KR100806637B1 - High strength non-shrink grout composition with steel corrosion protection - Google Patents
High strength non-shrink grout composition with steel corrosion protection Download PDFInfo
- Publication number
- KR100806637B1 KR100806637B1 KR20060106256A KR20060106256A KR100806637B1 KR 100806637 B1 KR100806637 B1 KR 100806637B1 KR 20060106256 A KR20060106256 A KR 20060106256A KR 20060106256 A KR20060106256 A KR 20060106256A KR 100806637 B1 KR100806637 B1 KR 100806637B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- parts
- composition
- cement
- steel
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 51
- 238000005260 corrosion Methods 0.000 title claims abstract description 40
- 230000007797 corrosion Effects 0.000 title claims abstract description 38
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 37
- 239000010959 steel Substances 0.000 title claims abstract description 37
- 239000011444 non-shrink grout Substances 0.000 title description 9
- 239000011440 grout Substances 0.000 claims abstract description 45
- 239000000463 material Substances 0.000 claims abstract description 43
- 239000004568 cement Substances 0.000 claims abstract description 31
- 239000000843 powder Substances 0.000 claims abstract description 31
- 239000010440 gypsum Substances 0.000 claims abstract description 17
- 229910052602 gypsum Inorganic materials 0.000 claims abstract description 17
- 239000011398 Portland cement Substances 0.000 claims abstract description 13
- 239000011575 calcium Substances 0.000 claims abstract description 11
- 239000002893 slag Substances 0.000 claims abstract description 11
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 10
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims abstract description 9
- 239000003112 inhibitor Substances 0.000 claims abstract description 9
- 239000004576 sand Substances 0.000 claims abstract description 9
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 8
- 239000002270 dispersing agent Substances 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims abstract description 7
- 239000000701 coagulant Substances 0.000 claims abstract description 3
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 claims description 6
- RAFRTSDUWORDLA-UHFFFAOYSA-N phenyl 3-chloropropanoate Chemical group ClCCC(=O)OC1=CC=CC=C1 RAFRTSDUWORDLA-UHFFFAOYSA-N 0.000 claims description 4
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- 235000010288 sodium nitrite Nutrition 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 abstract description 26
- 230000035515 penetration Effects 0.000 abstract description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 6
- 239000004570 mortar (masonry) Substances 0.000 abstract description 4
- 230000002401 inhibitory effect Effects 0.000 abstract description 3
- 230000008602 contraction Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- -1 calcium aluminum hydrate Chemical compound 0.000 description 6
- 238000010998 test method Methods 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical class OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 3
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Chemical class OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000000740 bleeding effect Effects 0.000 description 3
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 3
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical class OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- 239000004567 concrete Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000000174 gluconic acid Chemical class 0.000 description 3
- 235000012208 gluconic acid Nutrition 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- BYFGZMCJNACEKR-UHFFFAOYSA-N aluminium(i) oxide Chemical compound [Al]O[Al] BYFGZMCJNACEKR-UHFFFAOYSA-N 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229910001448 ferrous ion Inorganic materials 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 239000011396 hydraulic cement Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 150000002826 nitrites Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000010920 waste tyre Substances 0.000 description 2
- 229910001341 Crude steel Inorganic materials 0.000 description 1
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical class OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Chemical class 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000004552 water soluble powder Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/04—Portland cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/06—Aluminous cements
- C04B28/065—Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B11/00—Calcium sulfate cements
- C04B11/002—Mixtures of different CaSO4-modifications, e.g. plaster of Paris and anhydrite, used as cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B14/00—Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B14/02—Granular materials, e.g. microballoons
- C04B14/04—Silica-rich materials; Silicates
- C04B14/06—Quartz; Sand
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/0076—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/32—Aluminous cements
- C04B7/323—Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/40—Surface-active agents, dispersants
- C04B2103/408—Dispersants
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/60—Agents for protection against chemical, physical or biological attack
- C04B2103/61—Corrosion inhibitors
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
- C04B2111/26—Corrosion of reinforcement resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/34—Non-shrinking or non-cracking materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/70—Grouts, e.g. injection mixtures for cables for prestressed concrete
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Civil Engineering (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
본 발명은 강재의 부식방지 성능이 있는 고강도 무수축 그라우트 모르타르 조성물에 대한 것이다. 본 발명은 포틀랜트 시멘트, 칼슘알루미노설페이트 및 석고가 혼합된 시멘트계 분말조성물 100중량부에 대해 분산제 1~2중량부, 응결조절제 0.06~ 0.1 중량부, 내염성혼합재로 수산화알루미늄 0.1 ~ 0.4중량부, 고로슬래그계 미분말 5 ~ 10 중량부, 강재부식방지제 0.3 ~ 1.4중량부 및 최대 입경이 3mm이하인 모래 105 ~ 125 중량부를 혼합한 것을 특징으로 하는 그라우트재 조성물을 제공한다.The present invention relates to a high strength non-contraction grout mortar composition having corrosion resistance of steel materials. The present invention is 1 to 2 parts by weight of dispersant, 0.06 to 0.1 parts by weight of coagulant control agent, 0.1 to 0.4 parts by weight of aluminum hydroxide as a flame-resistant mixture, based on 100 parts by weight of cement-based powder composition in which portland cement, calcium aluminosulfate and gypsum are mixed. It provides a grout material composition, characterized in that 5 to 10 parts by weight of blast furnace slag fine powder, 0.3 to 1.4 parts by weight of steel corrosion inhibitor and 105 to 125 parts by weight of sand having a maximum particle diameter of 3 mm or less.
본 발명의 조성물은 내부로의 염소이온 침투억제 작용과 더불어 내부의 염분함량이 높은 조건에서도 강재의 부식을 방지하는 물리,화학적 작용을 통해 염소이온에 의한 부식방지작용을 수행함으로써, 염분저항성 효과를 배가시켜 그라우트재에 의한 강재의 부식방지성능을 크게 증진시킬 수 있다. The composition of the present invention provides a salt resistance effect by inhibiting chlorine ion penetration into the interior, and by performing physiochemical effects to prevent corrosion of steel even under conditions of high salt content. By multiplying, it is possible to greatly increase the corrosion protection performance of the steel by the grout material.
Description
도 1은 아질산염의 강재 부식방지 작용기구를 모식적으로 도시한 도면이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically the steel corrosion prevention mechanism of nitrite.
본 발명은 강재의 부식방지 성능이 있는 고강도 무수축 그라우트 모르타르 조성물에 대한 것으로, 보다 상세하게는 기계기초나 교각의 슈, 각종 강구조물의 충진공사에 사용되는 그라우트재에 기존의 고유동, 고강도, 무수축 성능외에 염분침투에 대한 저항성을 높이고, 강재 부식방지성능을 부가시킨 그라우트 조성물에 대한 것이다.The present invention relates to a high-strength non-shrink grout mortar composition having corrosion resistance of steel materials, and more specifically, high flow, high strength, non-existent grout material used in the filling of mechanical foundations, bridge shoes, and various steel structures. The present invention relates to a grout composition in which resistance to salt penetration is added in addition to shrinkage performance and steel corrosion protection is added.
도로 및 철도교량의 교좌장치와 각종 공장, 수문, 발전소 등의 기계기초 충진과 주입공사에 사용되는 무수축 그라우트재는 강구조물과 기계들의 하중과 충격, 진동 등을 구체에 안정적으로 전달하고, 매입된 철물을 외부로 부터의 각종 열화요인들로부터 보호작용을 하는 중요한 건설자재이다. 지금까지 사용되고 있는 대부분의 무수축 그라우트재의 주요한 품질특성은 고유동, 고강도, 무수축이며 대부분이 유사한 품질성능을 가지고 있다. The non-shrink grout material used for the bridge system of road and railway bridges and the machine foundation filling and injection work of various factories, flood gates, power plants, etc. stably transmits the loads, impacts, and vibrations of steel structures and machines to the sphere. It is an important construction material that protects against various deterioration factors from the outside. The major quality characteristics of most of the non-shrink grouts used so far are high flow, high strength, and no shrinkage, and most of them have similar quality performance.
최근에 오면서 부터 해양의 개발과 이용이 점차 증가됨에 따라 이와 관련된 매립, 항만, 발전소, 각종 연육교와 해안도로, 플랜트 공장 등의 건설공사가 활발히 진행되고 있으며, 이에따라 무수축 그라우트재의 사용도 같이 증가되고 있는 추세에 있다.With the recent increase in the development and use of the ocean, the construction work of landfills, ports, power plants, various bridges, coastal roads, and plant factories has been actively progressed. There is a trend.
해양에 사용되는 콘크리트 구조물들과 철물들은 염해에 대한 저항성을 높이기 위해 각종 내염설계와 방식도장이 적용되고 있는데, 특히 주요 기계와 강재들의 기초충진과 고정에 사용되고 있는 그라우트재는 그 어떤 재료보다도 강재의 부식방지를 위한 높은 내염성능의 확보가 필요한 실정이다. Various concrete design and anticorrosive coating are applied to concrete structures and hardware used in the ocean to increase the resistance to salt damage. Especially, grout used for basic filling and fixing of major machinery and steels is more corrosion resistant than steel. It is necessary to secure high flame resistance for prevention.
또한 해안이 아닌 내륙지역에 위치한 주요 도로와 교량에서도 동절기에 교통안전 확보를 위해 다량의 제설제를 살포하고 있는데, 염화칼슘으로 대표되는 제빙제는 배수구나 교량슬라브 하부 누수를 통해 흘러내려 매입된 교좌장치를 심각하게 부식시켜 교량의 안전을 위협하는 주요 원인으로 작용하고 있다. 이에따라 이러한 문제점들을 보완하기 위해 기존의 그라우트재와는 달리 고유동,고강도,무수축성능 외에 염해에 강한 성능이 부가된 고내염성의 무수축그라우트재의 개발과 사용이 그 어느때 보다 필요한 실정이다.In addition, major roads and bridges located in the inland area, not on the coast, are spraying a large amount of snow remover to ensure traffic safety in winter. An ice making agent, represented by calcium chloride, flows through drains or leaks under the bridge slab. It is a major cause of threat to the safety of bridges by severe corrosion. Accordingly, in order to supplement these problems, development and use of highly flame-resistant non-shrink grout material added to high salt, high strength, non-shrinkage performance in addition to high salt resistance, unlike any other conventional grout material is more necessary than ever.
종래의 무수축 그라우트재는 대부분 높은 강도를 얻기 위한 고강도형 그라우트재의 개발이 주로 이루어져 왔다. 일본 특개소 53-16410과 52-150434에서 재령 7일에 700 kgf/cm2 이상의 압축강도 발현을 위해 결합재의 양이 많이 사용되고, 자중에 의 한 충진성 향상과 유동성 증진을 위해 철가루를 사용하였는데, 상기방법으로 제조된 그라우트재는 결합재양이 많아 초기 건조수축과 자기수축에 의한 균열발생 위험이 높고 또한 철질원료의 사용은 장기에 걸쳐 노출시 철가루의 산화에 의한 녹발생으로 인해 외관을 해치고 시공표면에 강재부식에 의한 팽창균열을 유도할 수 있다.In the conventional non-shrink grout material, development of high-strength type grout material has been mainly made to obtain high strength. In Japanese Patent Laid-Opens 53-16410 and 52-150434, binders were used a lot to express compressive strength of 700 kgf / cm 2 or more on the 7th day of age, and iron powder was used to improve the filling properties and fluidity by self weight. The grout material manufactured by the above method has a high binder content, so there is a high risk of cracking due to initial dry shrinkage and self-shrinkage.In addition, the use of iron raw materials damages the appearance due to rust caused by the oxidation of iron powder when exposed over a long period of time. It can induce expansion crack by steel corrosion on the surface.
국내 특허공고번호 1993-0009342, 1997-026999에서는 7일 강도가 1000 kgf/cm2 이상의 초고강도 그라우트재 제조를 위해 시멘트 입자를 더 미립분으로 하고 유동성 저하 방지를 위해 특정 입도분포를 갖도록 조정한 시멘트를 사용하였다. 이러한 기술은 요구하고자 하는 소기의 강도를 얻을 수 있으나 입도조정으로 인해 경제성이 떨어지고, 초기재령에 초고강도 발현으로 인해 수화열 발생이 높아 Mass한 부재로 타설시 온도균열 발생위험이 높고, 현실적으로도 재령 1일에 700 kgf/cm2 이상의 압축강도가 필요한 그라우트재 시공은 거의 없다는 문제가 있다. 이외에 국내 특허 등록번호 10-0481976-0000에서는 분말폐타이어와 분말수지를 함유한 고인성 무수축 그라우트재 조성물을 제조하였다. 탄성재료인 분말폐타이어와 분말수지로 인해 기존의 고유동, 고강도, 무수축 특성 외에 고인성을 부여한 것을 특징으로 하는데 이러한 조성물은 고강도발현에 제한이 있으며, 수용성 분말수지가 용해되어 시멘트수화물과 일체화 되어 내구성,탄성을 증진 시키는데 일조하는데 반해 분말페타이어 자체는 유기고분자물질로 시멘트 모르타르와는 이질재료특성으로 시멘트페이스트와의 계면부착이 나쁘고, 비중이 낮아 물과 혼련시 혼합성이 떨어지고상부표면에 고무분이 떠오를 위험이 높다는 단점이 있다. In Korea Patent Publication No. 1993-0009342, 1997-026999, cement is made of finer grains for the production of ultra-high-strength grout material with 7-day strength of 1000 kgf / cm 2 or more and adjusted to have specific particle size distribution to prevent fluidity deterioration. Was used. These technologies can obtain the desired strength required, but the economy is low due to the particle size adjustment, the high heat generation occurs due to the development of ultra-high strength in the early age, high risk of temperature cracking during casting due to the absence of mass, realistically age 1 There is a problem that there is almost no construction of grout material that requires a compressive strength of 700 kgf / cm 2 or more per day. In addition, the domestic patent registration number 10-0481976-0000 to prepare a high toughness non-shrink grout material composition containing powder waste tire and powder resin. Powder waste tires and powder resins, which are elastic materials, provide high toughness in addition to the existing high flow, high strength, and non-shrinkable properties. Such a composition is limited in high strength expression, and the water-soluble powder resin is dissolved to integrate with cement hydrate. Powder tire itself is an organic polymer material, which is heterogeneous with cement mortar, and has poor interface adhesion with cement paste. There is a high risk of rubber powder.
이와같이 종래의 무수축 그라우트재의 제조기술들은 그라우트재 자체의 고강도화를 목적으로 기술개발이 이루어져 왔지만 실제 그라우트재가 사용되는 부위가 염분이나 제설제등의 접촉이 많아 강재의 부식위험이 높은데도 불구하고 이에대한 그라우트재 자체의 부식방지 성능을 부여한 것은 아직 없는 실정이다. 특히 고강도 무수축 그라우트재라도 타설초기나 공용기간 중에 균열과 손상이 자주 발생되고 있고 이를 통한 염분의 침투시 강재를 부식시켜 구조물에 심대한 위험을 끼칠 수 있다.As described above, the conventional techniques for manufacturing non-shrink grout materials have been developed for the purpose of increasing the strength of the grout material itself. However, even though the site where the grout material is used has a high risk of corrosion due to the high contact with salt or snow remover, The grout material itself has not yet been given the anti-corrosion performance. In particular, even high-strength non-shrink grouts are frequently cracked and damaged during the initial casting period or during the period of use.
본발명은 종래의 그라우트재 제품들과 같이 무수축, 고유동, 고강도 성능을 가지고 있으면서도, 염분이 높은 해안환경이나 동절기 제빙제 사용에 따른 염해가 예상되는 부위에서 강재의 부식방지와 염분침투를 억제하기 위해 개발된 강재부식 방지성능이 부가된 고내염성의 그라우트재 조성물을 제공하는 것을 목적으로 한다.The present invention has the same shrinkage, high flow, and high strength as conventional grout products, but also prevents corrosion and salt penetration of steel in the salty coastal environment or the site where salt damage is expected due to the use of ice making agent in winter. It is an object of the present invention to provide a highly flame resistant grout material composition to which the corrosion resistance of the steel developed is added.
또한, 본 발명은 차염성능이 우수한 결합재와 혼합재를 통해 염분의 침투를 물리적으로 억제하고 동시에 부식방지제에 의해 화학적으로 염화물이온(Cl-)의 반응을 차단하여 강재표면을 부동태화시켜 강재부식을 획기적으로 방지할 수 있는 그라우트 조성물을 제공하는 것을 목적으로 한다. The invention also chayeom performance inhibiting the penetration of the salt are physically via excellent binder and honhapjae and at the same time chemically chloride ions (Cl -) by the corrosion inhibitors to block the reaction of by passivating the steel surface significantly the steel corrosion An object of the present invention is to provide a grout composition that can be prevented.
상기 기술적 과제를 달성하기 위해 본 발명은, The present invention to achieve the above technical problem,
포틀랜트 시멘트, 칼슘알루미노설페이트 및 석고가 혼합된 시멘트계 분말조성물 100중량부에 대해 분산제 1~2중량부, 응결조절제 0.06~ 0.1 중량부, 내염성혼합재로 수산화알루미늄 0.1 ~ 0.4중량부, 고로슬래그계 미분말 5 ~ 10 중량부, 강재부식방지제 0.3 ~ 1.4 중량 및 최대 입경이 3mm이하인 모래 105 ~ 125 중량부 혼합한 것을 특징으로 하는 그라우트재 조성물을 제공한다.1 to 2 parts by weight of dispersant, 0.06 to 0.1 parts by weight of coagulant control agent, 0.1 to 0.4 parts by weight of aluminum hydroxide as flame-resistant mixture, and blast furnace slag based on 100 parts by weight of cement-based powder composition mixed with portland cement, calcium aluminosulfate and gypsum 5 to 10 parts by weight of fine powder, 0.3 to 1.4 parts by weight of steel corrosion inhibitor, and 105 to 125 parts by weight of sand having a maximum particle diameter of 3 mm or less are provided.
본 발명에서, 상기 시멘트계 분말조성물은 포틀랜트 시멘트 100 중량부에 대해 C4A3S 16 내지 23 중량부 및 석고 12 내지 17 중량부로 구성된 것이 바람직하다.In the present invention, the cement-based powder composition is preferably composed of 16 to 23 parts by weight and 12 to 17 parts by weight of C 4 A 3 S with respect to 100 parts by weight of portland cement.
또한, 본 발명에서 상기 강재부식방지제는 양극형 무기염이 아질산칼슘 또는 아질산 나트륨인것이 바람직하다.In addition, the steel corrosion inhibitor in the present invention is preferably a bipolar inorganic salt is calcium nitrite or sodium nitrite.
이하, 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.
본 발명에 사용되는 포틀랜트 시멘트는 보통포틀랜트 시멘트, 중용열 포틀랜트시멘트, 조강 포틀랜트시멘트 등 어느 시멘트를 사용해도 고강도를 얻을 수 있다.Portland cement used in the present invention can obtain a high strength by using any cement, such as ordinary portland cement, medium heat portant cement, crude steel portland cement.
본 발명에 사용된 칼슘알루미노설페이트는 광물조성이 4CaO·3Al2O3·CaSO4(이하 C4A3S라 함)로서 첨가된 석고와 시멘트의 수화물인 수산화칼슘[Ca(OH)2]과 반응을 하여 에트린자이트(3CaO·Al2O3·3CaSO4·32H2O)를 생성시켜 그라우트재의 압축강도를 조기에 발현시킨다. 또한 지속적인 설페이트(SO3 2-)의 공급으로 팽창성이 높은 에트린자이트가 수화물 결정크기가 작은 모노설페이트 (3CaO·Al2O3·CaSO4·12H2O) 로 분해되는 것을 방지함으로써 그라우트재의 수축을 방지하게 된다. 그라우트재의 시멘트 분말조성에 있어서 포틀랜트 시멘트와 C4A3S, 석고 이들 3성분계에서 각 조성비는 강도 발현시기조정과 팽창율을 조정하는데 특히 중요하다. 이를 좀더 자세히 설명하면 C4A3S 보다 석고의 함량비가 크게 높을 경우 초기에 과다한 에트린자이트의 생성으로 인해 그라우트재의 경화가 초속경성으로 되고, 초기에 강도가 대부분 발현되는데 반해 반대의 경우에는 팽창성이 증가되고 장기에 걸쳐 과도팽창이 발생될 위험이 있다. Calcium aluminosulfate used in the present invention is calcium hydroxide [Ca (OH) 2 ] which is a hydrate of gypsum and cement to which mineral composition is added as 4CaO.3Al 2 O 3 .CaSO 4 (hereinafter referred to as C 4 A 3 S); The reaction produces ethrinzite (3CaO.Al 2 O 3 .3CaSO 4 .32H 2 O) to express the compressive strength of the grout material early. The continuous supply of sulfate (SO 3 2- ) also prevents the highly expandable ethrinzite from being decomposed into monosulfate (3CaO · Al 2 O 3 · CaSO 4 · 12H 2 O) with a small hydrate crystal size. It will prevent shrinkage. In the composition of cement powder of grout material, the composition ratios of portland cement, C 4 A 3 S and gypsum are particularly important for adjusting the strength development timing and expansion rate. In more detail, when the gypsum content ratio is higher than that of C 4 A 3 S, the hardening of the grout material becomes the initial hardening due to the excessive production of ethrinzite, and the strength is initially expressed. There is a risk of increased expandability and overexpansion over long term.
이에 따라 본 발명에서는 포틀랜트 시멘트 100 중량부에 대해 C4A3S 16 내지 23 중량부, 석고 12 내지 17 중량부의 비율로 사용하는 것이 고강도발현과 과도팽창을 일으키지 않으면서 지속적으로 수축을 보상하는 안정적인 팽창성능을 얻을 수 있다는 점에서 바람직하다.Accordingly, in the present invention, the use of C 4 A 3 S 16 to 23 parts by weight and gypsum 12 to 17 parts by weight relative to 100 parts by weight of portland cement continuously compensates for shrinkage without causing high-strength expression and overexpansion. It is preferable at the point which can obtain stable expansion performance.
본 발명에 사용된 석고는 천연무수석고(CaSO4) 100 중량부에 알파형 반수석고(α-CaSO4·1/2H2O)를 20에서 40 중량부 혼합한 것이 사용될 수 있다. 석고의 용해도는 알파형 반수석고 〉이수석고 〉무수석고 순으로 나타나는데 알파형 반수석고는 용해도가 높아, 본 발명에서 사용되는 석고조성 중 반수석고의 사용비가 높을 경우 급속한 수화로 인해 경화속도가 빨라지고 작업성이 저하하게 된다. 석고 중 무수석 고만을 사용할 경우 작업성과 장기적인 강도발현 효과는 좋으나 초기 건조수축 보상성능과 초기의 고강도발현성능에서 떨어지게 된다. 본 발명과 같은 조성비의 석고를 사용 할 경우 작업성의 저하 없이 강도발현과 수축보상을 안정적으로 얻을 수 있다.The gypsum used in the present invention may be a mixture of 20 to 40 parts by weight of alpha-type hemihydrate gypsum (α-CaSO 4 1 / 2H 2 O) to 100 parts by weight of natural anhydrous gypsum (CaSO 4 ). The solubility of gypsum appears in the order of alpha-type hemihydrate gypsum〉 isugi gypsum〉 anhydrite-free gypsum. Alpha-type hemihydrate gypsum has high solubility. The castle will be degraded. When only anhydrous gypsum is used in gypsum, workability and long-term strength expression effect are good, but it is inferior to the initial dry shrinkage compensation performance and the initial high strength expression performance. When using gypsum in the same composition ratio as the present invention, strength expression and shrinkage compensation can be stably obtained without deterioration of workability.
본 발명에서는 내염성 혼합재로 수산화알루미늄분말[Al(OH)3]과 분말도 5000 cm2/g 이상인 고로슬래그 미분말을 사용하였다. 사용된 각 성분의 작용기구를 상세히 설명하면 다음과 같다.In the present invention, an aluminum hydroxide powder [Al (OH) 3 ] and a blast furnace slag powder having a powder degree of 5000 cm 2 / g or more were used as the flameproof mixture. The mechanism of action of each component used is described in detail as follows.
알칼리에 쉽게 용해되는 수산화알루미늄은 내부에 존재하는 염분이나 외부로부터 침투한 염화물 이온을 프리델염(Fridel's salt)(C3A·CaCl2·12H2O) 염으로 고정화하여 염분침투 차단하는 작용을 한다. 여기서 수산화알루미늄 성분은 시멘트의 수산화칼슘과 반응을 하여 칼슘알루미늄-하이드로옥사이드(C3AH6)를 생성하고, 생성된 칼슘알루미늄수화물은 비표면적이 큰 다공성의 수화물로서 침투한 수용성의 염소이온에 대한 흡착력이 크고 염소이온을 고정화시키는 작용을 한다.Aluminum hydroxide, which is easily soluble in alkali, functions to block salt penetration by immobilizing salts present inside or chloride ions penetrating from the outside with Friedel's salt (C 3 A · CaCl 2 · 12H 2 O) salts. . The aluminum hydroxide component reacts with calcium hydroxide of cement to produce calcium aluminum-hydrooxide (C 3 AH 6 ), and the produced calcium aluminum hydrate is a porous hydrate having a large specific surface area, and has an adsorptivity to water-soluble chlorine ions. It acts to immobilize this large chlorine ion.
CaCl2·6H2O(가용성 염분) + C3AH6) → C3A·CaCl2·12H2O(프리델씨염)CaCl 2 · 6H 2 O (soluble salts) + C 3 AH 6 ) → C 3 ACaCl 2 12H 2 O (Friedel salt)
또한 본 발명에 사용된 활성이 우수한 고미분말의 슬래그계 광물질은 유리질상(Glass Phase)의 슬래그계 광물질에 함유된 Ca2+, Mg2+, AlO4 4-, SiO4 4- 이온들의 용출과 시멘트 수화물과의 반응을 통한 칼슘실리케이트(CSHn), 칼슘알루미네이트(CAHn)생성을 통해 수화반응을 촉진시키고, 내부에 침투한 염분이온의 흡착 및 침투차단을 도와주는 작용을 한다. 또한 슬래그의 알루미늄광물은 다음과 같은 에트린자이트 생성반응을 통해 내수성향상 및 수화경화 조직의 치밀화에 기여한다.In addition, the high-purity slag-based mineral having excellent activity used in the present invention is characterized by the elution of Ca 2+ , Mg 2+ , AlO 4 4- , SiO 4 4- ions contained in the slag-based mineral in the glass phase. Calcium silicate (CSH n ) and calcium aluminate (CAH n ) generation through the reaction with cement hydrates to promote the hydration reaction, and serves to help adsorption and block penetration of salt ions penetrated inside. In addition, the slag aluminum mineral contributes to the improvement of water resistance and densification of hydration hardening tissue through the following ethrinzite formation reactions.
3CaO·Al2O3 + 3CaSO4·32H2O (에트린자이트)3CaOAl 2 O 3 + 3CaSO 4 32H 2 O (ethrinzite)
수산화알루미늄의 사용량이 너무 많아지면 겔화반응에 의해 그라우트재의 유동성 저하를 유발하게 된다.If the amount of aluminum hydroxide is used too much, the fluidity of the grout material is reduced by the gelation reaction.
본 발명에서는 강재의 부식억제재로 양극형 무기염으로 아질산 금속염을 사용할 수 있다. 아질산 금속염으로는 아질산 칼슘과 아질산 나트륨 모두 사용할 수 있으며, 시멘트와의 친화성에서는 칼슘계가 더 적합하다. 무기방청제 중의 아질산이온(NO2 -)은 도 1에서와 같이 제일철 이온(Fe2+)과의 반응으로 수산기이온(OH-)과 염화물이 온(Cl-)이 반응하는 것을 화학적인 작용에 의해 차단하게 된다. 양극부분에서 산화된 제일철 이온의 이동은 방해되고, 안정한 산화제이철(Fe2O3)로서 표면에 부착하여 부동태피막을 강재표면에 형성하여 그라우트재 내부에 있는 강재를 부식으로부터 보호하는 작용을 한다. In the present invention, the metal nitrite salt may be used as the anode type inorganic salt as corrosion inhibitor of steel. As the metal nitrite salt, both calcium nitrite and sodium nitrite can be used, and calcium-based is more suitable for affinity with cement. Nitrite ions (NO 2 − ) in the inorganic rust inhibitor are reacted with ferrous ions (Fe 2+ ) as shown in FIG. 1 to react hydroxy ions (OH − ) with chloride ions (Cl − ) by chemical action. Will be blocked. The movement of ferrous ions oxidized at the anode part is hindered, and as a stable ferric oxide (Fe 2 O 3 ) is attached to the surface to form a passive film on the steel surface to act to protect the steel in the grout material from corrosion.
2H2O + O2 + 4 e- → 4OH- → 2OH- + 2OH- 2H 2 O + O 2 + 4 e - → 4OH - → 2OH - + 2OH -
2OH- + 1/2 O2 + 2 e- → H2O 2OH - + 1/2 O 2 + 2 e - → H 2 O
2NO2 - + O2 + 2 e- → 2NO 2NO 2 - + O 2 + 2 e - → 2NO
2 Fe2+ + 3/2 O2 + 4 e- → Fe2O3 + 4 e- 2 Fe 2+ + 3/2 O 2 + 4 e - → Fe 2
아질산염의 사용량이 시멘트계 분말조성물 100중량부에 대해 0.3 중량부 이하가 되면 강재 부식방지성능이 크게 저하되며, 1.4 중량부 이상이 되면 응결시간이 빨라지고 유동성이 떨어진다.When the amount of nitrite used is 0.3 parts by weight or less based on 100 parts by weight of the cement-based powder composition, the corrosion resistance of the steel is greatly reduced. When the amount of nitrite is 1.4 parts by weight or more, the setting time is faster and the fluidity is lowered.
본 발명에 사용한 혼화제는 분산제와 응결지연제가 적정량 배합된 혼합물로서 앞에 기술한 바와 같이 시멘트계 분말조성물 100중량부에 혼화제를 1 내지 2중량부를 첨가하였다. 여기서 혼화제의 첨가량이 1 중량부 미만이 되면 유동성 확보가 어려워지고 가사시간이 짧아지며, 2 중량부 이상이 되면 유동성이 너무 높아져 모래의 침강현상과 같은 재료분리가 발생하고 블리딩수가 다량 발생하는 문제가 일어난다. 여기서, 혼화제의 구성성분 중 분산제로는 나프탈린설폰산 고축합물, 멜라닌설폰산 포름알데히드 고축합물, 리그닌설폰산 고축합물 등이 사용될 수 있다. 응결지연제는 구연산, 글루콘산, 붕산 또는 이들의 금속염과 각종 당류들이 사용될 수 있는데 응결지연제 첨가는 하절기에 유동성 증진과 가사시간 확보에 효과를 발휘하게 된다. The admixture used in the present invention is a mixture containing a proper amount of a dispersant and a coagulation delay agent, and as described above, 1 to 2 parts by weight of the admixture is added to 100 parts by weight of the cement-based powder composition. In this case, when the amount of admixture is less than 1 part by weight, it is difficult to secure fluidity and short pot life. When the amount of admixture is more than 2 parts by weight, the fluidity is so high that material separation such as sedimentation of sand occurs and a large amount of bleeding water occurs. Happens. Here, as the dispersant among the components of the admixture, naphthalin sulfonic acid high condensate, melanin sulfonic acid formaldehyde high condensate, lignin sulfonic acid high condensate may be used. The coagulation delay agent may be citric acid, gluconic acid, boric acid or metal salts and various sugars thereof. The addition of the coagulation delay agent is effective in improving fluidity and pot life during the summer.
모래는 시멘트계 분말조성물 100중량부에 대해 105에서 125 중량부로 혼합되며, 이때 모래의 입도는 최대 입도가 3mm를 넘지 않는 것이 바람직하다. Sand is mixed from 105 to 125 parts by weight with respect to 100 parts by weight of the cement-based powder composition, wherein the particle size of the sand is preferably not more than 3mm.
이하 본 발명을 실시예 및 비교예에 의거하여 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples.
실시예 1 내지 4 (비교예 1 내지 3)Examples 1 to 4 (Comparative Examples 1 to 3)
다음 표 1과 같이 포틀랜트 시멘트에 칼슘알루미노설페이트와 석고가 혼합된 시멘트계 분말조성물의 혼합비를 달리하였으며, 표 2는 표 1에서 제조된 시멘트계 분말 조성물에 다른 혼합재와 첨가제들은 본 발명에서 명기된 사용중량부로 일정하게 사용하여 제조된 그라우트재에 대해여 유동성과 압축강도, 블리딩율, 팽창율, 응결특성을 실시하였다. 이때 시험방법은 한국산업규격인 KS F 4044의 수경성시멘트 무수축 그라우트 시험방법에 따라 실시하였다. 표 3은 표 2의 배합으로 시험한 그라우트재의 시험결과이다. As shown in Table 1, the mixing ratio of the cement-based powder composition in which calcium aluminosulfate and gypsum was mixed in the portland cement was changed. Fluidity, compressive strength, bleeding rate, expansion rate, and condensation characteristics were performed on the grout material manufactured by using the same parts by weight. At this time, the test method was carried out according to the hydraulic cement shrinkage grout test method of KS F 4044, the Korean industrial standard. Table 3 is a test result of the grout material tested by the formulation of Table 2.
주) *시멘트 : 보통 포틀랜트시멘트 Note) * Cement: Normal Portland Cement
주 * 시멘트계 분말조성물 : 표 1에 의한 조성비 Note * Cement-based powder composition: Composition ratio according to Table 1
** 혼화제 : 분산제인 나프탈린설폰산계 고축합물 100중량부에 글루콘산 지연제를 8 중량부 혼합한 것임 ** Admixture: 8 parts by weight of a gluconic acid retardant is mixed with 100 parts by weight of a high concentration of naphthalinsulfonic acid-based condensate as a dispersant.
*** 고로슬래그 미분말 : 분말도가 블레인 기준 5000 cm2/g 이상 *** Blast furnace slag fine powder: 5000cm 2 / g or more
**** 부식방지제 : 아질산칼슘 (Ca(NO2)2)**** Preservatives: calcium nitrite (Ca (NO 2 ) 2 )
이와 같이 상기 표 3에서와 알 수 있는 바와 같이, 본 발명에 따라 제조된 그라우트재 조성물은 작업성에서 콘 시험에 의한 유하시간을 60초 이내로 확보 할 수 있으며, 높은 압축강도 발현과 28일 재령에서 수축이나 과도한 팽창이 없이 안정적인 치수안정 특성을 발휘하는 것으로 나타났다. 그러나 시멘트계 분말조성물의 사용비가 맞지 않을 경우 유동성과 강도발현 저하, 수축이나 과도한 팽창이 발생되는 것으로 나타났다.As can be seen from Table 3, the grout material composition prepared according to the present invention can ensure the dripping time by the cone test within 60 seconds in the workability, high compressive strength expression and 28 days at age It showed stable dimensional stability without shrinkage or excessive expansion. However, when the ratio of cement-based powder composition is not suitable, fluidity and strength expression are decreased, shrinkage or excessive expansion occurs.
실시예 5 내지 10 (비교예 4 내지 8)Examples 5 to 10 (Comparative Examples 4 to 8)
다음 표 4와 같이 본 발명에 따른 포틀랜트 시멘트와 칼슘알루미노설페이트, 석고가 혼합된 시멘트계 분말조성물에 내염성혼합재인 수산화알루미늄과 고로슬래그계 미분말, 강재부식방지제의 조성물 혼합비를 달리하여 제조하였다. 표 5는 표 4에서 제조된 그라우트재에 대해여 기본적인 유동성과 압축강도, 팽창율, 응결특성 외에 강재부식저항성과 염분침투 저항성능을 시험하였다. 평가방법은 한국산업규격인 KS F 4044의 수경성시멘트 무수축 그라우트 시험방법에 따라 그라우트재의 기본적인 물성을 시험하였고, 염분침투저항성은 KS F 4930에 따라 염화나트륨 2.5% 용액에 2개월간 침지한 후 파단면을 질산은발색법으로 변색에 의한 염분의 침투깊이를 측정하였다. 한편 강재부식방지성능은 KS F 2561 콘크리트용 철근방청혼화제 부속서 2의 오토클레이브에 의한 촉진부식 시험방법으로 평가하였다. As shown in Table 4 below, the composition ratio of aluminum hydroxide and blast furnace slag fine powder and steel corrosion inhibitors, which are flame-resistant mixtures, was prepared in a cement powder composition in which portland cement, calcium aluminosulfate, and gypsum were mixed according to the present invention. Table 5 tested the steel corrosion resistance and salt penetration resistance in addition to the basic fluidity, compressive strength, expansion ratio, and condensation characteristics for the grout materials prepared in Table 4. The evaluation method was tested for the basic physical properties of the grout material according to the hydraulic cement shrinkage grout test method of KS F 4044, the Korean industrial standard, and the salt penetration resistance was immersed in 2.5% sodium chloride solution for 2 months according to KS F 4930. The depth of salt penetration due to discoloration was measured by silver nitrate. On the other hand, steel corrosion protection performance was evaluated by the test method of accelerated corrosion by autoclave of KS F 2561 Concrete
주 * 시멘트계 분말조성물 : 표 1의 실시예 2에 의한 조성비 Note * Cement-based powder composition: Composition ratio according to Example 2 of Table 1
** 혼화제 : 분산제인 나프탈린설폰산계 고축합물 100중량부에 글루콘산 지연제를 8 중량부 혼합한 것임 ** Admixture: 8 parts by weight of a gluconic acid retardant is mixed with 100 parts by weight of a high concentration of naphthalinsulfonic acid-based condensate as a dispersant.
*** 물사용비는 그라우트재 1에 물 0.16 중량비로 혼합사용 *** Water use ratio is mixed with grout material 1 at 0.16 weight ratio of water
주 1) 방청율 : KS F 2561의 오토클레이브에 의한 철근부식촉진시험법에 의한 시험방법으로, 이때그라우트재의 총염화물함량은 Cl- 함량기준으로 4kg/m3 을 첨가하였다. 방청율의 계산은 일반모르타르 (시멘트 : 모래 =1 : 2.5, 물/시멘트비=0.5)에 동일한 염분함량(4kg/m3)이 되도록한 후 부식촉진시험을 수행하였다. 방청율은 일반 모르타르에 넣은 철근의 부식면적에 대해 각 실시예 및 비교예로 제조한 그라우트재에 넣은 철근의 부식면적 비로 구하였다.1) anti-corrosive rate: the test method of the corrosion promoting test method according to an autoclave of KS F 2561, wherein a total chloride content material grout is Cl - was added to 4kg / m 3 in an amount of reference. The anti-corrosion rate was calculated by the same salt content (4kg / m 3 ) in the general mortar (cement: sand = 1: 2.5, water / cement ratio = 0.5) and then the corrosion promotion test was performed. The rust prevention rate was calculated from the corrosion area ratio of the steel bars in the grout material prepared in each example and the comparative example with respect to the corrosion area of the steel bars in the general mortar.
상기 표 5에서 알 수 있는 것과 같이 본 발명의 그라우트재 조성물은 그라우트재 내부에 철근 부식임계농도인 1.2 kg/m3 보다 약 3배 이상 높은 고농도의 염분함량에서도 강재의 방청율이 95% 이상되는 양호한 결과를 보여주고 있으며, 염수용액에 침지한 후에 그라우트재 내부에 침투한 염화물이온 침투깊이를 측정한 결과도 작게나오는 것으로 나타나고 있어 종래의 고유동, 고강도, 무수축 특성 외에도 염분에 대한 저항성이 우수한 것으로 나타났다.As can be seen in Table 5, the grout composition of the present invention is 95% or more of the rust prevention rate of the steel even at a high salt content of about 3 times higher than 1.2 kg / m 3 of the corrosion resistance of the steel bar in the grout. It shows good results, and the result of measuring the depth of penetration of chloride ions penetrated into the grout material after immersion in the saline solution is also shown to be small. In addition to the conventional high flow, high strength, and non-shrinkage characteristics, it has excellent salt resistance. Appeared.
본 발명의 강재부식방지성능이 있는 고강도 무수축 그라우트 조성물은 종래의 무수축 그라우트재와는 달리 고강도, 고유동, 무수축 특성과 더불어 염해지역이나 염소이온 및 제설제 등에 의한 부식환경하에서 그라우트재 내부의 강재의 부식을 방지하도록 개발된 새로운 개념의 고내구성 그라우트재 조성물이다. 본 발명의 조성물은 내부로의 염소이온 침투억제 작용과 더불어 내부의 염분함량이 높은 조건에서도 강재의 부식을 방지하는 물리,화학적 작용을 통해 염소이온에 의한 부식방지작용을 수행함으로써, 염분저항성 효과를 배가시켜 그라우트재에 의한 강재의 부식방지성능을 크게 증진시킬 수 있다.The high-strength non-shrink grout composition having the corrosion resistance of steel according to the present invention, unlike the conventional non-shrink grout material, has a high strength, high flow rate, non-shrinkage property, and grout material in a corrosive environment due to salty areas, chlorine ions, and snow removing agent. It is a new concept of high durability grout material composition developed to prevent corrosion of steels. The composition of the present invention provides a salt resistance effect by inhibiting chlorine ion penetration into the interior, and by performing physiochemical effects to prevent corrosion of steel even under conditions of high salt content. By multiplying, it is possible to greatly increase the corrosion protection performance of the steel by the grout material.
종래의 기술은 주로 사용 시멘트의 종류와 클링커 광물성분, 입도조정 등을 통해 고강도 발현과 조기강도 발현에 주로 목적을 두었으며, 그라우트재가 사용된 부재내부의 강재에 대한 부식방지 성능을 부여한 기술은 아직 없었다. 특히 그라우트재의 초고강도화나 조기강도발현은 균열발생과 매스한 부재에서의 온도균열 등의 문제가 자주 발생될 소지가 높고, 이러한 균열발생은 제설제에 의한 염화칼슘의 침투나 해양에서의 염분의 침투로 인해 그라우트재 부재내부의 강재가 부식으로부터 노출될 위험이 높았다. The prior art mainly aims at high strength and early strength through the type of cement used, clinker mineral composition, and particle size adjustment. There was no. Particularly, the high strength and early strength expression of grout material is likely to cause problems such as cracking and temperature cracking in the mass member, and such cracking is caused by the penetration of calcium chloride by snow removal agent and salt penetration in the ocean. As a result, there is a high risk that steels in the grout members are exposed from corrosion.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20060106256A KR100806637B1 (en) | 2006-10-31 | 2006-10-31 | High strength non-shrink grout composition with steel corrosion protection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20060106256A KR100806637B1 (en) | 2006-10-31 | 2006-10-31 | High strength non-shrink grout composition with steel corrosion protection |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100806637B1 true KR100806637B1 (en) | 2008-02-25 |
Family
ID=39383078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20060106256A KR100806637B1 (en) | 2006-10-31 | 2006-10-31 | High strength non-shrink grout composition with steel corrosion protection |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100806637B1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100911325B1 (en) | 2008-04-15 | 2009-08-10 | 태원물산주식회사 | Composition for preventing floor impact sound and construction method thereof |
KR101074371B1 (en) * | 2011-02-21 | 2011-10-17 | 주식회사 승화명품건설 | Cement milk for semi-rigid road pavement using flameproof cement and high durability semi-rigid road pavement method |
WO2014029658A1 (en) * | 2012-08-21 | 2014-02-27 | Sika Technology Ag | Multi-purpose mortar or cement compositions for construction applications |
WO2014196682A1 (en) * | 2013-06-04 | 2014-12-11 | 코오롱글로벌 주식회사 | Seawater resistant grout material composition and method for constructing offshore wind turbine structure using same |
CN104446259A (en) * | 2014-12-09 | 2015-03-25 | 鞍钢集团矿业公司 | Anchor rod anchoring agent applied to reinforcing underground broken rock body |
KR20150055291A (en) | 2013-11-13 | 2015-05-21 | 한국건설기술연구원 | Non-shrinkage grout having function preventing tendon corrosion for prestressed concrete (psc) bridge |
CN109020420A (en) * | 2018-08-30 | 2018-12-18 | 成都宏基建材股份有限公司 | A kind of reinforcing bar sleeve for connection grouting material and preparation method thereof with rust prevention function |
CN109180114A (en) * | 2018-08-30 | 2019-01-11 | 成都宏基建材股份有限公司 | A kind of reinforcing bar sleeve for connection grouting material and preparation method thereof |
KR20190069867A (en) * | 2017-12-12 | 2019-06-20 | 주식회사 삼표산업 | Ultra early strength binder and Ultra early strength concrete using the same |
WO2019129732A1 (en) * | 2017-12-27 | 2019-07-04 | Italcementi S.P.A. | Calcium sulfoaluminate cement composition with improved corrosion resistance |
KR102338898B1 (en) | 2021-06-28 | 2021-12-16 | 현대엔지니어링(주) | High-adhesive non-shrinkable grout composition for filling horizontal and vertical joints for PC dry method and the bonding structure of precast concrete column and girder using the composition |
KR20220039094A (en) | 2020-09-21 | 2022-03-29 | 한국건설기술연구원 | Cement composite having excellent salt resistance, and manufacturing method for the same |
CN115925350A (en) * | 2022-06-22 | 2023-04-07 | 中铁七局集团有限公司 | A high-strength anti-fatigue load steel-concrete connection grouting material and its preparation method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0153089B1 (en) * | 1995-11-15 | 1998-11-16 | 우덕창 | Ultra High Rigidity Non-Shrink Grout Composition |
KR20060029834A (en) * | 2004-10-04 | 2006-04-07 | 주식회사 서경종합기술단 | Underwater curing grout composition for repairing reinforced concrete structures submerged in water and repair method using the same |
KR100654095B1 (en) | 2004-06-29 | 2006-12-05 | 쌍용양회공업(주) | Flame Retardant Cement Composition for Marine Concrete |
-
2006
- 2006-10-31 KR KR20060106256A patent/KR100806637B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0153089B1 (en) * | 1995-11-15 | 1998-11-16 | 우덕창 | Ultra High Rigidity Non-Shrink Grout Composition |
KR100654095B1 (en) | 2004-06-29 | 2006-12-05 | 쌍용양회공업(주) | Flame Retardant Cement Composition for Marine Concrete |
KR20060029834A (en) * | 2004-10-04 | 2006-04-07 | 주식회사 서경종합기술단 | Underwater curing grout composition for repairing reinforced concrete structures submerged in water and repair method using the same |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100911325B1 (en) | 2008-04-15 | 2009-08-10 | 태원물산주식회사 | Composition for preventing floor impact sound and construction method thereof |
KR101074371B1 (en) * | 2011-02-21 | 2011-10-17 | 주식회사 승화명품건설 | Cement milk for semi-rigid road pavement using flameproof cement and high durability semi-rigid road pavement method |
EP3078646A1 (en) * | 2012-08-21 | 2016-10-12 | Sika Technology AG | Multi-purpose mortar or cement compositions for construction applications |
WO2014029658A1 (en) * | 2012-08-21 | 2014-02-27 | Sika Technology Ag | Multi-purpose mortar or cement compositions for construction applications |
WO2014196682A1 (en) * | 2013-06-04 | 2014-12-11 | 코오롱글로벌 주식회사 | Seawater resistant grout material composition and method for constructing offshore wind turbine structure using same |
US9435321B2 (en) | 2013-06-04 | 2016-09-06 | Kolon Global Corporation | Seawater resistant grout material composition and method for constructing offshore wind turbine structure using same |
KR20150055291A (en) | 2013-11-13 | 2015-05-21 | 한국건설기술연구원 | Non-shrinkage grout having function preventing tendon corrosion for prestressed concrete (psc) bridge |
KR101582622B1 (en) * | 2013-11-13 | 2016-01-06 | 한국건설기술연구원 | Non-shrinkage grout having function preventing tendon corrosion for prestressed concrete (psc) bridge |
CN104446259A (en) * | 2014-12-09 | 2015-03-25 | 鞍钢集团矿业公司 | Anchor rod anchoring agent applied to reinforcing underground broken rock body |
KR20190069867A (en) * | 2017-12-12 | 2019-06-20 | 주식회사 삼표산업 | Ultra early strength binder and Ultra early strength concrete using the same |
KR102043904B1 (en) | 2017-12-12 | 2019-11-12 | 주식회사 삼표산업 | Ultra early strength concrete using ultra early strength binder |
WO2019129732A1 (en) * | 2017-12-27 | 2019-07-04 | Italcementi S.P.A. | Calcium sulfoaluminate cement composition with improved corrosion resistance |
CN109020420A (en) * | 2018-08-30 | 2018-12-18 | 成都宏基建材股份有限公司 | A kind of reinforcing bar sleeve for connection grouting material and preparation method thereof with rust prevention function |
CN109180114A (en) * | 2018-08-30 | 2019-01-11 | 成都宏基建材股份有限公司 | A kind of reinforcing bar sleeve for connection grouting material and preparation method thereof |
KR20220039094A (en) | 2020-09-21 | 2022-03-29 | 한국건설기술연구원 | Cement composite having excellent salt resistance, and manufacturing method for the same |
KR102338898B1 (en) | 2021-06-28 | 2021-12-16 | 현대엔지니어링(주) | High-adhesive non-shrinkable grout composition for filling horizontal and vertical joints for PC dry method and the bonding structure of precast concrete column and girder using the composition |
CN115925350A (en) * | 2022-06-22 | 2023-04-07 | 中铁七局集团有限公司 | A high-strength anti-fatigue load steel-concrete connection grouting material and its preparation method |
CN115925350B (en) * | 2022-06-22 | 2024-02-13 | 中铁七局集团有限公司 | A high-strength fatigue load-resistant steel-concrete connection grouting material and its preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100806637B1 (en) | High strength non-shrink grout composition with steel corrosion protection | |
CA2974729C (en) | Corrosion resistant spray applied fire resistive materials | |
KR101355392B1 (en) | Cement composite with improved acid proof and salt-resistance, mortar cement composite for repairing the concrete structure and repairing method of concrete structure using the mortar cement composite | |
KR100835702B1 (en) | Waterproofing material composition for reinforced concrete with anti-rust function | |
KR101446245B1 (en) | Color cement mortar composition with excellent durability for repairing concrete structure and method for repairing concrete structure using the composition | |
KR102087707B1 (en) | Method of repairing and reinforcing cross-section of concrete structure by self healing using calcium hydrate solution, eco-friendly nano bubble water of carbon dioxide and mortar composition for repairment | |
KR101418238B1 (en) | To High durability high early strength mix cement Composition | |
US5916483A (en) | Additive and a process for inhibiting the corrosion of metals in construction materials and constructions materials containing said additive | |
KR101675490B1 (en) | Ion Binding Agent for Cement Mixture, Ion Binding Typed Polymer Cement Mortar Using the Agent, and Repairing Method Using the Mortar | |
Kryvenko et al. | Alkali-activated cements as sustainable materials for repairing building construction: a review | |
CN111333403A (en) | Preparation method and application of phosphorus-magnesium-based cement concrete coating protective material | |
KR100643524B1 (en) | Mortar for cross-section restoration and cross-section restoration method using the same | |
KR101738575B1 (en) | Echo mortar and construction method for repair concrete structures damaged by acid, sulphate and chloride | |
US11702365B2 (en) | Corrosion mitigating cement compositions | |
KR20040026844A (en) | Polymer mortar and method repair or supplementary concrete | |
KR101473228B1 (en) | The composition of solidificant having highstrength and rapid solidification | |
KR100570958B1 (en) | Environment-friendly, earth-hardening composition with fast hardness and high strength | |
JP4796424B2 (en) | Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same | |
KR100519605B1 (en) | The manufacturing method and composition of Restoration mortar with function of sulfuric acid resistance | |
KR100913268B1 (en) | Soft Fire Reinforcement | |
KR20090093612A (en) | Ultra Rapid Hardning Mortar composition using Magnesia-Phosphate Cement and preparing method thereof | |
KR100848944B1 (en) | Landfill cover material using sewage sludge and functional waste and its manufacturing method | |
KR101058266B1 (en) | Internal curing mixture composition and ready-mixed concrete | |
JP4827585B2 (en) | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance | |
JP5030248B2 (en) | Repair method for concrete structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20061031 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20070825 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20071120 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20080218 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20080219 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20110209 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20120221 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20130219 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20130219 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20140219 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20140219 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20150121 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20150121 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20160205 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20160205 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20170221 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20170221 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20190125 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20190125 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20200205 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20200205 Start annual number: 13 End annual number: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20210202 Start annual number: 14 End annual number: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20230221 Start annual number: 16 End annual number: 16 |
|
PR1001 | Payment of annual fee |
Payment date: 20240220 Start annual number: 17 End annual number: 17 |
|
PR1001 | Payment of annual fee |
Payment date: 20250219 Start annual number: 18 End annual number: 18 |