[go: up one dir, main page]

KR100669157B1 - Digital distribution panel measuring controller - Google Patents

Digital distribution panel measuring controller Download PDF

Info

Publication number
KR100669157B1
KR100669157B1 KR1020050005789A KR20050005789A KR100669157B1 KR 100669157 B1 KR100669157 B1 KR 100669157B1 KR 1020050005789 A KR1020050005789 A KR 1020050005789A KR 20050005789 A KR20050005789 A KR 20050005789A KR 100669157 B1 KR100669157 B1 KR 100669157B1
Authority
KR
South Korea
Prior art keywords
busbar
temperature
distribution panel
input
mccb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
KR1020050005789A
Other languages
Korean (ko)
Other versions
KR20060085280A (en
Inventor
박기주
조성남
Original Assignee
박기주
주식회사 케이디파워
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박기주, 주식회사 케이디파워 filed Critical 박기주
Priority to KR1020050005789A priority Critical patent/KR100669157B1/en
Publication of KR20060085280A publication Critical patent/KR20060085280A/en
Application granted granted Critical
Publication of KR100669157B1 publication Critical patent/KR100669157B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • H02H3/162Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass for AC systems
    • H02H3/165Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass for AC systems for three-phase systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/04Details with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Distribution Board (AREA)

Abstract

본 발명의 목적은 분전반을 통해 전력을 공급받는 다중 피더측의 각각에 대해 누전상태 및 온도상승 감시와 자동 전력량 계산을 통하여 피더측의 통합 디지털 제어를 가능하게 하는 디지털 분전반 제어계측기를 제공하는데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a digital distribution panel control instrument which enables integrated digital control of a feeder side through monitoring of an electric leakage state and a temperature rise and an automatic power amount calculation for each of the multiple feeder sides powered through the distribution panel.

본 발명의 디지털 분전반 제어계측기는 배전반으로부터 전력이 입력되는 RSTN 부스바 상에 설치되어 각상 전류를 검출하는 일체형CT(32) 및 각상 부스바의 온도를 검출하는 온도센서(33~36)와, 상기 RSTN 부스바를 통해 유입되는 입력전력을 각각의 피더(#1~#10)측에 공급하는 ZCT내장 MCCB(20-1~20-10)와, 입력 부스바 측으로부터는 전압을 입력받고 상기 일체형CT(32)로부터는 각 상 전류를 입력받고 온도센서(33~36)로부터는 각상 부스바의 온도검출신호를 입력받고 각각의 MCCB(20-1~20-10)로부터는 내장 ZCT로부터 영상전류를 입력받아 연산 처리하여 분전반 소비전력량과 부스바 온도와 누설전류를 산출하여 디스플레이(12)상에 표시하고 각 부스바의 온도와 각 MCCB의 누설전류가 설정치를 초과하면 알람(13)을 작동시키고 트립 신호를 생성 출력하는 콘트롤러(10)를 포함하는 것을 특징으로 한다.The digital distribution panel control instrument of the present invention is installed on the RSTN busbar to which electric power is input from the distribution panel, the integrated CT 32 for detecting the current of each phase, and the temperature sensors 33 to 36 for detecting the temperature of each phase of the busbar, and ZCT built-in MCCBs 20-1 to 20-10 for supplying the input power flowing through the RSTN busbars to the respective feeders # 1 to # 10, and voltages are input from the input busbars to receive the integrated CT ( 32) inputs each phase current, receives temperature detection signal of each phase busbar from temperature sensors 33 ~ 36, and inputs image current from built-in ZCT from each MCCB 20-1 ~ 20-10. It calculates the power consumption of the distribution board, calculates the busbar temperature and leakage current, displays it on the display 12. When the temperature of each busbar and the leakage current of each MCCB exceeds the set value, an alarm 13 is activated and a trip signal. It includes a controller 10 for generating and outputting It is characterized by.

디지털, 분전반, MCCB, 부스바, ZCT, 온도센서Digital, distribution board, MCCB, busbar, ZCT, temperature sensor

Description

디지털 분전반 계측제어기{Digital distribution switchboard controller}Digital distribution switchboard controller

도 1은 본 발명 디지털 분전반 제어계측기의 회로구성도이다.1 is a circuit diagram of a digital distribution panel control instrument of the present invention.

도 2는 본 발명 디지털 분전반 제어계측기의 디스플레이 상태 예시도이다.2 is an exemplary view showing a display state of the digital distribution panel control instrument of the present invention.

도 3는 본 발명의 다른 실시예의 회로구성도이다.3 is a circuit diagram of another embodiment of the present invention.

도 4는 본 발명의 제어흐름 설명도이다.4 is an explanatory view of the control flow of the present invention.

*도면의 주요부분에 대한 부호의 설명** Explanation of symbols for main parts of drawings *

10 : 콘트롤러 11 : 통신모듈10: controller 11: communication module

12 : 디스플레이 13 : 알람12: display 13: alarm

20-1~20-10 : MCCB 31 : 메인MCCB20-1 ~ 20-10: MCCB 31: Main MCCB

32 : 일체형CT 33~36 : 온도센서32: integrated CT 33 ~ 36: temperature sensor

40 : DC전압생성부 41 : UPS40: DC voltage generation unit 41: UPS

본 발명은 다중 피더측에 대한 전력공급과 디지털 계측 제어를 위한 분전반콘트롤러에 관한 것으로, 특히 다중 피더측의 각각에 대한 누전상태 및 온도상승 감시와 자동 전력량 계산을 통하여 다중 피더측에 대한 통합 디지털 제어를 가능하 게 하는 디지털 분전반 제어계측기에 관한 것이다.The present invention relates to a distribution panel controller for power supply and digital measurement control on the multiple feeder side, and in particular, integrated digital control on the multiple feeder side through monitoring the leakage state and temperature rise for each of the multiple feeder side and automatic power amount calculation. The present invention relates to a digital distribution panel control instrument that enables the control.

잘 알려져 있는 바와 같이 분전반은 배전선로로부터 인입되는 전력을 개별 MCCB(molded case circuit breaker : 배선용차단기)를 통해 다수의 피더(Feeder)에 공급하는 스위치보드이다.As is well known, switchboards are switchboards that supply power drawn from a distribution line to a plurality of feeders through separate molded case circuit breakers (MCCBs).

이러한 분전반은 전력을 소비하는 피더측에 MCCB를 통해 단순히 입력전력을 분기하면서 어느 한 피더 또는 2 이상의 피더에서 누설전류가 발생되거나 과전류가 발생되면 해당 피더의 전단에 설치된 MCCB내의 ZCT 또는 CT에 의해 검출되어 그 값으로 해당 MCCB가 트립 작동하여 선로를 차단시키도록 함으로써 어느 한 지점의 피더측 고장이 다른 피더측으로 전파되는 것을 억제시키고 있다.Such a distribution panel detects by ZCT or CT in the MCCB installed in front of the feeder when leakage current or overcurrent occurs in any one feeder or two or more feeders while simply branching input power through the MCCB to the feeder side that consumes power. By this value, the corresponding MCCB is tripped to cut off the line, thereby suppressing propagation of the feeder side failure at one point to the other feeder side.

그런데, 분전반에 설치된 다수의 MCCB중에서 어느한 MCCB트립된 경우 그 원인에 대한 이력을 추적할 수 없을 뿐만 아니라 적산전력량 정보, 부스바 온도 등에 대한 정보를 얻기 위해서는 별도의 연산처리회로와 온도센서를 부가하여야 하기 때문에 분전반에서 다수 피더측에 대한 감시 및 제어관리가 복잡하고 불편한 단점이 있게 된다.However, if any one of the MCCBs in the distribution panel is tripped, the history of the cause cannot be tracked, and additional calculation processing circuits and temperature sensors are added to obtain information on integrated power amount information and busbar temperature. Since it is necessary to monitor and control the management of multiple feeders in the distribution panel, there is a disadvantage of complicated and inconvenient.

본 발명은 상기와 같은 종래의 분전반에서의 계측 제어상 문제점들을 해결하기 위한 것으로, 본 발명의 목적은 분전반을 통해 전력을 공급받는 다중 피더측의 각각에 대해 누전상태 및 온도상승 감시와 자동 전력량 계산 및 고장 MCCB의 트립 제어를 통하여 피더측의 통합 디지털 제어를 가능하게 하는 디지털 분전반 제어계측기를 제공하는데 있다.The present invention is to solve the problems of the measurement control in the conventional distribution panel as described above, an object of the present invention is to monitor the leakage state and temperature rise and automatic power amount calculation for each of the multiple feeder side that is powered through the distribution panel And a digital distribution panel control instrument that enables integrated digital control of the feeder side through trip control of the faulty MCCB.

상기 목적을 달성하기 위한 본 발명의 디지털 분전반 제어계측기는 배전반으로부터 전력이 입력되는 RSTN 부스바 상에 설치되어 각상 전류를 검출하는 일체형CT(current transformer : 변류기) 및 각상 부스바의 온도를 검출하는 온도센서와, 상기 RSTN 부스바를 통해 유입되는 입력전력을 각각의 피더측에 공급하는 ZCT(zero current transformer : 영상변류기) 내장 MCCB와, 입력 부스바 측으로부터는 전압을 입력받고 상기 일체형CT로부터는 각 상 전류를 입력받고 온도센서로부터는 각상 부스바의 온도검출신호를 입력받고 각각의 MCCB로부터는 내장 ZCT로부터 영상전류를 입력받아 연산 처리하여 분전반 소비전력량과 부스바 온도와 누설전류를 산출하여 디스플레이 상에 표시하고 각 부스바의 온도와 각 MCCB의 누설전류가 설정치를 초과하면 알람을 작동시키고 트립 신호를 생성 출력하는 콘트롤러를 포함하는 것을 특징으로 한다.Digital distribution panel control instrument of the present invention for achieving the above object is installed on the RSTN busbar input power from the switchboard to the integrated CT (current transformer: current transformer) for detecting the current of each phase and the temperature for detecting the temperature of each phase busbar A ZCC (zero current transformer) built-in MCCB that supplies a sensor and input power flowing through the RSTN busbar to each feeder side, and a voltage is input from the input busbar side and each phase current is input from the integrated CT. Inputs the temperature detection signal of each busbar from the temperature sensor, and receives the image current from the built-in ZCT from each MCCB to calculate and process the power consumption of the distribution panel, busbar temperature and leakage current, and display it on the display. If the temperature of each busbar and leakage current of each MCCB exceeds the set value, the alarm is activated and tripped. And a controller for generating and outputting a call.

첨부한 도면을 참고로 하여 본 발명을 설명하면 다음과 같다.Hereinafter, the present invention will be described with reference to the accompanying drawings.

도 1은 본 발명 디지털 분전반 제어계측기의 회로구성도이다. 여기에서 참고되는 바와 같이 본 발명의 디지털 분전반 계측제어기는 배전반으로부터 RSTN전압을 받아들여 배선차단기능을 수행하는 메인MCCB(31)와, 상기 메인MCCB에 접속된 RSTN 부스바 상에 설치되어 각상 전류를 검출하는 일체형CT(32) 및 각상 부스바의 온도를 검출하는 온도센서(33~36)와, 상기 RSTN 부스바를 통해 유입되는 입력전력을 각각의 피더(#1~#10)측에 공급하는 ZCT내장 MCCB(20-1~20-10)와, 입력 부스바 측으로부터는 전압을 입력받고 상기 일체형CT(32)로부터는 각 상 전류를 입력받고 온도센서(33~36)로부터는 각상 부스바의 온도검출신호를 입력받고 각각의 MCCB(20-1~20-10)로부터는 내장 ZCT로부터 영상전류를 입력받아 연산 처리하여 분전반 소비전력 량과 부스바 온도와 누설전류를 산출하여 디스플레이(12)상에 표시하고 각 부스바의 온도와 각 MCCB의 누설전류가 설정치를 초과하면 알람(13)의 작동을 제어하고 트립신호를 생성 출력하는 콘트롤러(10)로 이루어져 있다.1 is a circuit diagram of a digital distribution panel control instrument of the present invention. As referred to herein, the digital distribution panel measuring controller of the present invention is provided on the main MCCB 31 that receives the RSTN voltage from the distribution panel and performs a wiring interruption function, and is installed on the RSTN busbar connected to the main MCCB to provide currents for each phase. The integrated CT 32 to detect and the temperature sensors 33 to 36 to detect the temperatures of the respective busbars, and the ZCT to supply input power flowing through the RSTN busbars to the respective feeders # 1 to # 10. The built-in MCCBs 20-1 to 20-10 and a voltage are input from the input busbar side, each phase current is input from the integrated CT 32, and the temperature of each phase busbar is input from the temperature sensors 33-36. The detection signal is input, and each MCCB (20-1 to 20-10) receives an image current from the built-in ZCT to process and calculate distribution power consumption, busbar temperature and leakage current on the display 12. Display and temperature of each busbar and leakage of each MCCB If the current exceeds the set value is made in the controller 10 for outputting control the operation of the alarm 13 to generate a trip signal.

나아가 상기 콘트롤러(10)에는 디지털 데이터 통신용 통신모듈(11)을 접속시켜 외부에서의 원격제어가 가능하게 구성할 수 있다.Furthermore, the controller 10 may be connected to the digital data communication communication module 11 so as to enable remote control from the outside.

또한 상기 콘트롤러(10)에는 각 피더측에 전력을 공급하는 MCCB를 DC전압으로 트립시키기 위한 DC전압생성부(40)와 이 DC전압(예를 들면 24V)생성부측에 안정적인 전원공급을 위해 자동충전회로와 충전용 배터리를 내장한 UPS(uninterruptible power supply)(41)를 더 포함시켜 구성할 수 있다. 이에 대한 구체적인 구성예를 도 3에서 보이고 있다. In addition, the controller 10 has a DC voltage generation unit 40 for tripping the MCCB supplying power to each feeder side to a DC voltage and automatic charging for stable power supply to the DC voltage generation unit (eg, 24V) generation unit. It can be configured by further including an UPS (uninterruptible power supply) 41 having a circuit and a rechargeable battery. A concrete configuration example thereof is shown in FIG. 3.

도 2는 본 발명 디지털 분전반 제어계측기의 디스플레이(12)화면의 상태 예시도로서, 디스플레이 표시장치의 화면상에는 분전반에 접속될 피더(#1~#10)의 수량만큼의 지시메뉴가 만들어져 출력되는 상태를 보이고 있다. 여기서 임의의 MCCB의 동작상태를 체크하는 경우 해당 MCCB번호의 지시메뉴가 표시되고 해당 지시된 MCCB의 현재 동작상태가 누전, 차단, 통신 중 어느 하나 또는 2 이상의 상태임을 표시메뉴로 나타내 주게 된다.FIG. 2 is a diagram illustrating a state of a display 12 screen of a digital distribution panel control instrument of the present invention, in which an instruction menu corresponding to the number of feeders # 1 to # 10 to be connected to the distribution panel is made and output on the screen of the display display device. Is showing. In this case, when checking the operation state of an arbitrary MCCB, an instruction menu of the corresponding MCCB number is displayed and it indicates that the current operation state of the indicated MCCB is any one of short circuit, interruption, communication, or two or more states.

또한 디스플레이(12) 화면의 하단부에는 현재 체크중인 피더가 몇번째 피더(또는 채널)인지 디지털 숫자로 표시하고 이어 누설전류, 부스바 온도, 적산전력량을 차례로 표시한다. 도 2의 디스플레이 화면상 2ch, 30mA, ▲25℃, 205.000kwh는 각각 피더의 채널, 누설전류, 부스바 온도, 적산전력량을 의미한다.In addition, the lower part of the screen of the display 12 displays the number of feeders (or channels) currently being checked by digital numbers, followed by leakage current, busbar temperature, and integrated power. 2ch, 30mA, ▲ 25 ° C, and 205.000kwh on the display screen of FIG. 2 mean the channel, leakage current, busbar temperature, and integrated power of the feeder, respectively.

이와 같이 구성된 본 발명의 작용을 설명하면 다음과 같다.Referring to the operation of the present invention configured as described above is as follows.

누전사고는 대지의 정전용량에 기인하는 용량성분의 전류가 대부분을 차지하고 있어, 사고에 직결되는 대지절연저항에 의한 저항 성분의 전류(Igr)만을 활선 상태에서 측정하는 방법은 불가능하다. 게다가 전기누전경보기(ELD : earthed leakage detector)에서는 대지간 정전용량 및 부하의 돌입전류에 의한 오동작 등으로 인하여 화재에 직접적인 영향을 미치는 저항성분의 전류계측에는 그 정밀도가 상당히 떨어진다.Since the current leakage is mostly due to the capacitance component due to the earth capacitance, it is impossible to measure in the live state only the current (Igr) of the resistance component due to the earth insulation resistance which is directly connected to the accident. In addition, in the earthed leakage detector (ELD), the accuracy of the resistance measurement, which directly affects the fire due to the ground-to-ground capacitance and the malfunction caused by the inrush current of the load, is considerably reduced.

그러나 본 발명을 이용하면 전기화재 및 재해에 직접적인 영향을 주는 순수 대지절연저항 성분을 부하 분기회로별로 측정하고 선로별 환경에 따른 임피던스와 정전용량에 따른 선로 정수 보정을 통하여 정밀하게 계측하고 경보 및 제어할 수 있는 저비용의 유용한 분전반 활선 누설전류 제어를 가능하게 한다. 특히 본 발명은 활선상태에서 선로의 부하 및 배선특성에 다른 분포 정전용량을 선로 정수 보정을 통하여 원격으로 실시간의 저항성 누설저항(Igr)전류상태를 감시하는 것을 가능하게 한다.However, according to the present invention, pure earth insulation resistance components directly affecting electrical fires and disasters are measured for each load branch circuit, and precisely measured and calibrated through line constant correction according to impedance and capacitance according to the environment of each line, and alarm and control. Enables low cost, useful distribution panel live leakage current control. In particular, the present invention makes it possible to remotely monitor a real-time resistive leakage resistance (Igr) current state through line constant correction of distributed capacitances different from the load and wiring characteristics of the line in the live state.

이상의 내용에 기초하여 본 발명을 설명하면, 먼저, 배전반으로부터 인입되는 RSTN 입력전압은 메인 MCCB(31)를 통해 콘트롤러(10)에 분전반의 입력전압으로 입력된다. 또한 메인MCCB(31)의 출력단 부스바 상에 장착된 일체형CT(32)에 의해서는 RSTN 각 상의 전류 값이 검출되어 상기 콘트롤러(10)에 전류 값으로 입력된다.Referring to the present invention based on the above description, first, the RSTN input voltage drawn from the switchboard is input to the controller 10 as the input voltage of the distribution board through the main MCCB 31. In addition, the integrated CT 32 mounted on the output terminal busbar of the main MCCB 31 detects the current value of each RSTN phase and inputs it to the controller 10 as a current value.

이들 입력전압 및 입력전류 값의 변화를 읽어 들여 콘트롤러 내부에서는 분전반의 적산전력량을 계산하여 디스플레이(12)를 통해 디지털 값으로 출력 표시한다.The change in the input voltage and the input current value is read, and the controller calculates the integrated power amount of the distribution panel and outputs the digital value through the display 12.

또한 부스바 상에 설치된 온도센서(33~36)에 의해 검출된 각 RSTN상의 온도 를 검출신호도 상기 콘트롤러(10)에 입력된다.In addition, a detection signal is also input to the controller 10 for the temperature on each RSTN detected by the temperature sensors 33 to 36 provided on the busbars.

또한 각 피더(#1~#10)의 전단에 설치된 MCCB(20-1~20-10)내의 각 ZCT에서는 영상전류가 검출되며, 이러한 각 MCCB의 영상검출전류도 상기 콘트롤러(10)에 입력된다.In addition, an image current is detected in each ZCT in the MCCBs 20-1 to 20-10 installed at the front end of each feeder # 1 to # 10, and the image detection current of each MCCB is also input to the controller 10. .

이렇게 콘트롤러(10)에 입력된 선로 전압 및 전류 값, 부스바 온도 검출값, 누설전류(Igr)값은 적산전력량의 산출, 누설전류의 설정치 초과 여부, 부스바의 설정온도값 도달여부 등의 판단의 기초가 된다. 여기서 상기 누설전류(Igr)는 분기회로별 분포 정전용량 선로정수 보정을 통하여 산출할 수 있다.The line voltage and current value, the busbar temperature detection value, and the leakage current (Igr) value inputted to the controller 10 are determined by calculating the integrated power amount, whether the leakage current setting value is exceeded, and whether the busbar setting temperature value is reached. Is the basis for Here, the leakage current Igr may be calculated through correction of distributed capacitance line constant for each branch circuit.

특히, 각 MCCB의 ZCT로부터 검출되는 영상전류로부터 누설전류량을 산출하고 그 누설전류치가 설정치를 초과하면 콘트롤러(10)는 해당 MCCB에 트립신호를 내보내 해당 피더측으로의 전력공급이 차단되게 한다.In particular, when the leakage current value is calculated from the image current detected from the ZCT of each MCCB and the leakage current value exceeds the set value, the controller 10 sends a trip signal to the MCCB so that the power supply to the feeder side is cut off.

도 4는 본 발명의 제어과정을 설명하는 흐름도로서, 분전반의 부스바에서 입력되는 입력전압 및 입력전류를 이용하여 분전반에서 소비되는 적산전력량을 산출하고 이를 표시하는 적산전력량 산출과정과, 부스바의 온도변화를 검출하여 기준값을 초과하게 되면 알람을 일으켜 과열을 경고하는 부스바 온도 체크 과정과, MCCB의 ZCT로부터 얻어지는 누설전류 값을 이용하여 누설전류량이 설정치를 초과하면 해당 피더의 MCCB를 트립시키는 과정을 도식적으로 보이고 있다.Figure 4 is a flow chart illustrating a control process of the present invention, using the input voltage and the input current input from the busbar of the distribution panel calculates the integrated power consumed in the distribution panel and calculates the integrated power amount, and the busbar Busbar temperature check process that alarms overheating by detecting alarm when temperature change is exceeded, and trips MCCB of feeder when leakage current exceeds set value by using leakage current value obtained from ZCT of MCCB. Is shown schematically.

이상에서 설명한 바와 같은 본 발명은 전기화재 및 재해에 직접적인 영향을 주는 순수 대지절연저항 성분을 부하 분기회로별로 측정하여 선로별 환경에 따른 임피던스와 정전용량에 따른 선로 정수 보정을 통하여 정밀하게 계측하고 경보 및 제어할 수 있는 저비용의 유용한 분전반 활선 누설전류 제어를 가능하게 한다.As described above, the present invention measures pure earth insulation resistance components directly affecting electrical fires and disasters for each load branch circuit, and precisely measures and alarms through correction of line parameters according to impedance and capacitance according to the environment of each line. And controllable, low cost, useful distribution panel live leakage current control.

특히 본 발명은 활선상태에서 선로의 부하 및 배선특성에 다른 분포 정전용량을 선로 정수 보정을 통하여 원격으로 실시간의 저항성 누설저항 전류상태를 감시할 수 있어 안전하고 신속한 분전반의 관리를 가능하게 한다.In particular, the present invention can remotely monitor the real-time resistance leakage resistance current state through the line constant correction of the distribution capacitance different from the load and the wiring characteristics of the line in the live state, it is possible to safely and quickly manage the distribution panel.

또한 본 발명은 분전반을 통해 전력을 공급받는 다중 피더측의 각각에 대해 누전상태 및 온도상승 감시와 자동 전력량 계산 및 고장 MCCB의 트립 제어를 통하여 피더측의 통합 디지털 제어를 가능하게 한다.In addition, the present invention enables integrated digital control of the feeder side through the monitoring of the leakage state and temperature rise, automatic power amount calculation and trip control of the faulty MCCB for each of the multiple feeder sides powered through the distribution panel.

Claims (4)

배전반으로부터 전력이 입력되는 RSTN 부스바 상에 설치되어 각상 전류를 검출하는 일체형CT(32) 및 각상 부스바의 온도를 검출하는 온도센서(33~36)와, 상기 RSTN 부스바를 통해 유입되는 입력전력을 각각의 피더(#1~#10)측에 공급하는 ZCT내장 MCCB(20-1~20-10)와, 입력 부스바측으로부터는 전압을 입력받고 상기 일체형CT(32)로부터는 각 상 전류를 입력받고 온도센서(33~36)로부터는 각상 부스바의 온도검출신호를 입력받고 각각의 MCCB(20-1~20-10)로부터는 내장 ZCT로부터 영상전류를 입력받아 연산 처리하여 부하율 변동에 따른 분전반의 소비전력량과 부스바의 온도와 누설전류(Igr)를 산출하여 디스플레이(12)상에 표시하고 각 부스바의 온도와 각 MCCB의 누설전류가 설정치를 초과하면 알람(13)의 작동을 제어하고 트립신호를 생성 출력하는 콘트롤러(10)를 포함하는 것을 특징으로 하는 디지털 분전반 제어계측기.An integrated CT 32 installed on the RSTN busbar to receive electric power from the switchboard and a temperature sensor 33 to 36 for detecting the temperature of each phase busbar, and input power introduced through the RSTN busbar. ZCT built-in MCCBs (20-1 to 20-10) for supplying the feeders to the feeders (# 1 to # 10) and the input busbar side, and a voltage is input from the integrated CT (32). The temperature sensor 33 ~ 36 receives the temperature detection signal of each busbar and receives the image current from the built-in ZCT from the MCCBs 20-1 ~ 20-10 to calculate and process the image current. The power consumption of the distribution panel, the temperature of the busbar and the leakage current (Igr) are calculated and displayed on the display 12. When the temperature of each busbar and the leakage current of each MCCB exceed the set values, the operation of the alarm 13 is controlled. And a controller 10 for generating and outputting a trip signal. Digital distribution panel control instrument. 제1항에 있어서, 상기 콘트롤러(10)는 외부에서의 원격제어를 위한 디지털 데이터 통신용 통신모듈(11)을 포함하는 것을 특징으로 하는 디지털 분전반 제어계측기.The digital distribution panel control instrument according to claim 1, wherein the controller (10) comprises a communication module (11) for digital data communication for remote control from the outside. 제1항에 있어서, 상기 콘트롤러(10)는 각 피더측에 전력을 공급하는 MCCB의 DC전압 트립을 위한 DC전압생성부(40)와 이 DC전압생성부측에 안정적인 전원공급을 위해 자동충전회로와 충전용 배터리를 내장한 UPS(41)를 더 포함하는 것을 특징으로 하는 디지털 분전반 제어계측기.The controller 10 of claim 1, wherein the controller 10 includes a DC voltage generator 40 for DC voltage trip of the MCCB for supplying power to each feeder side, and an automatic charging circuit for stably supplying power to the DC voltage generator side. Digital distribution panel control instrument further comprising a UPS (41) with a built-in rechargeable battery. 제1항에 있어서, 상기 누설전류(Igr)는 분기회로별 분포 정전용량 선로정수 보정을 통하여 산출하는 것을 특징으로 하는 것을 특징으로 하는 디지털 분전반 제어계측기.The digital distribution panel control instrument as claimed in claim 1, wherein the leakage current (Igr) is calculated through correction of distributed capacitance line constant for each branch circuit.
KR1020050005789A 2005-01-21 2005-01-21 Digital distribution panel measuring controller Expired - Lifetime KR100669157B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050005789A KR100669157B1 (en) 2005-01-21 2005-01-21 Digital distribution panel measuring controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050005789A KR100669157B1 (en) 2005-01-21 2005-01-21 Digital distribution panel measuring controller

Publications (2)

Publication Number Publication Date
KR20060085280A KR20060085280A (en) 2006-07-26
KR100669157B1 true KR100669157B1 (en) 2007-01-15

Family

ID=37175022

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050005789A Expired - Lifetime KR100669157B1 (en) 2005-01-21 2005-01-21 Digital distribution panel measuring controller

Country Status (1)

Country Link
KR (1) KR100669157B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100887550B1 (en) * 2008-09-08 2009-03-09 주식회사 베스텍 Male and switchgear with fault line trace blocking function
KR100897484B1 (en) 2008-11-14 2009-05-14 대승기전(주) Switchgear with transfer equipment
KR100966126B1 (en) 2010-03-18 2010-06-25 심강문 The digital controller pannel
KR100984115B1 (en) 2010-03-18 2010-09-28 심강문 The syn-controller of a pannel of in a generator in case of emergency
KR101269757B1 (en) * 2011-12-19 2013-05-30 엘에스산전 주식회사 Multi-channel leakage current monitoring system
KR101446502B1 (en) * 2013-03-28 2014-10-10 주식회사 지오닉스 Uninterruptible power supply and system using zero-phase harmonic reduction apparutus
KR101457880B1 (en) * 2013-02-12 2014-11-04 지투파워 (주) A high tension panel, low tension panel, dstribution panel and motor control panel for Fire Sensing Fuction
US9356823B2 (en) 2005-09-30 2016-05-31 Qurio Holdings, Inc. Providing and receiving content for computer networks using a gateway and server
EP3751686A4 (en) * 2018-02-07 2021-05-05 Ls Electric Co., Ltd. MONITORING AND LOAD CONTROL SYSTEM FOR SWITCHBOARD

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100714998B1 (en) * 2005-07-06 2007-05-09 파워플러스콤 주식회사 Electric Fire Prevention System Using Arc Detection
KR100681801B1 (en) * 2005-07-27 2007-02-12 박기주 Digital distribution board
KR100812183B1 (en) * 2006-09-18 2008-03-12 (주)그린텍시스템 Busbar status monitoring device of power supply equipment
KR100920153B1 (en) * 2007-01-30 2009-10-06 주식회사 파워트론 Device for measuring leakage current effective component in cable line and its method
KR100861288B1 (en) * 2007-02-08 2008-10-01 삼일전기공업 주식회사 Digital Instrument System for Switchboard
KR100930865B1 (en) * 2008-01-02 2009-12-10 주식회사 케이디파워 Line status information detection device for coupling circuit breaker
KR101039313B1 (en) * 2008-06-04 2011-06-08 권영민 Prefabricated power distribution unit for monitoring
KR100926693B1 (en) * 2008-12-26 2009-11-17 주식회사 부시파워 Leakage Current Detection Apparatus and Method in Booth Duct System
KR101614255B1 (en) * 2015-08-07 2016-04-29 박윤수 Monitoring device of current flow with multiple feeder and switch board equipped with the same
CN106919198A (en) * 2017-03-30 2017-07-04 合肥舒实工贸有限公司 A kind of switch controller
KR102587306B1 (en) * 2023-06-22 2023-10-12 주식회사 나산전기산업 Switchboards that alert ICT to overheating detected by energy harvesting devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412772B1 (en) 2003-08-27 2003-12-31 Hankook Electric Technical Co Remote monitor of electricity incoming and distributing equipment having power line communication modem

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412772B1 (en) 2003-08-27 2003-12-31 Hankook Electric Technical Co Remote monitor of electricity incoming and distributing equipment having power line communication modem

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9356823B2 (en) 2005-09-30 2016-05-31 Qurio Holdings, Inc. Providing and receiving content for computer networks using a gateway and server
KR100887550B1 (en) * 2008-09-08 2009-03-09 주식회사 베스텍 Male and switchgear with fault line trace blocking function
KR100897484B1 (en) 2008-11-14 2009-05-14 대승기전(주) Switchgear with transfer equipment
KR100966126B1 (en) 2010-03-18 2010-06-25 심강문 The digital controller pannel
KR100984115B1 (en) 2010-03-18 2010-09-28 심강문 The syn-controller of a pannel of in a generator in case of emergency
KR101269757B1 (en) * 2011-12-19 2013-05-30 엘에스산전 주식회사 Multi-channel leakage current monitoring system
US9201110B2 (en) 2011-12-19 2015-12-01 Lsis Co., Ltd. Multi-channel leakage current monitoring system
KR101457880B1 (en) * 2013-02-12 2014-11-04 지투파워 (주) A high tension panel, low tension panel, dstribution panel and motor control panel for Fire Sensing Fuction
KR101446502B1 (en) * 2013-03-28 2014-10-10 주식회사 지오닉스 Uninterruptible power supply and system using zero-phase harmonic reduction apparutus
EP3751686A4 (en) * 2018-02-07 2021-05-05 Ls Electric Co., Ltd. MONITORING AND LOAD CONTROL SYSTEM FOR SWITCHBOARD
US11005259B2 (en) 2018-02-07 2021-05-11 Ls Electric Co., Ltd. Monitoring and load controlling system for switchboard

Also Published As

Publication number Publication date
KR20060085280A (en) 2006-07-26

Similar Documents

Publication Publication Date Title
KR100669157B1 (en) Digital distribution panel measuring controller
KR100809910B1 (en) Digital distribution board
US8466706B2 (en) Solar combiner with integrated string current monitoring
KR101039313B1 (en) Prefabricated power distribution unit for monitoring
KR100681801B1 (en) Digital distribution board
US11085955B2 (en) Energy metering system with temperature monitoring based on circuit breakers of power panel likely to trip
KR101041398B1 (en) Switchgear current monitoring device
KR100655263B1 (en) Breaker trip system of digital distribution board
JP6509029B2 (en) Distribution board
JP4666507B2 (en) Test apparatus and test method for isolated operation detection device
KR101227990B1 (en) Mccb with current monitoring apparatus
US20130265065A1 (en) Method and apparatus for detecting a glowing contact in a power circuit
KR20230002072U (en) Monitoring device for circuit breaker status of distribution panel
KR101415269B1 (en) Power Distribution Panel Capable of Controlling on Real Time
KR200260919Y1 (en) A temperature detecting and automatic tripping apparatus of a circuit breaker
KR20200122140A (en) Circuit Breaker having detachable Electricity Measuring Device
JP6830220B2 (en) Abnormality judgment method, abnormality judgment system, program, cutoff system, and distribution board
CN209560060U (en) Wall current monitoring device based on comprehensively control
US7085662B2 (en) Power quality indicator
KR101747124B1 (en) Power measurement device using the plural of power measuring apparatus of electric power feeder
KR101536808B1 (en) Power distribution monitoring apparatus
US20240039270A1 (en) Multi socket power extension source
EP4394327A1 (en) Sensor device with power supply management
KR200436790Y1 (en) Earth Leakage Circuit Breaker
JP2010151488A (en) Device and system for detecting ground fault

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20050121

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20060825

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20061226

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20070109

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20070109

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20091202

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20101202

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20111202

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20121204

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20121204

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20131203

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20131203

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20141202

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20141202

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20160105

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20160105

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20170104

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20170104

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20180104

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20180104

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20190104

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20190104

Start annual number: 13

End annual number: 13

FPAY Annual fee payment

Payment date: 20200103

Year of fee payment: 14

PR1001 Payment of annual fee

Payment date: 20200103

Start annual number: 14

End annual number: 14

PR1001 Payment of annual fee

Payment date: 20210105

Start annual number: 15

End annual number: 15

PR1001 Payment of annual fee

Payment date: 20211229

Start annual number: 16

End annual number: 16

PR1001 Payment of annual fee

Payment date: 20230103

Start annual number: 17

End annual number: 17