JP3734009B2 - Method for separating boron compounds from chlorosilanes and composition for evaporating chlorosilanes - Google Patents
Method for separating boron compounds from chlorosilanes and composition for evaporating chlorosilanes Download PDFInfo
- Publication number
- JP3734009B2 JP3734009B2 JP17081799A JP17081799A JP3734009B2 JP 3734009 B2 JP3734009 B2 JP 3734009B2 JP 17081799 A JP17081799 A JP 17081799A JP 17081799 A JP17081799 A JP 17081799A JP 3734009 B2 JP3734009 B2 JP 3734009B2
- Authority
- JP
- Japan
- Prior art keywords
- chlorosilanes
- boron
- naf
- single crystal
- boron compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/08—Compounds containing halogen
- C01B33/107—Halogenated silanes
- C01B33/10778—Purification
- C01B33/10784—Purification by adsorption
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、極めて簡単な操作で、プロセス上の特別な装置がなくても安価に、しかもクロロシラン類中の微量のボロン化合物を除去し又はボロン化合物を濃縮することができるクロロシラン類中のボロン化合物の分離方法、及びクロロシラン類蒸発用組成物に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
シリコンのデバイスとしての特性を直接的に決定している電気抵抗は、シリコン単結晶中に含まれるドナー元素(P、Asなどの5B属元素)とアクセプター元素(B、Alなどの3B属元素)の量によって決定、制御されている。
【0003】
ところで、シリコン単結晶を製造する方法として、シリコン単結晶上でクロロシラン類を用いて化学的気相成長を行い、シリコンの単結晶を成長させる方法が知られているが、クロロシラン類には、通常その製造の過程、特に原料金属珪素などからボロンがボロン塩化物等(主としてBCl3)として数千ppb程度混入しており、このようなクロロシラン類を蒸発させてシリコン単結晶に供給した場合、ボロン塩化物も同時に蒸発、供給され、得られるシリコン単結晶にボロンが混入し、その電気抵抗が低いものになる。
【0004】
この場合、ボロン以外の元素は比較的除去が容易であるが、シリコン単結晶を生成した時の電気特性に影響を与えるドーパント元素であるボロンについては、蒸留法、吸着剤法等の方法では、クロロシラン類からボロンを充分に除去することができない。
【0005】
例えば、ボロンの除去に関して、蒸留法においてその効果が有効なのは、%オーダーまでであり、ppbは勿論、ppmレベル除去も困難であった。
【0006】
また、ボロンの反応性を利用し、誘導体化試薬を加え反応させてクロロシラン類と蒸留分離する方法があるが、この方法は誘導体化効率が低く、誘導体化試薬及び反応生成物との分離が困難である場合が多かった。このため、加熱、還流して反応性を高めて誘導体化効率をあげる方法も提案されているが、なお誘導体化効果は低く、最終的には、この誘導体化効果が低い方法を何回も繰り返すことが行われていた。従って、シリコン単結晶において、10,000Ω−cmの高抵抗品である、高電圧サイリスタ、センサー等は、ボロン濃度が0.1ppb以下であることが要求されることから、従来の方法ではこれらの用途には適用できなかった。
【0007】
本発明は、上記事情に鑑みなされたもので、極めて簡単な操作で、プロセス上の特別な装置がなくても安価に、しかもクロロシラン類中の微量のボロン化合物を除去又はボロン化合物を濃縮することができるクロロシラン類中のボロン化合物の分離方法、及びクロロシラン類蒸発用組成物を提供することを目的とする。
【0008】
【課題を解決するための手段及び発明の実施の形態】
本発明者らは、上記目的を達成するために鋭意検討した結果、ガス状又は液体であるクロロシラン類に、常温で固体の吸着剤であるフッ素元素を含む塩類を作用させること、例えばボロン塩化物を微量含有するクロロシランにフッ素元素を含む塩を添加した後、このクロロシランを蒸発させた場合、蒸発するクロロシラン中には実質的にボロン塩化物が随伴せず、蒸発残渣中にボロン塩化物が濃縮し、従って、極めて簡単な操作で、プロセス上の特別な装置がなくても安価に、しかもクロロシラン類中の微量のボロンを除去又はクロロシラン類から分離、ボロンを濃縮し得ることを知見し、本発明をなすに至ったものである。
【0009】
従って、本発明は、
(1)ボロン化合物を含有するクロロシラン類にNaF、KF、CaF2、MgF2、NH4F、BaF2、フッ化トリフェニルスズ又はフッ化トリブチルスズであるフッ素元素を含む塩を作用させて、上記ボロン化合物を上記フッ素元素を含む塩に吸着させることを特徴とするクロロシラン類中のボロン化合物の分離方法、
(2)ボロン化合物を含有するクロロシラン類にNaF、KF、CaF2、MgF2、NH4F、BaF2、フッ化トリフェニルスズ又はフッ化トリブチルスズであるフッ素元素を含む塩を添加した後、クロロシラン類を蒸発させることを特徴とするクロロシラン類中のボロン化合物の分離方法、
(3)ボロン化合物を含有するクロロシラン類にNaF、KF、CaF2、MgF2、NH4F、BaF2、フッ化トリフェニルスズ又はフッ化トリブチルスズであるフッ素元素を含む塩を添加してなることを特徴とするクロロシラン類蒸発用組成物
を提供する。
【0010】
本発明において、クロロシラン類中のボロンは主としてBCl3で存在し、例えばクロロシラン類にNaFを作用させた場合、クロロシラン類中でBCl3はNaFとBCl3−NaFのような複合体を作るものと考えられる。この場合、クロロシラン類は無極性溶媒であり、添加したNaFには関与しない。
【0011】
従って、B(1S22S22P)とCl(1S22S22P63S23P5)3原子との結合が、BのSP2混成軌道3個(1S22S2PX2PY)がClの3P軌道1つずつと結合しているところにNaFが添加されると、フッ素イオン(1S22S22P5)は塩素イオンよりも反応性が高く、イオン半径も小さいため立体障害が少なく、相互作用が発生して付加反応即ち、吸着能が発生する。
【0012】
この反応が置換反応ではなく、BCl3−NaFのような複合体が形成されることにより起こる付加反応であることが、以下の知見から確認された。
【0013】
即ち、クロロシラン類にNaFを添加して、加熱によりクロロシラン類を完全に蒸発除去した後、残留物(NaF)中のボロン濃度をメチレンブルー法により測定したところ、もし置換反応が起きていればBF3が生成され、沸点が−101℃のため蒸発した時点で揮散したはずであるが、結果は実験開始前に存在したボロン濃度と同一値を示したものである。
【0014】
以下、本発明につき更に詳しく説明する。
本発明のクロロシラン類中のボロン化合物の分離方法は、主としてBCl3として存在するボロン塩化物などのボロン化合物を微量、通常0.1ppb〜1重量%、特に0.1ppb〜10ppm含有するクロロシラン類にフッ素元素を含む塩類を作用させるものである。
【0015】
本発明におけるクロロシラン類としては、ジクロロシラン、トリクロロシラン、テトラクロロシラン等が挙げられる。
【0016】
また、フッ素元素を含む塩としては、電解質物質が挙げられ、具体的には、NaF、KF、CaF2、MgF2、NH4F、BaF2、フッ化トリフェニルスズ又はフッ化トリブチルスズである。
【0017】
これらのフッ素元素を含む塩類の添加量は、クロロシラン類中に存在するボロン濃度に特に関係ないが、ボロン濃度と1:1のモル比化学量論であることが好ましく、過剰に加えても構わない。
【0018】
本発明において、クロロシラン類中のボロン化合物を除去する方法は、クロロシラン類にフッ素元素を含む塩類を添加し、常温で軽く撹拌後、ゆっくりとクロロシラン類を蒸発させることにより行うことができる。吸着剤であるフッ素元素を含む塩類は、ろ過又は蒸留(単発蒸留で十分)で簡単に回収できる。
【0019】
また、円筒容器に吸着剤としてフッ素元素を含む塩類を充填して、クロロシラン類を通過させることにより、クロロシラン類中のボロン化合物を吸着させることができるため、このような方法を採用した場合には吸着剤の回収操作は不要である。
【0020】
なお、フッ素元素を含む塩類をクロロシラン類中に添加した後、クロロシラン類を実際に使用するまでの間、ボロンによる汚染が考えられる場合は、そのままフッ素元素を含む塩類を容器中に存在させ、クロロシラン類の使用時にクロロシラン類を単発蒸留させることにより使用することができる。
【0021】
本発明のクロロシラン類にフッ素元素を含む塩類を添加した組成物は、クロロシラン類を蒸発させて、例えば常法によりシリコン単結晶を成長させる目的に使用することができ、この場合蒸発するクロロシラン類には実質的にボロン化合物が随伴されることがないため、ボロンを実質的に含まない、高抵抗のシリコン単結晶を得ることができる。
【0022】
また、本発明によれば、ボロン化合物がフッ素元素を含む塩類に吸着して濃縮されるので、例えば定量分析において、従来到達し得なかった超微量濃度領域におけるボロン濃度を確実に定量することができるものである。
【0023】
【実施例】
以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、実施例中、ボロン濃度が「0.1ppb以下」である旨の記載は、本発明の方法により永続的に濃縮が可能であるため、濃縮比を増せば、その下限は下がるものであるが、一応の区切りとして、「0.1ppb以下」としたものである。
【0024】
[実施例1]
BCl3がボロン濃度としてそれぞれ100ppm、1ppm、10ppb、0.1ppbであるトリクロロシラン50gにNaF(和光純薬工業(株)製)を約20mgを添加し、常温で軽く撹拌後、ゆっくりとトリクロロシラン(信越化学工業(株)製)を蒸発させて、各NaF残留物中のボロン濃度(試料液換算)と留出液中のボロン濃度を測定した。結果を表1に示す。
【0025】
【表1】
【0026】
[実施例2]
ボロン濃度が10ppbであるテトラクロロシラン50gに各種のフッ素元素を含む塩類(和光純薬工業(株)製)を添加し、常温で軽く撹拌後、ゆっくりとテトラクロロシラン(信越化学工業(株)製)を蒸発させ、各残留物中のボロン濃度(試料液換算)と留出液中のボロン濃度を測定した。結果を表2に示す。
【0027】
【表2】
【0028】
[実施例3]
ジクロロシラン(信越化学工業(株)製)50kgにNaF(和光純薬工業(株)製)20gを加え、常温で撹拌後、加熱し気化させ、水素と混合し、約1200℃に加熱してシリコン単結晶上で化学的気相成長を行い、シリコンの単結晶を成長させた。
この時に得られた単結晶部の抵抗値は、−12,000Ω−cmであった。
【0029】
[実施例4]
トリクロロシラン(信越化学工業(株)製)50kgにNaF(和光純薬工業(株)製)20gを加え、常温で撹拌後、加熱し気化させ、水素と混合し、約1200℃に加熱してシリコン単結晶上で化学的気相成長を行い、シリコンの単結晶を成長させた。
この時に得られた単結晶部の抵抗値は、−11,000Ω−cmであった。
【0030】
[実施例5]
テトラクロロシラン(信越化学工業(株)製)50kgにNaF(和光純薬工業(株)製)20gを加え、常温で撹拌後、加熱し気化させ、水素と混合し、約1200℃に加熱してシリコン単結晶上で化学的気相成長を行い、シリコンの単結晶を成長させた。
この時に得られた単結晶部の抵抗値は−15,000Ω−cmであった。
【0031】
[実施例6]
テトラクロロシラン(信越化学工業(株)製)50gにNaF(和光純薬工業(株)製)20mgを加え、常温で撹拌後、加熱しテトラクロロシランを気化させ、各残留物中のボロンをメチレンブルーにより定量した。
なお、正確性を確認するために、ボロンの既知量を添加し定量した。
【0032】
【表3】
【0033】
[比較例1]
NaFの代わりにNaCl(和光純薬工業(株)製)、NaBr(和光純薬工業(株)製)をそれぞれ20mg添加した以外は実施例1と同様に残留物中及び留出液中のボロン濃度を測定した。結果を表4に示す。
【0034】
【表4】
【0035】
[比較例2]
NaFの代わりにNaCl(和光純薬工業(株)製)とした以外は実施例3と同様にして得られたシリコンの単結晶部の抵抗値は、10Ω−cmであった。
【0036】
【発明の効果】
本発明によれば、極めて簡単な操作で、プロセス上の特別な装置がなくても安価に、しかも微量のクロロシラン類中のボロンを除去又は濃縮することができる。また、シリコン単結晶において高抵抗品の供給が可能になることにより、高品位の高電圧サイリスタが確実に供給できると共に、不純物元素のドーピングにより従来グレードの範囲が広がる。更に、従来本発明のような微量ボロンも除去する方法がなかったため、エレクトロニクス用クロロシランを合成するためには、極力ボロン濃度の低い金属珪素を厳選して使用しなければならなかったが、本発明の方法によりあらゆる種類の金属珪素を使用することが可能になった。[0001]
BACKGROUND OF THE INVENTION
The present invention is a boron compound in chlorosilanes that can be removed by a very simple operation at low cost without special process equipment, and can remove a trace amount of boron compound in chlorosilanes or concentrate the boron compound. And a composition for evaporating chlorosilanes.
[0002]
[Prior art and problems to be solved by the invention]
The electrical resistance that directly determines the characteristics of silicon as a device is the donor element (group 5B element such as P and As) and acceptor element (group 3B element such as B and Al) contained in the silicon single crystal. Is determined and controlled by the amount of
[0003]
By the way, as a method of manufacturing a silicon single crystal, a method of growing a silicon single crystal by performing chemical vapor deposition using chlorosilanes on a silicon single crystal is known. In the manufacturing process, especially when boron is mixed in about several thousand ppb as boron chloride or the like (mainly BCl 3 ) from raw metal silicon, etc., when such chlorosilanes are evaporated and supplied to a silicon single crystal, Chloride is also evaporated and supplied at the same time, and boron is mixed into the resulting silicon single crystal, resulting in a low electrical resistance.
[0004]
In this case, elements other than boron are relatively easy to remove, but boron, which is a dopant element that affects the electrical characteristics when a silicon single crystal is formed, is a method such as a distillation method or an adsorbent method. Boron cannot be sufficiently removed from chlorosilanes.
[0005]
For example, regarding the removal of boron, the effect of the distillation method is effective up to the% order, and it is difficult to remove ppm level as well as ppb.
[0006]
In addition, there is a method of distilling and separating chlorosilanes by adding a derivatization reagent and reacting using the reactivity of boron, but this method has low derivatization efficiency and is difficult to separate from the derivatization reagent and the reaction product. It was often the case. For this reason, a method for increasing the derivatization efficiency by increasing the reactivity by heating and refluxing has been proposed, but the derivatization effect is still low, and finally, the method having a low derivatization effect is repeated many times. Things were going on. Accordingly, high voltage thyristors, sensors, etc., which are high resistance products of 10,000 Ω-cm in a silicon single crystal, are required to have a boron concentration of 0.1 ppb or less. It could not be applied for use.
[0007]
The present invention has been made in view of the above circumstances, and removes a trace amount of a boron compound in a chlorosilane or concentrates the boron compound at a low cost even without a special apparatus in the process by a very simple operation. An object of the present invention is to provide a method for separating boron compounds in chlorosilanes and a composition for evaporating chlorosilanes.
[0008]
Means for Solving the Problem and Embodiment of the Invention
As a result of diligent studies to achieve the above object, the present inventors have made chlorosilanes that are gaseous or liquid to act with salts containing fluorine element that is a solid adsorbent at room temperature, such as boron chloride. When a salt containing fluorine element is added to a chlorosilane containing a trace amount of chlorosilane, and then the chlorosilane is evaporated, boron chloride is not substantially accompanied by the evaporated chlorosilane, and boron chloride is concentrated in the evaporation residue. Therefore, it has been found that it is possible to concentrate boron easily by removing a trace amount of boron in chlorosilanes or separating it from chlorosilanes at a low cost without special equipment in the process, with an extremely simple operation. This has led to the invention.
[0009]
Therefore, the present invention
(1) A salt containing a fluorine element which is NaF, KF, CaF 2 , MgF 2 , NH 4 F, BaF 2 , triphenyltin fluoride or tributyltin fluoride is allowed to act on chlorosilanes containing a boron compound, and A method for separating a boron compound in chlorosilanes, wherein the boron compound is adsorbed on the salt containing the fluorine element;
(2) NaF to chlorosilanes containing a boron compound, KF, CaF 2, MgF 2 , NH 4 F, BaF 2, after addition of salt containing a fluorine element is fluoride triphenyltin fluoride or tributyltin, chlorosilanes A method for separating boron compounds in chlorosilanes, characterized in that
(3) NaF to chlorosilanes containing a boron compound, KF, CaF 2, MgF 2 , NH 4 F, BaF 2, that obtained by adding a salt containing a fluorine element is fluoride triphenyltin fluoride or tributyltin A composition for evaporating chlorosilanes is provided.
[0010]
In the present invention, as boron in chlorosilanes present primarily BCl 3, for example, when allowed to act NaF to chlorosilanes, BCl 3 in the chlorosilanes in the making complexes such as NaF and BCl 3 -NaF Conceivable. In this case, chlorosilanes are nonpolar solvents and do not participate in the added NaF.
[0011]
Therefore, the bond between B (1S 2 2S 2 2P) and Cl (1S 2 2S 2 2P 6 3S 2 3P 5 ) 3 atoms is the same, and three SP 2 hybrid orbitals (1S 2 2S 2 PX 2 PY) of B are Cl. When NaF is added to each of the 3P orbitals bonded to each other, fluorine ions (1S 2 2S 2 2P 5 ) are more reactive than chlorine ions and have a smaller ionic radius, resulting in less steric hindrance, An interaction occurs to cause an addition reaction, that is, an adsorption capacity.
[0012]
It was confirmed from the following findings that this reaction is not a substitution reaction but an addition reaction caused by the formation of a complex such as BCl 3 —NaF.
[0013]
That is, after NaF was added to chlorosilanes and chlorosilanes were completely evaporated and removed by heating, the boron concentration in the residue (NaF) was measured by the methylene blue method. If a substitution reaction had occurred, BF 3 , And the boiling point should be volatilized at −101 ° C., and it should have been volatilized, but the result is the same value as the boron concentration present before the start of the experiment.
[0014]
Hereinafter, the present invention will be described in more detail.
The method for separating boron compounds in chlorosilanes of the present invention is based on chlorosilanes containing a small amount of boron compounds such as boron chloride mainly present as BCl 3 , usually 0.1 ppb to 1 wt%, especially 0.1 ppb to 10 ppm. A salt containing a fluorine element is allowed to act.
[0015]
Examples of chlorosilanes in the present invention include dichlorosilane, trichlorosilane, and tetrachlorosilane.
[0016]
Examples of the salt containing elemental fluorine include electrolyte substances, and specifically, NaF, KF, CaF 2 , MgF 2 , NH 4 F, BaF 2 , triphenyltin fluoride, or tributyltin fluoride.
[0017]
The addition amount of these fluorine-containing salts is not particularly related to the boron concentration present in the chlorosilanes, but is preferably a molar ratio stoichiometry of 1: 1 with the boron concentration, and may be added in excess. Absent.
[0018]
In the present invention, the boron compound in the chlorosilanes can be removed by adding a salt containing a fluorine element to the chlorosilanes, stirring lightly at room temperature, and slowly evaporating the chlorosilanes. Salts containing fluorine element as an adsorbent can be easily recovered by filtration or distillation (single distillation is sufficient).
[0019]
In addition, since the boron compound in the chlorosilanes can be adsorbed by filling the cylindrical container with a salt containing fluorine element as an adsorbent and allowing the chlorosilanes to pass through, when such a method is adopted, There is no need to collect the adsorbent.
[0020]
In addition, after adding salts containing fluorine element to chlorosilanes, until contamination with boron is considered until chlorosilanes are actually used, salts containing fluorine element are allowed to exist in the container as they are. The chlorosilanes can be used by single distillation during use.
[0021]
The composition in which the salt containing fluorine element is added to the chlorosilanes of the present invention can be used for the purpose of evaporating the chlorosilanes, for example, for growing silicon single crystals by a conventional method. Since no boron compound is substantially accompanied, a high-resistance silicon single crystal substantially free of boron can be obtained.
[0022]
In addition, according to the present invention, since the boron compound is adsorbed and concentrated on the salt containing fluorine element, for example, in quantitative analysis, it is possible to reliably quantify the boron concentration in the ultra-trace concentration region that could not be reached conventionally. It can be done.
[0023]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In the examples, the statement that the boron concentration is “0.1 ppb or less” can be permanently concentrated by the method of the present invention, and therefore the lower limit is lowered if the concentration ratio is increased. However, “0.1 ppb or less” is used as a temporary delimiter.
[0024]
[Example 1]
BCl 3, respectively 100ppm as boron concentration, 1 ppm, 10 ppb, was added trichlorosilane 50g in NaF (manufactured by Wako Pure Chemical Industries, Ltd.) to about 20mg is 0.1 ppb, after gently stirred at room temperature, slowly trichlorosilane (Shin-Etsu Chemical Co., Ltd.) was evaporated and the boron concentration in each NaF residue (sample liquid conversion) and the boron concentration in the distillate were measured. The results are shown in Table 1.
[0025]
[Table 1]
[0026]
[Example 2]
Salts containing various fluorine elements (manufactured by Wako Pure Chemical Industries, Ltd.) are added to 50 g of tetrachlorosilane having a boron concentration of 10 ppb, and after gently stirring at room temperature, tetrachlorosilane (manufactured by Shin-Etsu Chemical Co., Ltd.) is slowly added. Was evaporated, and the boron concentration in each residue (sample solution equivalent) and the boron concentration in the distillate were measured. The results are shown in Table 2.
[0027]
[Table 2]
[0028]
[Example 3]
Add 20 g of NaF (Wako Pure Chemical Industries, Ltd.) to 50 kg of dichlorosilane (Shin-Etsu Chemical Co., Ltd.), stir at room temperature, heat and vaporize, mix with hydrogen, and heat to about 1200 ° C. Chemical vapor deposition was performed on a silicon single crystal to grow a silicon single crystal.
The resistance value of the single crystal part obtained at this time was -12,000 Ω-cm.
[0029]
[Example 4]
Add 20 g of NaF (manufactured by Wako Pure Chemical Industries, Ltd.) to 50 kg of trichlorosilane (manufactured by Shin-Etsu Chemical Co., Ltd.), stir at room temperature, heat and vaporize, mix with hydrogen, and heat to about 1200 ° C. Chemical vapor deposition was performed on a silicon single crystal to grow a silicon single crystal.
The resistance value of the single crystal part obtained at this time was −11,000 Ω-cm.
[0030]
[Example 5]
Add 20 g of NaF (Wako Pure Chemical Industries, Ltd.) 20 g to 50 kg of tetrachlorosilane (Shin-Etsu Chemical Co., Ltd.), stir at room temperature, heat and vaporize, mix with hydrogen, and heat to about 1200 ° C. Chemical vapor deposition was performed on a silicon single crystal to grow a silicon single crystal.
The resistance value of the single crystal part obtained at this time was −15,000 Ω-cm.
[0031]
[Example 6]
To 50 g of tetrachlorosilane (manufactured by Shin-Etsu Chemical Co., Ltd.), 20 mg of NaF (manufactured by Wako Pure Chemical Industries, Ltd.) is added, stirred at room temperature, heated to vaporize tetrachlorosilane, and boron in each residue is methylene blue. Quantified.
In order to confirm the accuracy, a known amount of boron was added and quantified.
[0032]
[Table 3]
[0033]
[Comparative Example 1]
Boron in the residue and distillate as in Example 1 except that 20 mg each of NaCl (manufactured by Wako Pure Chemical Industries, Ltd.) and NaBr (manufactured by Wako Pure Chemical Industries, Ltd.) were added instead of NaF. Concentration was measured. The results are shown in Table 4.
[0034]
[Table 4]
[0035]
[Comparative Example 2]
The resistance value of the silicon single crystal part obtained in the same manner as in Example 3 except that NaCl (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of NaF was 10 Ω-cm.
[0036]
【The invention's effect】
According to the present invention, it is possible to remove or concentrate boron in a trace amount of chlorosilanes at a low cost even without a special apparatus in the process by an extremely simple operation. In addition, since it is possible to supply a high-resistance product in a silicon single crystal, a high-quality high-voltage thyristor can be supplied reliably, and the range of conventional grades is expanded by doping with impurity elements. Furthermore, since there was no conventional method for removing trace amounts of boron as in the present invention, in order to synthesize chlorosilane for electronics, it was necessary to carefully select and use metallic silicon having a boron concentration as low as possible. This method makes it possible to use all kinds of metallic silicon.
Claims (3)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17081799A JP3734009B2 (en) | 1999-06-17 | 1999-06-17 | Method for separating boron compounds from chlorosilanes and composition for evaporating chlorosilanes |
KR1020000033126A KR100721090B1 (en) | 1999-06-17 | 2000-06-16 | Separation Process of Boron Compounds in Chlorosilanes and Composition for Evaporating Chlorosilanes |
TW89111887A TW572848B (en) | 1999-06-17 | 2000-06-16 | Separation method of boron compound in chlorosilanes and composition for evaporating chlorosilanes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17081799A JP3734009B2 (en) | 1999-06-17 | 1999-06-17 | Method for separating boron compounds from chlorosilanes and composition for evaporating chlorosilanes |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001002407A JP2001002407A (en) | 2001-01-09 |
JP3734009B2 true JP3734009B2 (en) | 2006-01-11 |
Family
ID=15911893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17081799A Expired - Fee Related JP3734009B2 (en) | 1999-06-17 | 1999-06-17 | Method for separating boron compounds from chlorosilanes and composition for evaporating chlorosilanes |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3734009B2 (en) |
KR (1) | KR100721090B1 (en) |
TW (1) | TW572848B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4588396B2 (en) * | 2003-09-25 | 2010-12-01 | 昭和電工株式会社 | Method for producing tetrafluorosilane |
JP4328303B2 (en) * | 2004-09-16 | 2009-09-09 | 株式会社サンリック | Polycrystalline silicon raw material for photovoltaic power generation and silicon wafer for photovoltaic power generation |
JP4714198B2 (en) | 2007-09-05 | 2011-06-29 | 信越化学工業株式会社 | Purification method of chlorosilanes |
JP4714196B2 (en) | 2007-09-05 | 2011-06-29 | 信越化学工業株式会社 | Method for producing trichlorosilane and method for producing polycrystalline silicon |
JP4714197B2 (en) | 2007-09-05 | 2011-06-29 | 信越化学工業株式会社 | Method for producing trichlorosilane and method for producing polycrystalline silicon |
JP4659798B2 (en) | 2007-09-05 | 2011-03-30 | 信越化学工業株式会社 | Method for producing trichlorosilane |
JP5542026B2 (en) | 2010-10-27 | 2014-07-09 | 信越化学工業株式会社 | Purification method of chlorosilanes |
DE102014013250B4 (en) * | 2014-09-08 | 2021-11-25 | Christian Bauch | Process for the purification of halogenated oligosilanes |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1088820B (en) | 1977-12-05 | 1985-06-10 | Smiel Spa | PURIFICATION PROCESS OF CHLOROSILANS USABLE IN THE PREPARATION OF SILICON FOR ELECTRONICS |
US4755370A (en) | 1982-03-18 | 1988-07-05 | General Electric Company | Purification of silicon halides |
JP2846408B2 (en) * | 1990-05-30 | 1999-01-13 | 川崎製鉄株式会社 | Silicon purification method |
JPH04300206A (en) * | 1991-03-28 | 1992-10-23 | Osaka Titanium Co Ltd | Purification of silicon chloride |
-
1999
- 1999-06-17 JP JP17081799A patent/JP3734009B2/en not_active Expired - Fee Related
-
2000
- 2000-06-16 TW TW89111887A patent/TW572848B/en not_active IP Right Cessation
- 2000-06-16 KR KR1020000033126A patent/KR100721090B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR20010049557A (en) | 2001-06-15 |
JP2001002407A (en) | 2001-01-09 |
TW572848B (en) | 2004-01-21 |
KR100721090B1 (en) | 2007-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2393991C2 (en) | Method and apparatus for purifying trichlorosilane and silicon tetrachloride | |
CN103201218A (en) | Method for purifying chlorosilanes | |
JP3958691B2 (en) | Distillation method of titanium tetrachloride | |
JP3734009B2 (en) | Method for separating boron compounds from chlorosilanes and composition for evaporating chlorosilanes | |
JP4780284B2 (en) | Purification method of silane trichloride | |
JPS62132888A (en) | Method for purifying organometallic compounds | |
KR102504143B1 (en) | Method for purifying halogenated oligosilanes | |
US4481178A (en) | Purification of chlorosilanes | |
JP2005067979A (en) | Purification method of chlorosilanes | |
JP6095613B2 (en) | Purification method of chlorosilane | |
US2812235A (en) | Method of purifying volatile compounds of germanium and silicon | |
JP5429464B2 (en) | Purification method of silane trichloride | |
JPH0742297B2 (en) | Method for producing dialkylzinc compounds | |
JP2599855B2 (en) | Purification method of tantalum alkoxide | |
TWI472486B (en) | Process and plant for the purification of trichlorosilane and silicon tetrachloride | |
JP7621162B2 (en) | Method for producing cyclic silane hydride compounds | |
JP3505744B2 (en) | Method for producing alkoxysilane | |
JPS62241806A (en) | Purification of aqueous solution of hydrochloric acid | |
WO2022054812A1 (en) | Production method for hydrogenated polysilane compound | |
JPH0151445B2 (en) | ||
JP2001048519A (en) | Purification of fluorosilane gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050817 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050830 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050928 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051011 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081028 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111028 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141028 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |