[go: up one dir, main page]

KR100764935B1 - Manufacturing method of high purity organogallium compound - Google Patents

Manufacturing method of high purity organogallium compound Download PDF

Info

Publication number
KR100764935B1
KR100764935B1 KR1020060078015A KR20060078015A KR100764935B1 KR 100764935 B1 KR100764935 B1 KR 100764935B1 KR 1020060078015 A KR1020060078015 A KR 1020060078015A KR 20060078015 A KR20060078015 A KR 20060078015A KR 100764935 B1 KR100764935 B1 KR 100764935B1
Authority
KR
South Korea
Prior art keywords
compound
organic
formula
gallium compound
organic gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020060078015A
Other languages
Korean (ko)
Inventor
김명운
김진동
오영우
Original Assignee
(주)디엔에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)디엔에프 filed Critical (주)디엔에프
Priority to KR1020060078015A priority Critical patent/KR100764935B1/en
Application granted granted Critical
Publication of KR100764935B1 publication Critical patent/KR100764935B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • H01L21/205

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)

Abstract

본 발명은 갈륨(Ga)의 MOCVD 소스인 유기 갈륨 화합물의 순도를 획기적으로 개선할 수 있도록 리간드화합물을 이용하여 정제하는 단계를 포함하는 유기 갈륨 화합물의 제조 방법 및 이로부터 제조된 유기 갈륨 화합물에 관한 것이다.The present invention relates to a method for preparing an organic gallium compound comprising the step of purifying using a ligand compound to significantly improve the purity of the organic gallium compound which is a MOCVD source of gallium (Ga) and an organic gallium compound prepared therefrom will be.

본 발명에 따른 제조방법에 의하여 제조하여 정제된 유기갈륨화합물은 유기불순물 함량이 100 ppm 이하이고, 금속불순물 함량이 1 ppm 이하인 효과가 있으며, 반도체 핵심원료의 국산화 및 반도체 산업의 기반 확대에 중요하게 기여할 수 있다.The organic gallium compound prepared and purified by the production method according to the present invention has an effect of having an organic impurity content of 100 ppm or less and a metal impurity content of 1 ppm or less, and is important for localization of semiconductor core raw materials and expansion of the foundation of the semiconductor industry Can contribute.

Description

고순도의 유기갈륨화합물의 제조방법{A method for preparation of high-purity organogallium compounds} A method for preparation of high-purity organogallium compounds

도 1은 본 발명의 유기 갈륨 화합물 정제 중 실시예 4에서 제조된 트라이메틸갈륨 화합물의 수소 핵자기공명 스펙트럼이다.1 is a hydrogen nuclear magnetic resonance spectrum of the trimethylgallium compound prepared in Example 4 of the organic gallium compound purification of the present invention.

본 발명은 금속 유기물 화학 증착(metal organic chemical vapor deposition, MOCVD) 방법을 이용한 화합물 반도체 생산시 핵심원료로 사용되는 유기 갈륨 소스(metal organic source)의 제조 및 정제 기술에 관한 것이다.The present invention relates to the production and purification of metal gallium source (metal organic source) used as a key raw material in the production of compound semiconductors using metal organic chemical vapor deposition (MOCVD) method.

MOCVD 소스는 유기금속 소스의 일종으로써 반도체 성장 방법인 MOCVD 시스템에서 반도체 소자구조 성장에 필요한 소스로 쓰여 GaN, InGaN, AlGaN, GaAs, InGaAs, AlGaAs, GaP, InGaP, AlGaP, InGaAsP, GaSb, GaAsSb 등과 같은 여러 가지 다양한 화합물 반도체 결정을 성장하는 데에 널리 사용된다.MOCVD source is a kind of organometallic source. It is used for semiconductor device structure growth in MOCVD system, which is a semiconductor growth method. Many different compounds are widely used to grow semiconductor crystals.

화합물 반도체 제조 공정 중에서 MOCVD법을 이용한 에피웨이퍼 제조는 복잡한 조성과 다층의 구조를 용이하게 구현할 수 있는 장점 때문에 LED용 GaN 제조, VCSEL(수직공진표면 발광레이저)의 LD제조 그리고 광통신 소자등의 제조의 이용 빈도가 점차 증가하고 있으며 이로 인하여 핵심 원료인 MOCVD 소스의 수요도 함께 증가하고 있다.Among the compound semiconductor manufacturing processes, epi wafer fabrication using MOCVD method is easy to realize complex composition and multi-layered structure. Therefore, GaN for LED, LD for VCSEL (Vertical Resonant Surface Light Emitting Laser), and optical communication devices are manufactured. The frequency of use is gradually increasing, which in turn increases the demand for MOCVD sources, a key raw material.

우수한 품질의 화합물 반도체용 MOCVD 소스를 제조하기 위해서는 합성, 정제, 평가, 포장, 안전 등의 여러 기술들이 복합적으로 적용되어야만 가능하다. 특히 특성과 밀접한 관계를 가지는 소스의 화학적 합성기술과 정제기술은 매우 중요하다.In order to manufacture high quality MOCVD sources for compound semiconductors, several technologies such as synthesis, purification, evaluation, packaging, and safety are required in combination. In particular, chemical synthesis and purification techniques of sources that are closely related to properties are very important.

유기 갈륨 화합물의 경우에 있어서 MOCVD Source를 합성하는 방법으로는 다음과 같은 방법들이 알려져 있다.In the case of an organic gallium compound, the following methods are known as a method of synthesizing a MOCVD source.

첫째, 갈륨알콕사이드(Gallium alkoxide)와 트리알킬알루미늄(Trialkyl aluminum)을 반응하여 제조하는 방법First, a method of preparing gallium alkoxide by reacting trialkyl aluminum

둘째, 갈륨-마그네슘합금(Gallium-magnesium alloy)과 메틸아이오다이드(methyliodide)를 이용하는 방법Second, the method using gallium-magnesium alloy and methyl iodide

셋째, 갈륨클로라이드(Gallium chloride)와 알킬마그네슘클로라이드(alkylmagnesiumchloride)를 사용하는 방법Third, the method using gallium chloride and alkylmagnesium chloride

트리알킬알루미늄(Trialkyl aluminum)을 이용한 방법은 수율은 높으나 알루미늄 이 잔류하며 높은 비용이 단점이다. Ga/Mg 합금을 이용하는 방법은 너무 저조한 수율이 단점으로 보고되어있다. 갈륨클로라이드(Gallium chloride)와 알킬마그네슘클로라이드(alkylmagnesiumchloride)를 사용하는 방법은 높은 수율 낮은 가격 등의 장점이 있으나 여전히 순도를 높이기가 어려운 문제점이 있다.The method using trialkyl aluminum has high yield, but aluminum remains and high cost is disadvantage. Methods using Ga / Mg alloys have been reported to have too low yields. The method of using gallium chloride and alkylmagnesium chloride has advantages such as high yield and low price, but it is still difficult to increase the purity.

따라서, 본 발명은 유기 금속화합물이 순도를 획기적으로 개선하기 위하여 갈륨의 MOCVD 소스와 배위결합을 하며, 상기 갈륨 소스 내의 금속 불순물과는 결합(binding)할 수 있는 리간드(ligand) 화합물을 도입하여 새로운 정제 방법을 개발함에 있다.Therefore, the present invention is to coordination bond with the MOCVD source of gallium in order to significantly improve the purity of the organometallic compound, by introducing a ligand compound capable of binding (binding) with the metal impurities in the gallium source In developing a purification method.

본 발명의 목적은 갈륨(Ga)의 MOCVD 소스인 유기 갈륨 화합물의 순도를 획기적으로 개선할 수 있도록 리간드화합물을 이용하여 정제하는 단계를 포함하는 유기 갈륨 화합물의 제조 방법을 제공하는 것이다.An object of the present invention is to provide a method for producing an organic gallium compound comprising the step of purifying using a ligand compound to significantly improve the purity of the organic gallium compound which is a MOCVD source of gallium (Ga).

또한, 본 발명의 또 다른 목적은 상기 제조방법에 의해 제조되어 불순물 함량이 최소화된 고순도의 유기갈륨화합물을 제공하는 데 있다.In addition, another object of the present invention is to provide a high purity organic gallium compound prepared by the above production method minimized the content of impurities.

또한, 본 발명은 상기 고순도의 유기갈륨화합물을 이용하여 갈륨이 함유되어 있는 반도체 소자용 박막을 제조하는 방법을 제공하는데 또 다른 목적이 있다.In addition, another object of the present invention is to provide a method for manufacturing a thin film for semiconductor device containing gallium using the high purity organic gallium compound.

본 발명은 유기 갈륨화합물을 고수율 및 고순도로 제조하는 방법에 관한 것으로서, 구체적으로는 그리냐르(Grigniard) 반응에 의해 제조된 유기갈륨화합물에 리간드 화합물을 사용하여 정제하는 단계를 포함하는 제조방법에 관한 것이고, 또한 이로부터 제조되는 고순도의 유기갈륨화합물에 관한 것이며, 이를 이용하여 MOCVD법으로 반도체 소자용 박막을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing an organic gallium compound in high yield and high purity, and more particularly, to a method for preparing an organic gallium compound prepared by a Grigniard reaction, comprising the steps of purifying the ligand compound. The present invention relates to a high purity organic gallium compound prepared therefrom, and to a method of manufacturing a thin film for a semiconductor device by the MOCVD method using the same.

본 발명에 따른 유기갈륨화합물은 트리알킬갈륨일 수 있으며, 보다 구체적으로는 트리메틸갈륨일 수 있다. 또한, 상기 리간드 화합물은 에테르류, 설파이드류 또는 포스핀류에서 선택되는 1종 이상일 수 있다.The organic gallium compound according to the present invention may be trialkylgallium, more specifically trimethylgallium. In addition, the ligand compound may be at least one selected from ethers, sulfides or phosphines.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 유기갈륨화합물의 제조방법은 하기의 단계를 포함하여 이루어지는 것을 특징으로 한다.Method for producing an organic gallium compound according to the invention is characterized in that it comprises the following steps.

a)에테르류에서 선택되는 용매 하에 하기 화학식 2의 그리냐르 시약(Grignard reagent)과 화학식 3의 갈륨화합물을 반응시켜 용매가 배위된 유기갈륨화합물을 제조하는 단계; 및a) preparing an organic gallium compound in which a solvent is coordinated by reacting a Grignard reagent of Formula 2 with a gallium compound of Formula 3 under a solvent selected from ethers; And

b)상기 용매가 배위된 유기갈륨화합물에 에테르류, 설파이드류 또는 포스핀류에서 선택되는 1종 이상의 리간드화합물을 반응시킨 후 진공 증류하여 화학식 1의 유기갈륨화합물을 수득하는 정제 단계.b) a purification step in which the organic gallium compound coordinated with the solvent is reacted with at least one ligand compound selected from ethers, sulfides, or phosphines, followed by vacuum distillation to obtain an organic gallium compound of Chemical Formula 1.

[화학식 1][Formula 1]

R3GaR 3 Ga

[화학식 2][Formula 2]

RMgX′RMgX ′

[화학식 3][Formula 3]

GaX3 GaX 3

(상기 식에서 R은 C1~C5의 직쇄 또는 분지쇄의 알킬기이고, X 및 X′은 독립적으로 Cl, Br 또는 I에서 선택되는 할로겐원소이다.)(Wherein R is a C1-C5 linear or branched alkyl group, X and X 'are independently a halogen element selected from Cl, Br or I.)

본 발명에 따른 제조방법에서 상기 a) 단계는 그리냐르 시약(Grignard reagent)과 화학식 3의 할로겐화갈륨 화합물의 반응에 의해 용매가 배위된 유기갈륨화합물을 제조하는 단계로서, 하기 반응식 1 및 반응식 2로 표현할 수 있다.Step a) in the preparation method according to the present invention comprises preparing an organic gallium compound in which a solvent is coordinated by a reaction between a Grignard reagent and a gallium halide compound represented by Chemical Formula 3, according to Schemes 1 and 2 below. I can express it.

[반응식 1]Scheme 1

Mg + RX′ --------→ RMgX′Mg + RX ′ -------- → RMgX ′

[반응식 2]Scheme 2

RMgX′ + GaX3 -------→ R3Ga:[R1OR2]RMgX ′ + GaX 3 ------- → R 3 Ga: [R 1 OR 2 ]

상기 반응식에서 X 및 X′는 독립적으로 Cl, Br 또는 I에서 선택되는 할로겐원소이고, R은 C1~C5의 직쇄 또는 분지쇄의 알킬기이다.X and X 'in the above scheme are independently a halogen element selected from Cl, Br or I, R is a C1-C5 linear or branched alkyl group.

a) 단계에서 사용하는 용매는 에테르류로서 구조식으로는 R1OR2로 표현할 수 있으며, 상기 R1 및 R2는 독립적으로 C1~C5의 직쇄 또는 분지쇄의 알킬기, 또는 방향족기이거나, R1 및 R2는 서로 연결되어 C4~C6의 알킬렌기를 갖는 고리를 형성할 수 있다. 상기 에테르류의 용매는 테트라하이드로퓨란(tetrahydrofuran), 디에틸에테르(diethylether), 디이소프로필에테르(diisopropylether), 디페닐에테르(diphenylether) 등을 예로 들 수 있다. 상기 반응식 1의 알킬마그네슘 할라이드의 제조는 비활성 기체 분위기에서 모든 반응이 진행되며, 반응기에 용매를 넣고 마그네슘 금속(magnesium metal)을 첨가하여 교반한 후, 여기에 알킬할라이드(methyl halide)를 천천히 첨가하고, 일정시간 동안 교반 후 미반응한 마그네슘(magnesium)을 제거하면 갈색의 깨끗한 용액이 얻어진다.The solvent used in step a) may be represented by the structural formula R 1 OR 2 as ethers, wherein R 1 and R 2 are independently C 1 to C 5 linear or branched alkyl or aromatic groups, or R 1 And R 2 may be connected to each other to form a ring having an alkylene group of C 4 to C 6. Examples of the solvent of the ethers include tetrahydrofuran, diethylether, diisopropylether, diphenylether, and the like. In the preparation of the alkylmagnesium halide of Scheme 1, all reactions proceed in an inert gas atmosphere. After adding a solvent to the reactor and stirring by adding magnesium metal, an alkyl halide is slowly added thereto. , After stirring for a certain time to remove the unreacted magnesium (magnesium) to obtain a clear brown solution.

상기 반응식 2의 유기갈륨화합물을 제조는 반응식 1에서 제조된 그리냐르 시약(grignard reagent)과, 염화갈륨(GaCl3), 브롬화갈륨(GaBr3) 또는 요오드화갈륨(GaI3)에서 선택되는 갈륨화합물의 반응에 의해서 제조되며, 이 때 수득되는 유기갈륨화합물은 하기 화학식 4와 같이 에테르류의 유기용매가 배위된 형태의 화합물이다.The organic gallium compound of Scheme 2 may be prepared by using a Grignard reagent prepared in Scheme 1, and a gallium compound selected from gallium chloride (GaCl 3 ), gallium bromide (GaBr 3 ), or gallium iodide (GaI 3 ). Prepared by the reaction, the organic gallium compound obtained at this time is a compound in the form of the organic solvent of the ether coordinated as shown in the following formula (4).

[화학식 4][Formula 4]

R3Ga:[R1OR2]R 3 Ga: [R 1 OR 2 ]

본 발명에 따른 제조방법에서 상기 b)단계는 에테르류(R1OR2)에서 선택되는 용매가 배위된 유기갈륨화합물로부터 고순도의 유기갈륨화합물을 수득하는 정제 단계로서, 하기 반응식 3에 나타낸 바와 같이, 리간드 화합물(Y)을 이용하여 결합시키고 진공 증류에 의해 이루어진다.Step b) in the preparation method according to the present invention is a purification step to obtain a high purity organic gallium compound from an organic gallium compound coordinated with a solvent selected from ethers (R 1 OR 2 ), as shown in Scheme 3 below Binding using ligand compound (Y) and by vacuum distillation.

[반응식 3] Scheme 3

R3Ga:[R1OR2] + Y ------→ R3GaR 3 Ga: [R 1 OR 2 ] + Y ------ → R 3 Ga

상기 반응식에서 R은 반응식 1에 기재된 바와 동일하며 Y는 리간드 화합물을 나타낸 것이다.Where R is the same as described in Scheme 1 and Y represents the ligand compound.

에테르류의 용매가 배위된 유기갈륨화합물의 정제는 비활성 기체의 분위기에서 실시되며, 반응기에 에테르류의 용매와 치환시킬 리간드 화합물을 첨가하고 상기 a)단계에서 제조된 에테르류의 용매가 배위된 유기갈륨화합물을 첨가하여 교반한다. 감압하여 유기갈륨화합물에 배위되었던 에테르류의 용매를 제거하고 온도를 올려 진공 증류하면 정제된 유기갈륨화합물이 얻어진다.Purification of the organic gallium compound in which the solvent of the ethers is coordinated is carried out in an atmosphere of an inert gas, and the organic solvent in which the solvent of the ethers prepared in step a) is added to the reactor by adding a ligand compound to be substituted with the solvent of the ether. The gallium compound is added and stirred. Purification of the organic gallium compound is obtained by removing the solvent of ethers coordinated with the organic gallium compound under reduced pressure and raising the temperature under vacuum distillation.

상기 리간드 화합물은 유기갈륨화합물과 배위결합을 하며, 상기 유기갈륨화합물 내의 금속 불순물과는 결합(binding)할 수 있는 것으로서, 에테르류, 설파이드류 또는 포스핀류에서 선택되는 1종 이상인 것이 바람직하며, 상기 에테르류의 화합물로는 화학식 5의 디아이소펜틸에테르 또는 크라운에테르를 예로 들 수 있으며, 상기 설파이드류로는 화학식 7의 디페닐설파이드, 상기 포스핀류로는 화학식 6의 트라이페닐포스핀을 예로 들 수 있다. The ligand compound has a coordinating bond with the organic gallium compound, and can bind to metal impurities in the organic gallium compound, and is preferably at least one selected from ethers, sulfides or phosphines. Examples of the ether compounds include diisopentyl ether or crown ether of formula (5), the sulfides include diphenyl sulfide of formula (7), and phosphines as triphenylphosphine of formula (6). have.

[화학식 5][Formula 5]

Figure 112006058717536-pat00001
Figure 112006058717536-pat00001

[화학식 6] [Formula 6]

Figure 112006058717536-pat00002
Figure 112006058717536-pat00002

[화학식 7] [Formula 7]

Figure 112006058717536-pat00003
Figure 112006058717536-pat00003

상기 리간드 화합물 중에서 크라운에테르를 사용하는 것이 수율 및 순도면에서 유리하여 보다 바람직하며, 특히 하기 화학식 8의 크라운에테르([18]-crown-6)를 사용하는 경우 정제 단계의 수율이 매우 높고, 정제된 유기갈륨화합물 내에 유기불순물 및 금속 불순물 함량이 가장 적게 나타나므로 가장 바람직하다. 본 발명의 실시예에 따르면 하기 화학식 8의 크라운에테르를 사용하는 경우 정제단계 수율이 76%, 유기불순물 함량이 10ppm, 금속 불순물 함량이 0.1ppm 수준으로서 유기갈륨화합물을 고수율 및 고순도로 정제할 수 있었다.Among the ligand compounds, the use of crown ethers is more preferable in terms of yield and purity, and particularly, the use of crown ethers ([18] -crown-6) represented by the following Chemical Formula 8 yields a very high yield in the purification step, and purification. It is most preferable because the content of organic impurities and metal impurities in the organic gallium compound is the lowest. According to an embodiment of the present invention, when using the crown ether of Formula 8, the yield of the purification step is 76%, the organic impurity content is 10ppm, the metal impurity content is 0.1ppm level, the organic gallium compound can be purified in high yield and high purity. there was.

[화학식 8][Formula 8]

Figure 112006058717536-pat00004
Figure 112006058717536-pat00004

본 발명에 따른 제조방법에 의해 제조된 상기 화학식 1의 유기갈륨화합물은 유기불순물 함량이 100 ppm 이하이고, 금속불순물 함량이 1ppm이하인 고순도의 유기갈륨화합물이며, 구체적인 화합물명으로는 트리메틸갈륨, 트리에틸갈륨, 트리프로필갈륨, 트리아이소프로필갈륨, 트리부틸갈륨, 트리펜틸갈륨, 트리이소부틸갈륨, 트리아이소펜틸갈륨 등의 트리알킬갈륨 화합물을 들 수 있으며, 이 중에서도 트리 메틸갈륨이 산업적인 활용도 측면에서 가장 선호되는 화합물이다.The organic gallium compound of Formula 1 prepared by the preparation method according to the present invention is a high purity organic gallium compound having an organic impurity content of 100 ppm or less and a metal impurity content of 1 ppm or less, and specific compound names include trimethylgallium and triethyl. Trialkylgallium compounds such as gallium, tripropylgallium, triisopropylgallium, tributylgallium, tripentylgallium, triisobutylgallium, and triisopentylgallium, among which trimethylgallium is used in terms of industrial applications. Most preferred compound.

본 발명에 따른 제조방법에 의해 제조된 고순도의 유기갈륨화합물은 MOCVD법을 사용하여 갈륨을 함유하는 반도체 소자용 박막 제조에 사용될 수 있다. 반도체 소자용 박막 중 갈륨을 함유하는 박막은 GaN, InGaN, AlGaN, GaAs, InGaAs, AlGaAs, GaP, InGaP, AlGaP, InGaAsP, GaSb, GaAsSb 등을 들 수 있으며, 본 발명에 따른 유기갈륨화합물은 불순물 함량이 적어 반도체 소자용 박막 제조시 우수한 물성을 나타내는 효과가 있다.The high purity organic gallium compound prepared by the manufacturing method according to the present invention can be used for the manufacture of a thin film for semiconductor devices containing gallium using the MOCVD method. Among thin films for semiconductor devices, gallium-containing thin films include GaN, InGaN, AlGaN, GaAs, InGaAs, AlGaAs, GaP, InGaP, AlGaP, InGaAsP, GaSb, GaAsSb, and the like. There is little effect which shows the outstanding physical property at the time of manufacturing the thin film for semiconductor elements.

이하 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

메틸마그네슘Magnesium Magnesium 할라이드(methyl magnesium halide)의Of methyl magnesium halide 제조 Produce

[제조예 1][Production Example 1]

90 L의 테트라하이드로퓨란 용매를 200 L의 반응기에 넣고 8.4 kg의 마그네슘 금속을 첨가하여 교반한다. 반응기의 온도를 0도로 냉각한 뒤 16.0 kg의 메틸클로라이드를 서서히 첨가한다. 첨가가 완료되면 3시간 동안 환류하고 온도를 상온까지 냉각하여 여과하면 갈색의 용액이 96.5 %의 수득율로 얻어진다.90 L of tetrahydrofuran solvent is added to a 200 L reactor and 8.4 kg of magnesium metal is added and stirred. After the reactor is cooled to 0 degrees, 16.0 kg of methyl chloride is slowly added. After the addition was completed, the mixture was refluxed for 3 hours, cooled to room temperature, filtered, and a brown solution was obtained at a yield of 96.5%.

[제조예 2][Production Example 2]

90 L의 디에틸에테르 용매를 200 L의 반응기에 넣고 8.4 kg의 마그네슘 금속을 첨가하여 교반한다. 반응기의 온도를 0도로 냉각한 뒤 16.0 kg의 메틸클로라이드를 서서히 첨가한다. 첨가가 완료되면 4시간 동안 환류하고 온도를 상온까지 냉각하여 여과하면 갈색의 용액이 94.7 %의 수득율로 얻어진다.90 L of diethyl ether solvent is added to a 200 L reactor and 8.4 kg of magnesium metal is added and stirred. After the reactor is cooled to 0 degrees, 16.0 kg of methyl chloride is slowly added. When the addition was complete, the mixture was refluxed for 4 hours, cooled to room temperature, filtered, and a brown solution was obtained at a yield of 94.7%.

[제조예 3][Production Example 3]

90 L의 디아이소프로필에테르 용매를 200 L의 반응기에 넣고 8.4 kg의 마그네슘 금속을 첨가하여 교반한다. 반응기의 온도를 0도로 냉각한 뒤 16.0 kg의 메틸클로라이드를 서서히 첨가한다. 첨가가 완료되면 5시간 동안 환류하고 온도를 상온까지 냉각하여 여과하면 갈색의 용액이 91.0 %의 수득율로 얻어진다. 90 L of diisopropylether solvent is added to a 200 L reactor and 8.4 kg of magnesium metal is added and stirred. After the reactor is cooled to 0 degrees, 16.0 kg of methyl chloride is slowly added. When the addition was complete, the mixture was refluxed for 5 hours, cooled to room temperature, filtered, and a brown solution was obtained at a yield of 91.0%.

[제조예 4][Production Example 4]

90 L의 디페닐에테르 용매를 200 L의 반응기에 넣고 8.4 kg의 마그네슘 금속을 첨가하여 교반한다. 반응기의 온도를 0도로 냉각한 뒤 16.0 kg의 메틸클로라이드를 서서히 첨가한다. 첨가가 완료되면 12시간 동안 환류하고 온도를 상온까지 냉각하여 여과하면 갈색의 용액이 83.0 %의 수득율로 얻어진다. 90 L of diphenylether solvent is added to a 200 L reactor and 8.4 kg of magnesium metal is added and stirred. After the reactor is cooled to 0 degrees, 16.0 kg of methyl chloride is slowly added. When the addition was complete, the mixture was refluxed for 12 hours, cooled to room temperature, filtered, and a brown solution was obtained at a yield of 83.0%.

[제조예 5]Production Example 5

90 L의 디에틸에테르 용매를 200 L의 반응기에 넣고 8.4 kg의 마그네슘 금속을 첨가하여 교반한다. 반응기의 온도를 0도로 냉각한 뒤 48.0 kg의 메틸아이오다 이드를 서서히 첨가한다. 첨가가 완료되면 3시간 동안 환류하고 온도를 상온까지 냉각하여 여과하면 갈색의 용액이 96.8 %의 수득율로 얻어진다.90 L of diethyl ether solvent is added to a 200 L reactor and 8.4 kg of magnesium metal is added and stirred. After cooling the reactor to 0 degrees, 48.0 kg methyl iodide is slowly added. After the addition was completed, the mixture was refluxed for 3 hours, cooled to room temperature, filtered, and a brown solution was obtained at a yield of 96.8%.

[실시예 1] Example 1

디에틸에테르가Diethyl ether 배위된Coordinated 트리메틸갈륨(trimethylgallium)의Trimethylgallium 제조 Produce

5 L의 디에틸에테르를 100 L의 반응기에 넣고 5.0 kg의 갈륨클로라이드를 투입한다. 15 L의 디에틸에테르를 반응기에 추가로 투입 후 감압하에 0도까지 냉각한다. 19.9 kg의 메틸마그테슘클로라이드를 천천히 첨가한다. 첨가가 완료되면 2시간 동안 환류하고 다시 상온까지 냉각하여 감압하에 여과하고 여과액의 용매를 모두 제거하면 트리메틸갈륨에 디에틸에테르가 배위된 형태의 무색의 액체화합물이 90.0 %의 수득율로 얻어진다. 이 화합물의 1H-NMR 스펙트럼으로부터 디에틸에테르가 배위된 유기 갈륨 화합물이 합성되었음을 확인하였다.5 L of diethyl ether is added to a 100 L reactor and 5.0 kg of gallium chloride is added. 15 L of diethyl ether was further added to the reactor and cooled to 0 degrees under reduced pressure. Slowly add 19.9 kg of methylmagnesium chloride. When the addition was completed, the mixture was refluxed for 2 hours, cooled to room temperature, filtered under reduced pressure, and all solvents were removed from the filtrate, thereby obtaining a colorless liquid compound in the form of 90.0% of dimethyl ether coordinated in trimethylgallium. From the 1 H-NMR spectrum of the compound, it was confirmed that an organic gallium compound coordinated with diethyl ether was synthesized.

1H-NMR(벤젠-d6, ppm): -0.16 (s, 9H, Ga-CH3); 1.00 (t, 21H, -OCH2CH3), 3.27 (q, 14H, -OCH2-) 1 H-NMR (benzene-d 6 , ppm): -0.16 (s, 9H, Ga-CH 3 ); 1.00 (t, 21H, -OCH 2 CH 3 ), 3.27 (q, 14H, -OCH 2- )

트리메틸갈륨(Trimethylgallium ( trimethylgallium)의trimethylgallium) 정제 refine

30 L의 반응기에 화학식 5의 디아이소펜틸에테르 0.8 kg을 투입하고 온도를 40도로 올려 5 kg의 디에틸에테르가 배위된 트라이메틸갈륨 화합물을 첨가한다. 진 공을 걸어 디에틸에테르를 제거한다.0.8 kg of diisopentyl ether of Formula 5 was added to a 30 L reactor, and the temperature was raised to 40 degrees to add 5 kg of trimethylgallium compound coordinated with diethyl ether. Vacuum to remove diethyl ether.

온도를 서서히 올려 진공 증류하면 무색의 액체 화합물이 110도에서 59 %의 수득율로 얻어진다. 이 화합물의 1H-NMR 스펙트럼(도 1참조)으로부터 유기 갈륨화합물속에 포함된 유기 불순물의 함유량(1.2 %)을 확인하였다. 또한, ICP-AES 분석을 통해 금속 불순물의 함유량 1 ppm 임을 확인하였다.Distillation under vacuum at elevated temperature yields a colorless liquid compound with a yield of 59% at 110 degrees. From the 1 H-NMR spectrum (see FIG. 1) of this compound, the content (1.2%) of organic impurities contained in the organic gallium compound was confirmed. In addition, ICP-AES analysis confirmed that the content of the metal impurities 1 ppm.

[실시예 2]Example 2

실시예1의 정제 단계에서 디아이소펜틸에테르 대신에 트라이페닐포스핀을 사용하는 것을 제외하고 상시 실시예 1과 동일한 방법으로 실시하여 200도에서 48 %의 수득율로 무색의 액체 화합물을 얻었다. 1H-NMR 스펙트럼으로부터 유기 갈륨화합물속에 포함된 유기 불순물의 함유량이 10 ppm 임을 확인하였다. 또한, ICP 분석을 통해 금속 불순물의 함유량 10 ppm 임을 확인하였다.Except for using triphenylphosphine instead of diisopentyl ether in the purification step of Example 1 was carried out in the same manner as in Example 1 to obtain a colorless liquid compound in a yield of 48% at 200 degrees. It was confirmed from the 1 H-NMR spectrum that the content of organic impurities contained in the organic gallium compound was 10 ppm. In addition, ICP analysis confirmed that the content of the metal impurities is 10 ppm.

[실시예 3]Example 3

실시예1의 정제 단계에서 디아이소펜틸에테르 대신에 페닐설파이드를 사용하는 것을 제외하고 상시 실시예 1과 동일한 방법으로 실시하여 70도에서 53 %의 수득율로 무색의 액체 화합물을 얻었다. 1H-NMR 스펙트럼으로부터 유기 갈륨화합물속에 포함된 유기 불순물의 함유량(1.8 %)을 확인하였다. 또한, ICP 분석을 통해 금속 불순물의 함유량이 50 ppm임을 확인하였다.Except for using phenyl sulfide instead of diisopentyl ether in the purification step of Example 1 was carried out in the same manner as in Example 1 to obtain a colorless liquid compound with a yield of 53% at 70 degrees. The content (1.8%) of the organic impurities contained in the organic gallium compound was confirmed from the 1 H-NMR spectrum. In addition, ICP analysis confirmed that the content of the metal impurities is 50 ppm.

[실시예 4]Example 4

실시예1의 정제 단계에서 디아이소펜틸에테르 대신에 크라운에테르를 사용하는 것을 제외하고 상시 실시예 1과 동일한 방법으로 실시하여 120도에서 76 %의 수득율로 무색의 액체 화합물을 얻었다. 1H-NMR 스펙트럼(도 1참조)으로부터 유기 갈륨화합물속에 포함된 유기 불순물의 함유량(10 ppm)을 확인하였다. 또한, ICP-AES 분석을 통해 금속 불순물의 함유량이 0.12 ppm 임을 확인하였다(표 1 참조). Except for using crown ether instead of diisopentyl ether in the purification step of Example 1 was carried out in the same manner as in Example 1 to obtain a colorless liquid compound in a yield of 76% at 120 degrees. The content (10 ppm) of organic impurities contained in the organic gallium compound was confirmed from the 1 H-NMR spectrum (see FIG. 1). In addition, ICP-AES analysis confirmed that the content of the metal impurity is 0.12 ppm (see Table 1).

1H-NMR(벤젠-d6, ppm): -0.16 (s, 9H, Ga-CH3) 1 H-NMR (benzene-d 6 , ppm): -0.16 (s, 9H, Ga-CH 3 )

[표 1]TABLE 1

Figure 112006058717536-pat00005
Figure 112006058717536-pat00005

실시예 1 내지 4의 결과를 하기 표 2에 정리하였다. 하기 표 2의 결과에 나타난 바와 같이 크라운에테르를 사용하여 정제하는 경우 가장 수율이 높고 불순물 함량도 가장 낮은 것을 알 수 있었다.The results of Examples 1 to 4 are summarized in Table 2 below. As shown in the results of Table 2, the purification using the crown ether was found to have the highest yield and the lowest impurity content.

[표 2]TABLE 2

Figure 112006058717536-pat00006
Figure 112006058717536-pat00006

본 발명에 따른 제조방법은 갈륨할라이드와 그리냐드의 반응을 통해 고수율로 에테르류 용매가 배위된 유기갈륨화합물 즉, 트리알킬갈륨을 얻을 수 있으며, 트리알킬갈륨과 배위결합을 하고 금속 불순물과 결합할 수 있는 리간드 화합물을 사용하는 경우 유기물 분술물 및 금속불순물 함량이 낮은 고순도의 트리알킬갈륨을 얻을 수 있었으며 리간드 화합물중 크라운에테르를 이용하여 정제한 것이 가장 좋은 수율과 순도로 제조되었다. 본 발명에 따른 제조방법에 의해 제조된 트리알킬갈륨은 반도체 핵심원료의 국산화 및 반도체 산업의 기반 확대에 중요하게 기여할 수 있다.In the production method according to the present invention, an organic gallium compound in which an ether solvent is coordinated, that is, trialkylgallium, can be obtained through a reaction between gallium halide and Grignard, coordinating with trialkylgallium, and binding with metal impurities. In the case of using the ligand compound, it was possible to obtain high purity trialkylgallium having a low content of organic fractions and metal impurities, and the purified compound using the crown ether of the ligand compound was prepared in the best yield and purity. Trialkylgallium produced by the manufacturing method according to the present invention can contribute significantly to the localization of the semiconductor core raw material and to expand the base of the semiconductor industry.

Claims (10)

a)에테르류에서 선택되는 용매 하에 하기 화학식 2의 그리냐르 시약(Grignard reagent)과 화학식 3의 갈륨화합물을 반응시켜 용매가 배위된 유기갈륨화합물을 제조하는 단계; 및a) preparing an organic gallium compound in which a solvent is coordinated by reacting a Grignard reagent of Formula 2 with a gallium compound of Formula 3 under a solvent selected from ethers; And b)상기 용매가 배위된 유기갈륨화합물에 하기 화학식 8의 크라운에테르([18]-crown-6)를 반응시킨 후 진공 증류하여 화학식 1의 유기갈륨화합물을 수득하는 정제 단계;b) a purification step of reacting the organic gallium compound coordinated with the solvent with a crown ether of the following Formula 8 ([18] -crown-6) followed by vacuum distillation to obtain an organic gallium compound of Formula 1; 를 포함하는 유기갈륨화합물의 제조방법.Method for producing an organic gallium compound comprising a. [화학식 1][Formula 1] R3GaR 3 Ga [화학식 2][Formula 2] RMgX′RMgX ′ [화학식 3][Formula 3] GaX3 GaX 3 [화학식 8][Formula 8]
Figure 112007061690384-pat00009
Figure 112007061690384-pat00009
(상기 식에서 R은 메틸기이고, X 및 X′는 독립적으로 Cl, Br 또는 I에서 선택되는 할로겐원소이다.)(Wherein R is a methyl group and X and X 'are independently a halogen element selected from Cl, Br or I.)
삭제delete 삭제delete 삭제delete 삭제delete 제 1항에 있어서,The method of claim 1, 상기 a)단계의 용매는 테트라하이드로퓨란, 디에틸에테르, 디페닐에테르 또는 디이소프로필에테르에서 선택되는 1종 이상인 것을 특징으로 하는 유기갈륨화합물의 제조방법.The solvent of step a) is an organic gallium compound, characterized in that at least one selected from tetrahydrofuran, diethyl ether, diphenyl ether or diisopropyl ether. 삭제delete 삭제delete 삭제delete 삭제delete
KR1020060078015A 2006-08-18 2006-08-18 Manufacturing method of high purity organogallium compound Expired - Fee Related KR100764935B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060078015A KR100764935B1 (en) 2006-08-18 2006-08-18 Manufacturing method of high purity organogallium compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060078015A KR100764935B1 (en) 2006-08-18 2006-08-18 Manufacturing method of high purity organogallium compound

Publications (1)

Publication Number Publication Date
KR100764935B1 true KR100764935B1 (en) 2007-10-09

Family

ID=39419611

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060078015A Expired - Fee Related KR100764935B1 (en) 2006-08-18 2006-08-18 Manufacturing method of high purity organogallium compound

Country Status (1)

Country Link
KR (1) KR100764935B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185090A (en) 1986-02-10 1987-08-13 Sumitomo Chem Co Ltd Alkyl gallium purification method
JPH069651A (en) * 1992-06-23 1994-01-18 Shin Etsu Chem Co Ltd Recovery method of organometallic compounds
EP1645656A1 (en) * 2004-10-05 2006-04-12 Rohm and Haas Electronic Materials, L.L.C. Organometallic compounds suitable for use in vapor deposition processes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185090A (en) 1986-02-10 1987-08-13 Sumitomo Chem Co Ltd Alkyl gallium purification method
JPH069651A (en) * 1992-06-23 1994-01-18 Shin Etsu Chem Co Ltd Recovery method of organometallic compounds
EP1645656A1 (en) * 2004-10-05 2006-04-12 Rohm and Haas Electronic Materials, L.L.C. Organometallic compounds suitable for use in vapor deposition processes

Similar Documents

Publication Publication Date Title
US7166734B2 (en) Method for making organometallic compounds
US4734514A (en) Hydrocarbon-substituted analogs of phosphine and arsine, particularly for metal organic chemical vapor deposition
JP2007137883A (en) Organometallic compound purification
CA2198588C (en) Formation of a metalorganic compound for growing epitaxial semiconductor layers
JP2688965B2 (en) Organometallic compounds
EP0130005B1 (en) The preparation of metal alkyls
KR100764935B1 (en) Manufacturing method of high purity organogallium compound
US20040122248A1 (en) Preparation of organometal compounds
US10160774B2 (en) Process for the preparation of trimethyl metal compounds
WO2014093419A1 (en) Production of tri-alkyl compounds of group 3a metals
Coward et al. Synthesis of ultra-high purity trialkylgallium MOVPE precursors. Crystal structures of triethylgallium and triisopropylgallium adducts with macrocyclic tertiary amines
JP4774776B2 (en) Method for producing trialkylgallium
WO2014078263A1 (en) Methods of producing trimethylgallium
US6020253A (en) Use of tertiarybutylbis-(dimethylamino)phosphine in forming semiconductor material by chemical vapor deposition
WO2019115377A1 (en) Process for purification of dimethyl aluminium chloride
JP2501147B2 (en) Method for producing high-purity alkylphosphine
KR101190161B1 (en) Novel zinc amino-alkoxide complexes and process for preparing thereof
JP2831226B2 (en) Method for purifying organic phosphorus compounds
Coward et al. Synthesis and crystal structures of trimethylindium adducts with bidentate and macrocyclic tertiary amines
JP2006265166A (en) Method for producing trialkylgallium
Coward et al. Next generation adduct purification techniques for low oxygen content metal alkyls
JPH05310764A (en) Producltion of high-purity monoalkyl-or monoarylarsine compound
JPH1112283A (en) Method for producing organic indium compound
Smith et al. Purification of dialkylzinc precursors using tertiary amine ligands
JPH049392A (en) Production of monoalkyl phosphorus compound

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20060818

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20070628

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20070913

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20071001

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20071002

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
G170 Re-publication after modification of scope of protection [patent]
PG1701 Publication of correction
PR1001 Payment of annual fee

Payment date: 20101001

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20110830

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20120829

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20120829

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20130930

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20140819

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20140819

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20150918

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20150918

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20160919

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20160919

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20170921

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20170921

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20180921

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20180921

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20190917

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20190917

Start annual number: 13

End annual number: 13

PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20210712