | A kind of Ga2O3Base transparent conducting film and preparation method thereof | |
Lee et al. | Thermal stability of hydrogen-doped AZO thin films for photovoltaic applications | |
CN103774098B (en) | Tin monoxide textured film and preparation method thereof | |
KR20100085769A (en) | Cds/cdte thin film solar cells and manufacturing method thereof | |
KR100733915B1 (en) | Transparent conductive oxide film in which buffer layer is deposited on polymer material substrate and manufacturing method thereof | |
KR20120071100A (en) | Method for fabricating transparent conductive film and transparent conductive film by thereof | |
Avril et al. | Correlation between the electrical and structural properties of aluminium-doped ZnO thin films obtained by direct current magnetron sputtering | |
CN102268638A (en) | In and Nb codoped ZnO-based transparent conductive film and preparation method thereof | |
KR20140120663A (en) | Preparation method of ZnO:Al thin film | |
KR100979483B1 (en) | Zinc oxide transparent conductive thin film and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20060906 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20070806 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20080111 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20080218 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20080219 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
G170 | Re-publication after modification of scope of protection [patent] | ||
PG1701 | Publication of correction | ||
PR1001 | Payment of annual fee |
Payment date: 20101227 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20120116 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20120116 Start annual number: 5 End annual number: 5 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |