KR100721090B1 - Separation Process of Boron Compounds in Chlorosilanes and Composition for Evaporating Chlorosilanes - Google Patents
Separation Process of Boron Compounds in Chlorosilanes and Composition for Evaporating Chlorosilanes Download PDFInfo
- Publication number
- KR100721090B1 KR100721090B1 KR1020000033126A KR20000033126A KR100721090B1 KR 100721090 B1 KR100721090 B1 KR 100721090B1 KR 1020000033126 A KR1020000033126 A KR 1020000033126A KR 20000033126 A KR20000033126 A KR 20000033126A KR 100721090 B1 KR100721090 B1 KR 100721090B1
- Authority
- KR
- South Korea
- Prior art keywords
- chlorosilanes
- boron
- ppb
- naf
- fluorine element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000005046 Chlorosilane Substances 0.000 title claims abstract description 61
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical class Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 150000001639 boron compounds Chemical class 0.000 title claims abstract description 28
- 238000001704 evaporation Methods 0.000 title claims abstract description 12
- 239000000203 mixture Substances 0.000 title claims abstract description 7
- 238000000926 separation method Methods 0.000 title claims description 5
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 27
- 239000011737 fluorine Substances 0.000 claims abstract description 27
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 26
- 150000003839 salts Chemical class 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 20
- 230000008020 evaporation Effects 0.000 claims abstract description 4
- 229910016036 BaF 2 Inorganic materials 0.000 claims description 8
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 8
- 229910017855 NH 4 F Inorganic materials 0.000 claims description 8
- YYNNRJWNBXEQTP-UHFFFAOYSA-N 2-[(4-bromophenyl)sulfonylamino]-3-phenylpropanoic acid Chemical compound C=1C=C(Br)C=CC=1S(=O)(=O)NC(C(=O)O)CC1=CC=CC=C1 YYNNRJWNBXEQTP-UHFFFAOYSA-N 0.000 claims description 7
- DFNPRTKVCGZMMC-UHFFFAOYSA-M tributyl(fluoro)stannane Chemical compound CCCC[Sn](F)(CCCC)CCCC DFNPRTKVCGZMMC-UHFFFAOYSA-M 0.000 claims description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 39
- 229910052796 boron Inorganic materials 0.000 abstract description 39
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 26
- 229910052710 silicon Inorganic materials 0.000 abstract description 26
- 239000010703 silicon Substances 0.000 abstract description 26
- 239000013078 crystal Substances 0.000 abstract description 23
- 239000012141 concentrate Substances 0.000 abstract description 4
- 239000012535 impurity Substances 0.000 abstract description 2
- 229920001296 polysiloxane Polymers 0.000 abstract 1
- 239000000126 substance Substances 0.000 description 14
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 8
- 238000001212 derivatisation Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 6
- 238000004821 distillation Methods 0.000 description 5
- -1 fluorine ions Chemical class 0.000 description 5
- 239000003463 adsorbent Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 4
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 4
- 239000005052 trichlorosilane Substances 0.000 description 4
- 238000001947 vapour-phase growth Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 108091006629 SLC13A2 Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 2
- 229960000907 methylthioninium chloride Drugs 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- WIZNWIPCUYSDLF-UHFFFAOYSA-N [B].Cl[SiH](Cl)Cl Chemical compound [B].Cl[SiH](Cl)Cl WIZNWIPCUYSDLF-UHFFFAOYSA-N 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007700 distillative separation Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/08—Compounds containing halogen
- C01B33/107—Halogenated silanes
- C01B33/10778—Purification
- C01B33/10784—Purification by adsorption
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
본 발명은 붕소 화합물 함유 클로로실란류에 불소 원소 함유 염을 작용시켜, 상기 붕소 화합물을 상기 불소 원소 함유 염에 흡착시키는 것을 특징으로 하는 클로로실란류 중의 붕소 화합물의 분리 방법에 관한 것이다. The present invention relates to a method for separating boron compounds in chlorosilanes, wherein a boron compound-containing chlorosilane is made to act on a fluorine element-containing salt to adsorb the boron compound to the fluorine element-containing salt.
본 발명에 의하면, 매우 간단한 조작으로 프로세스상 특별한 장치가 없어도 저가로 클로로실란류 중의 미량의 붕소를 제거하거나 농축할 수 있다. 또한, 실리콘 단결정에 있어서 고저항품의 공급이 가능해짐에 따라 고품위의 고전압 사일리스터 (thyristor:실리콘제어정류소자)를 확실하게 공급할 수 있음와 동시에, 불순물 원소의 도핑에 의해 종래 등급의 범위가 높아지게 된다. According to the present invention, it is possible to remove or concentrate a trace amount of boron in chlorosilanes at low cost without any special device in the process by a very simple operation. In addition, as high-resistance products can be supplied in silicon single crystals, high-quality high-voltage thyristors (silicon controlled rectifiers) can be reliably supplied and doping of impurity elements increases the range of conventional grades.
붕소 화합물, 클로로실란, 불소 원소 함유 염, 실리콘, 클로로실란류 증발용 조성물 Boron compounds, chlorosilanes, fluorine element-containing salts, silicones, chlorosilanes evaporation compositions
Description
본 발명은, 매우 간단한 조작으로 프로세스상 특별한 장치 없이 저가로 클로로실란류 중의 미량의 붕소 화합물을 제거하고 또는 붕소 화합물을 농축할 수 있는 클로로실란류 중의 붕소 화합물의 분리 방법, 및 클로로실란류 증발용 조성물에 관한 것이다.The present invention provides a method for separating boron compounds in chlorosilanes capable of removing trace amounts of boron compounds in chlorosilanes or concentrating the boron compounds at low cost without special equipment in the process by very simple operation, and for evaporating chlorosilanes. It relates to a composition.
실리콘의 디바이스로서의 특성을 직접적으로 결정하는 전기 저항은, 실리콘 단결정 중에 함유되는 주개 원소 (P, As 등의 5B족 원소)와 받개 원소 (B, A1 등의 3B족 원소)의 양에 따라서 결정되고 제어되고 있다. The electrical resistance which directly determines the characteristics of silicon as a device is determined in accordance with the amounts of donor elements (group 5B elements such as P and As) and acceptor elements (group 3B elements such as B and A1) contained in the silicon single crystal. It is controlled.
그런데, 실리콘 단결정을 제조하는 방법으로서, 실리콘 단결정상에서 클로로실란류를 이용하여 화학적 기상 성장을 수행하고 실리콘의 단결정을 성장시키는 방법이 알려져 있으나, 클로로실란류에는 통상 그 제조 공정상, 특히 원료 금속 규소 등으로부터의 붕소가 붕소 염화물 등 (주로 BC13)의 형태로 수천 ppb 정도 혼입되어 있다. 따라서, 이러한 클로로실란류를 증발시켜 실리콘 단결정에 공급할 경우 붕소 염화물도 동시에 증발되고 공급되어, 얻어지는 실리콘 단결정에 붕소가 혼입됨으로써 실리콘 단결정의 전기 저항이 낮아진다. By the way, as a method for producing a silicon single crystal, a method of performing chemical vapor phase growth using chlorosilanes on a silicon single crystal and growing a single crystal of silicon is known, but chlorosilanes are usually produced in the manufacturing process, especially raw metal silicon. Boron from the back is incorporated into the thousands of ppb in the form of boron chloride and the like (mainly BC1 3 ). Therefore, when the chlorosilanes are evaporated and supplied to the silicon single crystal, boron chloride is also evaporated and supplied at the same time, so that the boron is incorporated into the obtained silicon single crystal, thereby lowering the electrical resistance of the silicon single crystal.
이 경우, 붕소 이외의 원소는 비교적 용이하게 제거되지만, 실리콘 단결정을 생성하였을 때 전기 특성에 영향을 주는 도핑 원소인 붕소를 증류법, 흡착제법 등의 방법으로 클로로실란류로부터 충분히 제거할 수 없다. In this case, elements other than boron are relatively easily removed, but boron, which is a doping element that affects electrical properties when a silicon single crystal is produced, cannot be sufficiently removed from chlorosilanes by a distillation method or an adsorbent method.
예를 들면, 증류법에 의한 붕소의 제거시, 그 효과가 유효한 것은 % 오더까지이며, ppb는 물론, ppm 레벨 제거도 곤란하였다. For example, when boron is removed by distillation, the effect is effective up to% order, and it is difficult to remove pp levels as well as ppb.
또한, 붕소의 반응성을 이용하여 유도체화 시약을 첨가하고 반응시켜 클로로실란류와 증류 분리하는 방법이 있지만, 이 방법은 유도체화 효율이 낮고 유도체화 시약 및 반응 생성물과의 분리가 곤란한 경우가 많았다. 이 때문에, 가열, 환류하여 반응성을 높여 유도체화 효율을 높이는 방법도 제안되고 있으나, 또한 유도체화 효과는 낮고, 최종적으로는 이 유도체화 효과가 낮은 방법을 여러번 반복하는 일이 행하여졌었다. 따라서, 실리콘 단결정에 있어서, 1O,OOO Ω-cm의 고저항품인 고전압 사일리스터 (thyristor: 실리콘제어정류소자), 센서 등은 붕소 농도가 0.1 ppb 이하인 것이 요구됨으로써 종래의 방법으로는 이들 용도에 적용할 수 없었다. In addition, there is a method of distillative separation from chlorosilanes by adding and reacting a derivatization reagent using the reactivity of boron, but this method has a low derivatization efficiency and is often difficult to separate from the derivatization reagent and the reaction product. For this reason, a method of heating and refluxing to increase reactivity to increase derivatization efficiency has been proposed. However, a method of repeatedly deriving a low derivatization effect and finally having a low derivatization effect has been repeatedly performed. Therefore, in silicon single crystals, high voltage silistors (sensor controlled rectifiers), sensors, etc., which are high resistance products of 10, OO Ω-cm, are required to have a boron concentration of 0.1 ppb or less. Could not be applied.
본 발명은, 상기 사정에 비추어 이루어진 것으로, 매우 간단한 조작으로 프로세스상의 특별한 장치가 없어도 저가로 클로로실란류 중의 미량의 붕소 화합물을 제거하거나 붕소 화합물을 농축할 수 있는 클로로실란류 중의 붕소 화합물의 분리 방법, 및 클로로실란류 증발용 조성물을 제공하는 것을 목적으로 한다. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is a method for separating boron compounds in chlorosilanes that can remove a trace amount of boron compounds in chlorosilanes or concentrate the boron compounds at low cost even without a special device in the process by a very simple operation. And an object for evaporating chlorosilanes.
본 발명자들은, 상기 목적을 달성하기 위하여 예의 검토한 결과, 가스상 또는 액상인 클로로실란류에 상온에서 고상 흡착제인 불소 원소 함유 염류를 작용시키는 방법에 의해, 예를 들면 붕소 염화물을 미량 함유하는 클로로실란에 불소 원소 함유 염을 첨가한 후 이 클로로실란을 증발시키는 방법에 의해, 증발되는 클로로실란 중에는 실질적으로 붕소 염화물이 수반되지 않고, 증발 잔사 중에 붕소 염화물이 농축되고, 매우 간단한 조작으로 프로세스상의 특별한 장치 없이도 저가로 클로로실란류 중의 미량의 붕소를 제거하거나 클로로실란류로부터 붕소를 분리하여 농축할 수 있음을 발견하고, 본 발명을 완성하였다. MEANS TO SOLVE THE PROBLEM As a result of earnestly examining in order to achieve the said objective, the present inventors discovered that chlorosilane containing a trace amount of a boron chloride, for example by the method which makes fluorine element containing salt which is a solid state adsorption agent to normal gas phase or liquid chlorosilanes at normal temperature. By adding a fluorine element-containing salt to the chlorosilane, the chlorosilane to be evaporated is substantially free of boron chloride in the evaporated chlorosilane, and boron chloride is concentrated in the evaporation residue. The present invention has been found to be able to remove traces of boron in chlorosilanes at low cost or to separate and concentrate boron from chlorosilanes, thereby completing the present invention.
따라서, 본 발명은, Therefore, the present invention,
(1) 붕소 화합물 함유 클로로실란류에 NaF, KF, CaF2, MgF2, NH4F, BaF2, 불화트리페닐주석 또는 불화트리부틸주석인 불소 원소 함유 염을 작용시켜, 상기 붕소 화합물을 상기 불소 원소 함유 염에 흡착시키는 것을 특징으로 하는 클로로실란류 중의 붕소 화합물의 분리 방법, (1) A boron compound-containing chlorosilane is reacted with a fluorine element-containing salt such as NaF, KF, CaF 2 , MgF 2 , NH 4 F, BaF 2 , triphenyltin fluoride, or tributyltin fluoride to react the boron compound with the above-mentioned. A separation method of a boron compound in chlorosilanes, which is adsorbed to a fluorine element-containing salt,
(2) 붕소 화합물 함유 클로로실란류에 NaF, KF, CaF2, MgF2, NH4F, BaF2, 불화트리페닐주석 또는 불화트리부틸주석인 불소 원소 함유 염을 첨가한 후, 클로로실란류를 증발시키는 것을 특징으로 하는 클로로실란류 중의 붕소 화합물의 분리 방법, (2) After adding a fluorine-containing salt such as NaF, KF, CaF 2 , MgF 2 , NH 4 F, BaF 2 , triphenyltin fluoride, or tributyltin fluoride to the boron compound-containing chlorosilanes, the chlorosilanes were added. Separation method of boron compound in chlorosilanes characterized by evaporating,
(3) 붕소 화합물 함유 클로로실란류에 NaF, KF, CaF2, MgF2, NH4F, BaF2, 불화트리페닐주석 또는 불화트리부틸주석인 불소 원소 함유 염을 첨가하여 생성되는 것을 특징으로 하는 클로로실란류 증발용 조성물을 제공한다. (3) produced by adding fluorine-containing salts such as NaF, KF, CaF 2 , MgF 2 , NH 4 F, BaF 2 , triphenyltin fluoride, or tributyltin fluoride to boron compound-containing chlorosilanes; It provides a composition for evaporating chlorosilanes.
본 발명에 있어서, 클로로실란류 중의 붕소는 주로 BC13으로 존재하고, 예를 들면 클로로실란류에 NaF를 작용시킨 경우 클로로실란류 중에서 BC13은 NaF와 BC13-NaF와 같은 복합체를 만드는 것으로 생각된다. 이 경우, 클로로실란류는 무극성 용매이며, 첨가한 NaF에는 관여하지 않는다. In the present invention, boron in the chlorosilanes is mainly present as BC1 3 , for example, when NaF is acted on chlorosilanes, BC1 3 is considered to form a complex such as NaF and BC1 3 -NaF in chlorosilanes. do. In this case, chlorosilanes are nonpolar solvents and do not participate in the added NaF.
따라서, B(1S22S22P)와 C1(1S22S22P63S23P 5) 3원자와의 결합은, B의 SP2 혼성 궤도 3개(1S22S2PX2PY)가 C1의 3P 궤도 1개씩과 결합되어 있는데에 NaF가 첨가되면, 불소 이온 (1S22S22P5)는 염소 이온보다 반응성이 높고 이온 반경도 작기 때문에 입체 장해가 적으며 상호 작용이 발생하여 부가 반응 즉, 흡착 반응이 발생한다. Therefore, the combination of B (1S 2 2S 2 2P) and C1 (1S 2 2S 2 2P 6 3S 2 3P 5 ) triatoms is that three SP 2 hybrid orbits of B (1S 2 2S 2 PX 2 PY) are C1. When NaF is added to each of the 3P orbitals of fluorine ions, fluorine ions (1S 2 2S 2 2P 5 ) are more reactive than chlorine ions and have smaller ionic radii, resulting in less steric hindrance and interaction. , Adsorption reaction occurs.
이 반응이 치환 반응이 아니고, BC13-NaF 와 같은 복합체가 형성됨으로써 일어나는 부가 반응이라는 사실이, 하기와 같은 사실로부터 확인되었다. It was confirmed from the following fact that this reaction was not a substitution reaction but an addition reaction caused by the formation of a complex such as BC1 3 -NaF.
즉, 클로로실란류에 NaF를 첨가하고 가열에 의해 클로로실란류를 완전히 증발 제거한 후, 잔류물 (NaF) 중의 붕소 농도를 메틸렌 블루법에 의해 측정하였다. 이 때, 만일 치환 반응이 일어나고 있다면, BF3이 생성되고 비점이 -1Ol ℃이기 때문에 증발한 시점에서 분명히 휘산되었을 것이지만, 결과는 실험 개시 전에 존재한 붕소 농도와 동일치를 나타내었다. That is, after NaF was added to chlorosilanes and chlorosilanes were completely evaporated off by heating, the boron concentration in the residue (NaF) was measured by the methylene blue method. At this time, if a substitution reaction was taking place, BF 3 would have been produced and evaporated clearly at the time of evaporation because the boiling point was -10 ° C., but the results showed the same values as the boron concentrations that existed before the start of the experiment.
이하, 본 발명에 대하여 더욱 상세히 설명한다. Hereinafter, the present invention will be described in more detail.
본 발명의 클로로실란류 중의 붕소 화합물의 분리 방법은, 주로 BC13으로서 존재하는 붕소 염화물 등의 붕소 화합물을 미량, 통상 0.1 ppb 내지 1 중량%, 특히 O.1 ppb 내지 1O ppm 함유하는 클로로실란류에 불소 원소 함유 염류를 작용시키는 것이다. The separation method of the boron compound in the chlorosilanes of the present invention is a chlorosilane containing a trace amount of boron compounds such as boron chloride mainly present as BC1 3 , usually 0.1 ppb to 1% by weight, in particular 0.1 ppb to 10 ppm. Fluorine element-containing salts are caused to react.
본 발명에 있어서의 클로로실란류로서는, 디클로로실란, 트리클로로실란, 테트라클로로실란 등을 들 수 있다. Dichlorosilane, trichlorosilane, tetrachlorosilane, etc. are mentioned as chlorosilanes in this invention.
또한, 불소 원소 함유 염류로서는, 전해질 물질을 들 수 있으며, 구체적으로는, NaF, KF, CaF2, MgF2, NH4F, BaF2, 불화트리페닐주석 또는 불화트리부틸주석이다.Examples of the fluorine element-containing salts include an electrolyte substance, and specifically, NaF, KF, CaF 2 , MgF 2 , NH 4 F, BaF 2 , triphenyltin fluoride, or tributyltin fluoride.
이들 불소 원소 함유 염류의 첨가량은, 클로로실란류 중에 존재하는 붕소 농도에 특별히 관계 없으나, 붕소 농도와 1:1의 몰비 화학양론인 것이 바람직하고, 과잉 첨가하여도 상관없다. The addition amount of these fluorine element-containing salts is not particularly related to the boron concentration present in the chlorosilanes, but is preferably a molar ratio stoichiometric ratio of 1: 1 with the boron concentration, and may be added in excess.
본 발명에 있어서, 클로로실란류 중의 붕소 화합물을 제거하는 방법은 클로로실란류에 불소 원소 함유 염류를 첨가하고, 상온에서 가볍게 교반 후, 천천히 클로로실란류를 증발시킴으로써 행할 수 있다. 흡착제인 불소 원소 함유 염류는, 여과 또는 증류 (단발 증류로 충분)로 간단하게 회수할 수 있다. In this invention, the method of removing the boron compound in chlorosilanes can be performed by adding fluorine element containing salts to chlorosilanes, stirring lightly at normal temperature, and slowly evaporating chlorosilanes. Fluorine element-containing salts which are adsorbents can be easily recovered by filtration or distillation (single-shot distillation is sufficient).
또한, 원통 용기에 흡착제로서 불소 원소 함유 염류를 충전하여 클로로실란류를 통과시킴으로써 클로로실란류 중의 붕소 화합물을 흡착시킬 수 있기 때문에, 이러한 방법을 채용한 경우에는 흡착제의 회수 조작은 불필요하다. In addition, since the boron compound in the chlorosilanes can be adsorbed by filling a cylindrical container with an fluorine element-containing salt as an adsorbent and passing the chlorosilanes, the recovery operation of the adsorbent is unnecessary when such a method is employed.
또한, 불소 원소 함유 염류를 클로로실란류 중에 첨가한 후 클로로실란류를 실제로 사용하기까지 붕소에 의한 오염이 있을 것으로 생각될 경우에는, 그대로 불소 원소 함유 염류를 용기 중에 존재시켜 클로로실란류의 사용시에 클로로실란류를 단발 증류시킴으로써 사용할 수 있다. In addition, when fluorine element-containing salts are added to chlorosilanes and there is a contaminant caused by boron until the chlorosilanes are actually used, fluorine element-containing salts may be present in the container as it is. Chlorosilanes can be used by single distillation.
본 발명의 클로로실란류에 불소 원소 함유 염류를 첨가한 조성물은, 클로로실란류를 증발시켜, 예를 들면 통상법에 의해 실리콘 단결정을 성장시키는 목적으로 사용할 수 있으며, 이 경우 증발하는 클로로실란류에는 실질적으로 붕소 화합물이 수반되는 일이 없기 때문에 붕소를 실질적으로 함유하지 않는 고저항의 실리콘 단결정을 얻을 수 있다. The composition in which fluorine element-containing salts are added to the chlorosilanes of the present invention can be used for evaporating chlorosilanes, for example, to grow silicon single crystals by a conventional method. As a result, the boron compound is not accompanied by a high-resistance silicon single crystal that does not substantially contain boron.
또한, 본 발명에 의하면, 붕소 화합물이 불소 원소 함유 염류에 흡착하여 농축되기 때문에, 예를 들면 정량 분석에 있어서, 종래 도달하지 않았던 초미량 농도 영역에 있어서의 붕소 농도를 확실하게 정량할 수 있는 것이다. Further, according to the present invention, since the boron compound is concentrated by adsorption on fluorine element-containing salts, for example, the boron concentration in the ultra trace concentration region which has not been reached in the conventional quantitative analysis can be reliably quantified. .
이하, 실시예 및 비교예를 나타내어 본 발명을 구체적으로 설명하지만, 본 발명은 하기의 실시예에 제한되는 것은 아니다. 또한, 실시예 중 붕소 농도가 「0.1 ppb 이하」라는 기재는 본 발명의 방법에 의해 영속적으로 농축할 수 있기 때문에 농축비를 증가시키면 그 하한은 떨어지지만, 일단의 구획으로서「0.1 ppb 이하」라 한 것이다. Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited to the following Example. In addition, since the description that a boron concentration is "0.1 ppb or less" in an Example can be concentrated permanently by the method of this invention, if the concentration ratio is increased, the minimum will fall, but it is "0.1 ppb or less" as one part of a compartment. It is.
<실시예 1> <Example 1>
BC13이 붕소 농도로서 각각 100 ppm, 1 ppm, 10 ppb, 0.1 ppb인 트리클로로실란 50 g에 NaF (와코 쥰야꾸 고교(주) 제품)를 약 20 mg을 첨가하고, 상온에서 가볍게 교반한 후, 천천히 트리클로로실란 (신에츠 가가꾸 고교(주) 제품)을 증발시켜, 각 NaF 잔류물 중의 붕소 농도 (시료액 환산)와 유출액 중의 붕소 농도를 측정하였다. 결과를 표 1에 나타낸다. To 50 g of trichlorosilane having BC1 3 of 100 ppm, 1 ppm, 10 ppb, and 0.1 ppb as the boron concentration, about 20 mg of NaF (product of Wako Pure Chemical Industries, Ltd.) was added and stirred gently at room temperature. Trichlorosilane (manufactured by Shin-Etsu Chemical Co., Ltd.) was slowly evaporated to measure the boron concentration in each NaF residue (in terms of sample solution) and the boron concentration in the effluent. The results are shown in Table 1.
<실시예 2> <Example 2>
붕소 농도가 10 ppb 인 테트라클로로실란 50 g에 각종의 불소 원소 함유 염류 (와코 쥰야꾸 고교(주) 제품)을 첨가하여, 상온에서 가볍게 교반한 후, 천천히 테트라클로로실란 (신에츠 가가꾸 고교(주) 제품)을 증발시켜, 각 잔류물 중의 붕소 농도 (시료액 환산)과 유출액 중의 붕소 농도를 측정하였다. 결과를 표 2에 나타낸다. Various fluorine-containing salts (manufactured by Wako Pure Chemical Industries, Ltd.) were added to 50 g of tetrachlorosilane having a boron concentration of 10 ppb, and gently stirred at room temperature, followed by slowly stirring with tetrachlorosilane (Shin-Etsu Chemical Co., Ltd.) ) Product) was evaporated to measure the boron concentration (in terms of sample solution) and the boron concentration in the effluent. The results are shown in Table 2.
<실시예 3> <Example 3>
디클로로실란 (신에츠 가가꾸 고교(주) 제품) 50 kg에 NaF (와코 쥰야꾸 고교(주) 제품) 20 g을 첨가하고, 상온에서 교반 후, 가열 기화시켜, 수소와 혼합하 고, 약 120O ℃로 가열하여 실리콘 단결정상으로 화학적 기상 성장을 행하여 실리콘의 단결정을 성장시켰다. · To 50 kg of dichlorosilane (manufactured by Shin-Etsu Chemical Co., Ltd.), 20 g of NaF (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and after stirring at room temperature, the mixture was heated and vaporized, mixed with hydrogen, and heated to about 120 ° C. The chemical vapor phase growth was carried out by heating to a silicon single crystal phase to grow a single crystal of silicon. ·
이 때에 얻어진 단결정부의 저항치는 -12,000 Ω-cm 이었다. The resistance value of the single crystal portion obtained at this time was -12,000 Ω-cm.
<실시예 4> <Example 4>
트리클로로실란 (신에츠 가가꾸 고교(주) 제품) 50 kg에 NaF (와코 쥰야꾸 고교(주) 제품) 20 g을 첨가하여, 상온으로 교반 후, 가열 기화시켜, 수소와 혼합하고, 약 1200 ℃로 가열하여 실리콘 단결정상으로 화학적 기상 성장을 행하여, 실리콘의 단결정을 성장시켰다. To 50 kg of trichlorosilane (manufactured by Shin-Etsu Chemical Co., Ltd.), 20 g of NaF (manufactured by Wako Pure Chemical Industries, Ltd.) was added, stirred at room temperature, and then vaporized by heating, mixed with hydrogen, and about 1200 ° C. The chemical vapor phase growth was carried out by heating to a silicon single crystal phase to grow a single crystal of silicon.
이 때 얻어진 단결정부의 저항치는, -11,OOO Ω-cm 이었다. The resistance value of the single crystal part obtained at this time was -11, OOOO-cm.
<실시예 5> Example 5
테트라클로로실란 (신에츠 가가꾸 고교(주) 제품) 50 kg에 NaF (와코 쥰야꾸고교(주) 제품) 20 g을 첨가하여, 상온에서 교반 후, 가열 기화시켜, 수소와 혼합하고, 약 1200 ℃로 가열하여 실리콘 단결정상으로 화학적 기상 성장을 행하여, 실리콘의 단결정을 성장시켰다. To 50 kg of tetrachlorosilane (manufactured by Shin-Etsu Chemical Co., Ltd.), 20 g of NaF (manufactured by Wako Pure Chemical Industries, Ltd.) was added, stirred at room temperature, heated and vaporized, mixed with hydrogen, and about 1200 ° C. The chemical vapor phase growth was carried out by heating to a silicon single crystal phase to grow a single crystal of silicon.
이 때 얻어진 단결정부의 저항치는 -15,000 Ω-cm 이었다. The resistance value of the single crystal portion obtained at this time was -15,000 Ω-cm.
<실시예 6><Example 6>
테트라클로로실란 (신에츠 가가꾸 고교(주) 제품) 50 g에 NaF (와코 쥰야꾸고교(주) 제품) 20 mg를 첨가하여, 상온에서 교반 후, 가열하여 테트라클로로실란을 기화시켜, 각 잔류물 중의 붕소를 메틸렌블루에 의해 정량하였다. To 50 g of tetrachlorosilane (manufactured by Shin-Etsu Chemical Co., Ltd.), 20 mg of NaF (manufactured by Wako Pure Chemical Industries, Ltd.) was added, stirred at room temperature, heated to vaporize tetrachlorosilane, and each residue Boron in water was quantified by methylene blue.
또한, 정확성을 확인하기 위하여, 붕소의 기지량을 첨가하고 정량하였다. In addition, to confirm the accuracy, a known amount of boron was added and quantified.
<비교예 1>Comparative Example 1
NaF 대신에 NaC1 (와코 쥰야꾸 고교 (주) 제품), NaBr (와코 쥰야꾸 고교(주) 제품)를 각각 20 mg 첨가한 것 이외는 실시예 1과 마찬가지로 잔류물 중 및 유출액 중의 붕소 농도를 측정하였다. 결과를 표 4에 나타낸다. The boron concentration in the residue and in the effluent was measured in the same manner as in Example 1 except that 20 mg of NaC1 (manufactured by Wako Pure Chemical Industries, Ltd.) and NaBr (manufactured by Wako Pure Chemical Industries Ltd.) were respectively added instead of NaF. It was. The results are shown in Table 4.
<비교예 2> Comparative Example 2
NaF 대신에 NaC1 (와코 쥰야꾸 고교(주) 제품)로 한 것 이외는 실시예 3과 마찬가지로 하여 얻어진 실리콘의 단결정부의 저항치는 10 Ω-cm이었다. The resistance value of the single crystal portion of silicon obtained in the same manner as in Example 3 except that NaC1 (made by Wako Pure Chemical Industries, Ltd.) was used instead of NaF was 10 Ω-cm.
본 발명에 의하면 매우 간단한 조작으로 프로세스상 특별한 장치가 없어도 저가로 클로로실란류 중의 미량의 붕소를 제거 또는 농축할 수 있다. 또한, 실리콘 단결정에 있어서 고저항품의 공급이 가능해짐에 따라 고품위의 고전압 사일리스터 (thyristor: 실리콘제어정류소자)를 확실하게 공급할 수 있음와 동시에, 불순물 원소의 도핑에 의해 종래 등급의 범위가 높아지게 된다. 또한, 종래에는 본 발명과 같은 미량 붕소의 제거 방법이 없었기 때문에, 일렉트로닉스용 클로로실란을 합성하기 위해서는, 붕소 농도가 매우 낮은 금속 규소를 엄선하여 사용해야만 하였지 만 본 발명의 방법에 의해 모든 종류의 금속 규소를 사용할 수 있게 되었다. According to the present invention, it is possible to remove or concentrate a trace amount of boron in chlorosilanes at a low cost without any special device in the process by a very simple operation. In addition, as high-resistance products can be supplied in silicon single crystals, high-quality high-voltage thyristors (silicon controlled rectifiers) can be reliably supplied, and the range of conventional grades is increased by doping of impurity elements. In addition, since there was no conventional method for removing trace boron as in the present invention, in order to synthesize chlorosilanes for electronics, it was necessary to carefully select and use metal silicon having a very low boron concentration. Silicon became available.
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17081799A JP3734009B2 (en) | 1999-06-17 | 1999-06-17 | Method for separating boron compounds from chlorosilanes and composition for evaporating chlorosilanes |
JP99-170817 | 1999-06-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010049557A KR20010049557A (en) | 2001-06-15 |
KR100721090B1 true KR100721090B1 (en) | 2007-05-23 |
Family
ID=15911893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020000033126A Expired - Fee Related KR100721090B1 (en) | 1999-06-17 | 2000-06-16 | Separation Process of Boron Compounds in Chlorosilanes and Composition for Evaporating Chlorosilanes |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3734009B2 (en) |
KR (1) | KR100721090B1 (en) |
TW (1) | TW572848B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2215688C2 (en) * | 2001-11-13 | 2003-11-10 | Федеральное государственное унитарное предприятие "Сибирский химический комбинат" | Method for extraction of boron trifluoride from gaseous mixtures |
JP4588396B2 (en) * | 2003-09-25 | 2010-12-01 | 昭和電工株式会社 | Method for producing tetrafluorosilane |
JP4328303B2 (en) * | 2004-09-16 | 2009-09-09 | 株式会社サンリック | Polycrystalline silicon raw material for photovoltaic power generation and silicon wafer for photovoltaic power generation |
JP4714196B2 (en) | 2007-09-05 | 2011-06-29 | 信越化学工業株式会社 | Method for producing trichlorosilane and method for producing polycrystalline silicon |
JP4659798B2 (en) | 2007-09-05 | 2011-03-30 | 信越化学工業株式会社 | Method for producing trichlorosilane |
JP4714197B2 (en) | 2007-09-05 | 2011-06-29 | 信越化学工業株式会社 | Method for producing trichlorosilane and method for producing polycrystalline silicon |
JP4714198B2 (en) | 2007-09-05 | 2011-06-29 | 信越化学工業株式会社 | Purification method of chlorosilanes |
JP5542026B2 (en) | 2010-10-27 | 2014-07-09 | 信越化学工業株式会社 | Purification method of chlorosilanes |
DE102014013250B4 (en) * | 2014-09-08 | 2021-11-25 | Christian Bauch | Process for the purification of halogenated oligosilanes |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4224040A (en) | 1977-12-05 | 1980-09-23 | Smiel S.P.A. | Process for the purification of chlorosilanes |
US4755370A (en) | 1982-03-18 | 1988-07-05 | General Electric Company | Purification of silicon halides |
JPH0437602A (en) * | 1990-05-30 | 1992-02-07 | Kawasaki Steel Corp | Method for refining silicon |
JPH04300206A (en) * | 1991-03-28 | 1992-10-23 | Osaka Titanium Co Ltd | Silicon chloride purification method |
-
1999
- 1999-06-17 JP JP17081799A patent/JP3734009B2/en not_active Expired - Fee Related
-
2000
- 2000-06-16 KR KR1020000033126A patent/KR100721090B1/en not_active Expired - Fee Related
- 2000-06-16 TW TW89111887A patent/TW572848B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4224040A (en) | 1977-12-05 | 1980-09-23 | Smiel S.P.A. | Process for the purification of chlorosilanes |
US4755370A (en) | 1982-03-18 | 1988-07-05 | General Electric Company | Purification of silicon halides |
JPH0437602A (en) * | 1990-05-30 | 1992-02-07 | Kawasaki Steel Corp | Method for refining silicon |
JPH04300206A (en) * | 1991-03-28 | 1992-10-23 | Osaka Titanium Co Ltd | Silicon chloride purification method |
Also Published As
Publication number | Publication date |
---|---|
TW572848B (en) | 2004-01-21 |
KR20010049557A (en) | 2001-06-15 |
JP3734009B2 (en) | 2006-01-11 |
JP2001002407A (en) | 2001-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI580710B (en) | Method for preparing halogenated polysilane | |
CA1079679A (en) | Process for purifying halogenosilanes and halogenogermanes | |
US20110114469A1 (en) | Process and System for the Purification of Trichlorosilane and Silicon Tetrachloride | |
KR100501049B1 (en) | PURIFICATION OF GROUP IVb METAL HALIDES | |
WO2012056621A1 (en) | Method for purifying chlorosilanes | |
KR100721090B1 (en) | Separation Process of Boron Compounds in Chlorosilanes and Composition for Evaporating Chlorosilanes | |
KR102504143B1 (en) | Method for purifying halogenated oligosilanes | |
US4481178A (en) | Purification of chlorosilanes | |
US3188168A (en) | Purification of silicon compounds | |
KR20170027824A (en) | Method for purifying chlorosilane | |
JP3823400B2 (en) | Method for producing high purity alkoxysilane | |
WO2011024257A1 (en) | Purification of chlorosilane using amine compound | |
US2812235A (en) | Method of purifying volatile compounds of germanium and silicon | |
JP2015113250A (en) | Method for purifying tetrachlorosilane | |
JPH0742297B2 (en) | Method for producing dialkylzinc compounds | |
JP2599855B2 (en) | Purification method of tantalum alkoxide | |
US3996302A (en) | Process for purifying 1,1,1-trifluoro-2-chloro-2-bromoethane | |
JP2536360B2 (en) | Purification method of chlorosilanes | |
JPS6333422B2 (en) | ||
JPH0436090B2 (en) | ||
JPH0151445B2 (en) | ||
JPH0152326B2 (en) | ||
JPS59137312A (en) | Purification of chlorosilane | |
JPH09255307A (en) | Method for producing hydrochloric acid aqueous solution | |
JP2001048519A (en) | Purification of fluorosilane gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20000616 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20050222 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20000616 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20060525 Patent event code: PE09021S01D |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20061123 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20070426 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20070516 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20070517 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
G170 | Re-publication after modification of scope of protection [patent] | ||
PG1701 | Publication of correction | ||
PR1001 | Payment of annual fee |
Payment date: 20100512 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20110421 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20120423 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20130502 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20130502 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20140418 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20140418 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20150416 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20150416 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20160418 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20160418 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20170421 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20170421 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20180502 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20180502 Start annual number: 12 End annual number: 12 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20200227 |