KR100655973B1 - Measurement Method Using Rheological Properties of Scrap Content of Talc-Containing Polypropylene Composite - Google Patents
Measurement Method Using Rheological Properties of Scrap Content of Talc-Containing Polypropylene Composite Download PDFInfo
- Publication number
- KR100655973B1 KR100655973B1 KR1020050102546A KR20050102546A KR100655973B1 KR 100655973 B1 KR100655973 B1 KR 100655973B1 KR 1020050102546 A KR1020050102546 A KR 1020050102546A KR 20050102546 A KR20050102546 A KR 20050102546A KR 100655973 B1 KR100655973 B1 KR 100655973B1
- Authority
- KR
- South Korea
- Prior art keywords
- scrap
- molded product
- talc
- composite material
- content
- Prior art date
Links
- -1 Polypropylene Polymers 0.000 title claims abstract description 25
- 239000004743 Polypropylene Substances 0.000 title claims abstract description 24
- 229920001155 polypropylene Polymers 0.000 title claims abstract description 24
- 239000002131 composite material Substances 0.000 title claims abstract description 22
- 238000000691 measurement method Methods 0.000 title 1
- 239000000454 talc Substances 0.000 claims abstract description 20
- 229910052623 talc Inorganic materials 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 19
- 238000012360 testing method Methods 0.000 claims abstract description 7
- 238000001125 extrusion Methods 0.000 abstract description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 5
- 230000000704 physical effect Effects 0.000 abstract description 4
- 238000003908 quality control method Methods 0.000 abstract description 3
- 230000015556 catabolic process Effects 0.000 abstract description 2
- 238000006731 degradation reaction Methods 0.000 abstract description 2
- 238000000518 rheometry Methods 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 6
- 238000000465 moulding Methods 0.000 description 3
- 238000012887 quadratic function Methods 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920003020 cross-linked polyethylene Polymers 0.000 description 1
- 239000004703 cross-linked polyethylene Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009415 formwork Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920006113 non-polar polymer Polymers 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/44—Resins; Plastics; Rubber; Leather
- G01N33/442—Resins; Plastics
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N11/00—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
- G01N11/02—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
본 발명은 활석을 20 중량% 함유한 폴리프로필렌 복합재료의 스크랩(Scrap) 함유량을 유변물성을 이용하여 측정하는 방법에 관한 것으로, 더욱 상세하게는 복합재료의 버진(Virgin) 성형품 시편 및 스크랩을 함유한 성형품 시편을 제조하고, ARES(Advanced Rheometric Expansion System)의 다이나믹 프리퀀시 스윕 테스트(dynamic frequency sweep test)를 수행하여 버진 성형품 시편의 탄성점도에 대한 스크랩 함유 성형품 시편의 탄성점도의 비를 측정하여 2차 함수식에 대입하여 스크랩 함유량을 계산하는 단계를 포함하는 활석을 20 중량% 함유한 폴리프로필렌 복합재료의 스크랩 함유량을 측정하는 방법에 관한 것이다. 활석 함유 폴리프로필렌 복합재료는 압출과정에서 탄소 골격의 절단이 일어나므로 스크랩을 재활용하여 성형품을 제조할 때 성형품의 물성 저하가 발생할 수 있으므로 탄성점도의 비와 스크랩 함유량의 관계를 나타내는 2차 함수식을 이용하여 스크랩 함유량을 간편하고, 신속, 정확하게 분석하는 방법을 제공함으로써 스크랩 과다 사용으로 인한 성형품의 품질저하를 예측하고, 품질관리가 용이하게 한다.The present invention relates to a method for measuring the scrap content of a polypropylene composite material containing 20% by weight of talc by using rheology. More specifically, it includes a virgin molded product specimen and a scrap of the composite material. A molded product specimen was prepared, and a dynamic frequency sweep test of ARES (Advanced Rheometric Expansion System) was performed to measure the ratio of elastic viscosity of the scrap-containing molded product specimen to the elastic viscosity of the virgin molded product specimen. It relates to a method of measuring the scrap content of a polypropylene composite material containing 20% by weight of talc, including the step of calculating the scrap content by substituting a functional formula. Since the talc-containing polypropylene composite material is cut in the carbon skeleton during the extrusion process, the physical properties of the molded product may be degraded when the molded product is recycled from scrap, so the second functional formula representing the relationship between the ratio of elastic viscosity and the scrap content is used. By providing a simple, quick and accurate method for analyzing scrap content, it is possible to predict quality degradation of molded products due to excessive use of scrap and to facilitate quality control.
Description
도 1은 다양한 스크랩 함량의 활석 함유 폴리프로필렌 복합재료를 ARES(Advanced Rheometric Expansion System)의 다이나믹 프리퀀시 스윕 테스트(dynamic frequency sweep test)를 수행한 결과를 콜-콜 플롯(cole-cole plot)한 그래프이다.1 is a graph of a cole-cole plot of the dynamic frequency sweep test of an advanced Rheometric Expansion System (ARES) of a polypropylene composite having various scrap contents. .
도 2는 버진(Virgin) 성형품 시편의 탄성점도에 대한 스크랩 함유 성형품 시편의 탄성점도의 비와 스크랩 함유량의 실험식을 작도한 그래프이다.FIG. 2 is a graph illustrating the experimental formula of the ratio of the elastic viscosity of the scrap-containing molded product specimens and the scrap content to the elastic viscosity of the virgin molded product specimens.
플라스틱 산업에서 활석의 용도는 점점 증가하고 있어서, 합성수지의 양을 줄여줄 뿐만 아니라 강도를 높여 주는 역할도 하며, 내열성을 증가시키고, 주물제조시 수축률과 순환시간을 줄여 주고, 용융액의 유동성을 향상시킨다. 특히 미 립분체의 경우에는 자동차용 부품으로 사용되는 엔지니어링 플라스틱 제조용으로서의 사용량이 크게 늘고 있는 추세이다.The increasing use of talc in the plastics industry not only reduces the amount of resin, but also increases strength, increases heat resistance, reduces shrinkage and circulation time in castings, and improves melt flow. . Particularly, in the case of fine powder, the amount of use for the production of engineering plastics used as automotive parts is increasing.
또한 폴리프로필렌은 가격이 저렴하고, 주조 및 가공이 용이하며, 기계적 특성이 우수하기 때문에 자동차 내장 소재로 가장 광범위하게 사용되고 있으며, 특히 폴리프로필렌에 활석이 포함될 경우 고온에서의 변형에 대한 강도를 높여 주므로 활석 함유 폴리프로필렌 복합재료 또한 많이 사용되고 있다. In addition, polypropylene is the most widely used automotive interior material because of its low cost, easy casting and processing, and excellent mechanical properties.In particular, polypropylene increases the strength against deformation at high temperatures when talc is included. Talc-containing polypropylene composites are also widely used.
활석 함유 폴리프로필렌 복합재료의 성형품 제조시에는 스크랩이 발생할 수밖에 없으며, 상기 스크랩을 함유하지 않은 버진(virgin) 수지에 일정량 혼합해서 재활용하는 것이 상업적 생산에서 일반적이다. 그러나 스크랩의 사용량이 일정량 이상이면 성형품의 항복점, 인장강도, 굴곡강도 등의 물성 저하가 발생하고, 고분자의 분자량 분포가 넓어져 성형이 어렵고, 성형시 사출 불량을 일으킬 수 있다.In the manufacture of molded articles of talc-containing polypropylene composite material, scrap is inevitably generated, and it is common in commercial production to mix and recycle a certain amount of virgin resin that does not contain the scrap. However, when the amount of scrap used is more than a certain amount, physical properties such as yield point, tensile strength, flexural strength, etc. of the molded product may be lowered, and the molecular weight distribution of the polymer may be widened, which may make molding difficult and may cause injection failure during molding.
대한민국 특허 제270899호는 폐 폴리프로필렌 스크랩을 콘크리트 제조용 거푸집에 활용하는 방안을 설명하고 있고, 대한민국 특허 제90-005412호에서는 스크랩의 함유에도 물성이 열화되지 않는 지방산금속염 및 알카리토금속류 산화물 등을 포함하는 폴리프로필렌 조성물에 대하여 설명하고 있으며, 대한민국 특허 제266384호는 발포가교 폴리에틸렌 폼 스크랩을 이용한 자동차 범퍼 제조방법에 대하여 설명하고 있으며, 대한민국 특허 제187102호는 폴리에틸렌테레프탈레이트 카페트 스크랩의 재활용 방법에 대해 설명하고 있다.Korean Patent No. 270899 describes a method for utilizing waste polypropylene scrap in formwork for concrete production, and Korean Patent No. 90-005412 includes fatty acid metal salts and alkaline earth metal oxides that do not deteriorate in physical properties even when the scrap is contained. A polypropylene composition is described, and Korean Patent No. 266384 describes a method for manufacturing an automobile bumper using foamed crosslinked polyethylene foam scrap, and Korean Patent No. 187102 describes a method for recycling polyethylene terephthalate carpet scrap. Doing.
종래 스크랩 사용량의 분석방법은 아직 보고된바 없고, 단지 기계적 물성을 통하여 재료의 관리를 하였으나, 제조 직후에는 물성 등 품질에 문제되지 않지만 차후에 문제의 발생의 여지가 생길 수 있으며, 이종 소재의 재활용 등급 사용을 확인하지 못하는 문제점이 있었다Conventional methods for analyzing scrap usage have not been reported yet, but the management of materials through mechanical properties is not a problem, but the quality is not a problem immediately after the manufacture, but there may be a problem in the future. There was a problem that could not confirm the use
따라서, 본 발명의 목적은 활석 함유 폴리프로필렌 복합재료의 스크랩을 재활용하여 성형품의 탄성점도의 비와 스크랩 함유량의 관계를 나타내는 2차 함수식을 이용하여 스크랩 함유량을 간편하고, 신속, 정확하게 분석하는 방법을 제공함으로써 스크랩 과다 사용으로 인한 성형품의 품질저하를 예측하고, 품질관리가 용이하게 한다.Accordingly, an object of the present invention is to recycle a scrap of talc-containing polypropylene composite material, and to easily and quickly and accurately analyze the scrap content by using a quadratic function representing the relationship between the ratio of the elastic viscosity of the molded article and the scrap content. Providing anticipation of deterioration of molded parts due to excessive use of scrap, and facilitating quality control.
본 발명은 활석을 20 중량% 함유한 폴리프로필렌 복합재료의 스크랩(Scrap) 함유량을 측정하는 방법에 있어서, 상기 복합재료의 버진(Virgin) 성형품 시편을 제조하는 단계; 상기 복합재료의 스크랩을 함유한 성형품 시편을 제조하는 단계; 상기 시편으로 ARES(Advanced Rheometric Expansion System)의 다이나믹 프리퀀시 스윕 테스트(dynamic frequency sweep test)를 수행하여 버진 성형품 시편의 탄성점도에 대한 스크랩 함유 성형품 시편의 탄성점도의 비를 측정하는 단계; 상기 탄성점도의 비를 하기 2차 함수식에 대입하여 스크랩 함유량을 계산하는 단계를 포함하는 활석을 20 중량% 함유한 폴리프로필렌 복합재료의 스크랩 함유량을 측정하는 방법을 제공하는 것을 그 특징으로 하고, 상기 2차 함수식은 Y = a + b X + c X2 로 표시하고, Y는 스크랩 함유량, X는 탄성점도의 비로서 스크랩 함유 성형품 시편 탄성점도를 버진 성형품 시편의 탄성점도로 나눈 값이고, a는 상수값, b 및 c는 각각 X와 X2의 계수이다.The present invention provides a method for measuring the scrap content of a polypropylene composite material containing 20% by weight of talc, the method comprising: preparing a virgin molded product specimen of the composite material; Preparing a molded article specimen containing the scrap of the composite material; Performing a dynamic frequency sweep test (ARES) of the Advanced Rheometric Expansion System (ARES) to measure the ratio of the elastic viscosity of the scrap-containing molded product specimen to the elastic viscosity of the virgin molded product specimen; It is characterized in that it provides a method for measuring the scrap content of the polypropylene composite material containing 20% by weight of talc, the step of calculating the scrap content by substituting the ratio of the elastic viscosity to the following second functional formula, The quadratic function is expressed as Y = a + b X + c X 2 , Y is the scrap content, X is the ratio of elastic viscosity, and the elastic viscosity of the scrap-containing molded product specimen is divided by the elastic viscosity of the virgin molded product specimen, and a is Constant values b and c are the coefficients of X and X 2 , respectively.
이하, 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.
본 발명의 활석 20 중량% 함유한 폴리프로필렌 복합재료는 하기 화학식 1의 올레핀 계열의 무극성 고분자로서 수평균분자량은 5.51 X 104 이고, 중량평균분자량은 1.48 X 104, 분자량분포값은 2.7, 용융지수는 9 g/10min는 이다.The polypropylene composite material containing 20% by weight of talc of the present invention is an olefin-based nonpolar polymer represented by the following formula (1): the number average molecular weight is 5.51 X 10 4 , the weight average molecular weight is 1.48 X 10 4 , the molecular weight distribution value is 2.7, melting The index is 9 g / 10min.
상기 활석 함유 폴리프로필렌 복합재료는 간단한 직선형 구조를 갖으며, 여러 번 압출 과정의 가장 큰 영향인 압력과 열에 강한 구조를 갖지만 압출과정에서 탄소 골격의 절단이 일어나서 분자량이 감소된다. 따라서 상기 분자량 감소 정도를 ARES(Advanced Rheometric Expansion System)를 통한 유변물성을 측정하여 스크랩 함유량을 측정할 수 있게 된다. The talc-containing polypropylene composite material has a simple linear structure and has a structure that is resistant to pressure and heat, which are the biggest influences of the extrusion process several times, but the molecular weight is reduced by cutting of the carbon skeleton during the extrusion process. Therefore, the scrap content can be measured by measuring the rheological properties through the ARES (Advanced Rheometric Expansion System).
이하, 실시예에 의거하여 본 발명을 더욱 상세하게 설명하나, 하기 실시 예는 본 발명을 예시하기 위한 것이며, 본 발명을 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are intended to illustrate the present invention, and do not limit the present invention.
실시예Example 1: 표준 성형품의 제조 1: Manufacture of standard molded parts
활석을 20중량% 함유하는 버진(Virgin) 폴리프로필렌을 준비한다. 재활용 시편은 이축 압출기를 이용하여 2회 이상의 압출을 수행하여 제조되었으며, 압출 조건은 배럴온도 205 ℃, 다이온도 220 ℃ 그리고 스크류 속도는 30 rpm 이었다. 표준 성형품은 활석을 20중량% 함유하는 버진 폴리프로필렌과 재활용 시편을 각각 100/0, 95/5, 90/10, 80/20, 60/40, 50/50, 0/100의 비율로 혼합한 후 상기 압출 조건으로 압출을 수행하여 압출된 펠렛 형태의 시료를 핫 프레스(Hot Press)를 이용하여 지름 25 mm, 두께 2 mm의 원판 형태로 제조하였다. 모든 시편은 다음 단계 수행 전에 90 ℃에서 12시간 동안 건조시켜 수분의 영향을 최소한으로 하였다.Prepare Virgin polypropylene containing 20% by weight of talc. Recycled specimens were produced by two or more extrusion using a twin screw extruder, the extrusion conditions were barrel temperature 205 ℃, die temperature 220 ℃ and screw speed 30 rpm. Standard moldings contain virgin polypropylene containing 20% by weight of talc and recycled specimens in proportions of 100/0, 95/5, 90/10, 80/20, 60/40, 50/50 and 0/100, respectively. After the extrusion was carried out under the extrusion conditions, the extruded pellet-shaped sample was prepared in the form of a disc having a diameter of 25 mm and a thickness of 2 mm using a hot press. All specimens were dried at 90 ° C. for 12 hours before performing the next step to minimize the effects of moisture.
실시예Example 2: 2: 유변물성Rheological properties 측정 Measure
고분자는 긴 탄소 체인을 갖음으로써 탄성과 점성의 두가지 성질을 갖는 점탄성(Viscoelastic)을 가지고 있으며, 이는 유변물성 측정기인 ARES(Advanced Rheometric Expansion System)의 다이나믹 프리퀀시 스윕 테스트(dynamic frequency sweep test)로 측정할 수 있다. 다이나믹 프리퀀시 스윕 테스트는 ARES 상에서 용융 온도 이상에서 온도와 변형율(Strain)을 정하여 프리퀀시(Frequency)를 0.05 rad/s ~ 100 rad/s 까지 변화를 주면서 고분자의 점성과 탄성 을 구분하여 낮은 주파수 영역에서는 고분자의 탄성력을 관찰하며, 높은 주파수에서는 고분자의 점성력을 관찰할 수 있는 고분자 점탄성 측정 방법이다. 상기 준비된 시편은 ARES로 다이나믹 프리퀀시 스윕 테스트를 실시할 때 평형판 유동장치(Parallel Palte Fixture)를 이용하되 상부판은 시료와 동일한 지름으로 하였으며, 프리퀀시는 0.05 rad/s ~ 100 rad/s, 변형율은 7 %, 온도는 실제 사출 온도인 200 ℃에서 실험을 수행하였다.The polymers have long carbon chains and have viscoelastic properties that are both elastic and viscous.They are measured by the dynamic frequency sweep test of the advanced rheological expansion system (ARES). Can be. The dynamic frequency sweep test sets the temperature and strain above the melting temperature on the ARES to vary the frequency from 0.05 rad / s to 100 rad / s while distinguishing the viscosity and elasticity of the polymer. It is a method of measuring viscoelasticity of polymer that can observe the elastic force of the polymer and can observe the viscous force of the polymer at high frequency. When the prepared specimen was subjected to a dynamic frequency sweep test with ARES, a parallel plate fixture was used, but the upper plate had the same diameter as the sample, and the frequency was 0.05 rad / s to 100 rad / s. The experiment was performed at 200 ° C., which is 7% and the actual injection temperature.
실시예Example 3: 3: 탄성점도의Elastic viscosity 비와 스크랩 함유량의 실험식 Experimental formula for ratio and scrap content
상기 측정 결과로부터 콜-콜 플롯(Cole-Cole Plot)을 작성한 결과를 도 1에 나타내었다. 2 회 압출일수록 저 프리퀀시 영역(도 1의 오른쪽 부분)으로 가면서 새로운 완화(Relaxation)가 나타남을 알 수 있다. 이는 여러 번 압출을 거칠 경우는 탄소골격의 절단이 일어나게 되고 이러한 작은 분자량의 활석 함유 폴리프로필렌 복합재료가 원래 분자량의 활석 함유 폴리프로필렌 복합재료와 다른 형태로 뭉쳐서 다른 완화(Relaxation)를 도 1과 같이 나타나게 된다. 또한 2 회 압출 과정을 겪은 시편의 함유량이 많이 들어가 있는 시편의 경우에는 혼합 비율이 많아질수록 그 경향은 점차 2 회 압출 시편과 비슷한 경향으로 나타낸다. The results of preparing the Cole-Cole Plot from the measurement results are shown in FIG. 1. It can be seen that two extrusions lead to a lower frequency region (right portion of FIG. 1), resulting in new relaxation. This results in the breakage of the carbon skeleton when extruded several times, and these small molecular weight talc-containing polypropylene composites aggregated differently from the original molecular weight talc-containing polypropylene composites to provide different relaxation as shown in FIG. Will appear. In addition, in the case of a specimen containing a large amount of specimens subjected to two extrusion processes, the tendency is gradually similar to that of the two extrusion specimens as the mixing ratio increases.
상기 도 1에서 피크 간격이 가장 큰 폭으로 나타나는 지점에서의 두번째 완화(Relaxation)을 나타내는 피크에서 탄성력과 스크랩 재활용량의 관계식을 유도한다. 이는 여러 번 압출한 스크랩의 함유량에 따른 점도를 나누는 표준화 개념 도입한 것으로 탄성점도의 비와 스크랩 함유량은 다음과 같은 2차 함수식 Y = 10.07 19.33 X + 9.33 X2 으로 표현할 수 있었다. 상기 Y는 스크랩 함유량, 상기 X는 탄성점도의 비로서 스크랩 함유 성형품 시편 탄성점도를 버진 성형품 시편의 탄성점도로 나눈 값, 즉 (η"재활용)/(η'버진)을 나타낸다. 도 1에서의 X축은 스크랩 사용량의 비를 나타내며, Y 축은 탄성점도를 나타낸다. 상기 탄성점도의 비와 스크랩 함유량의 실험식을 도 2에 그래프로 나타내었다.In FIG. 1, a relation between elastic force and scrap recycling amount is derived at a peak representing a second relaxation at the point where the peak interval is the largest width. This is a standardized concept of dividing the viscosity according to the content of scrap extruded several times. The ratio of elastic viscosity and scrap content can be expressed by the following quadratic function Y = 10.07 19.33 X + 9.33 X 2 . Y is the scrap content, and X is the ratio of the elastic viscosity, and the elastic viscosity of the scrap-containing molded product specimen is divided by the elastic viscosity of the virgin molded product specimen, that is, (η " recycled) / (η 'virgin). The X axis represents the ratio of scrap usage, and the Y axis represents the elastic viscosity, and the experimental formula of the ratio of the elastic viscosity and the scrap content is shown graphically in FIG.
상기 실험식의 유효성을 실제 실험결과와 비교하여 검증한 결과를 표 1에 나타내었다. 표 1에 나타낸 바와 같이 스크랩 함유량이 많아지면 많아질수록 신뢰도가 82% 이상인 것을 확인할 수 있었다. 따라서 상기 실험식을 이용해서 스크랩 사용량을 모르는 활석 함유 폴리프로필렌 성형품으로부터 유변물성 측정을 통해 스크랩 함유량의 정량적 측정이 가능함을 확인할 수 있었다.Table 1 shows the results of comparing the validity of the empirical formula with the actual experimental results. As shown in Table 1, it was confirmed that the reliability was 82% or more as the scrap content increased. Therefore, using the empirical formula, it was confirmed that the quantitative measurement of the scrap content by measuring the rheological properties from the talc-containing polypropylene molded article which does not know the scrap usage.
활석 함유 폴리프로필렌 복합재료는 압출과정에서 탄소 골격의 절단이 일어나므로 스크랩을 재활용하여 성형품을 제조할 때 성형품의 물성 저하가 발생할 수 있으므로 탄성점도의 비와 스크랩 함유량의 관계를 나타내는 2차 함수식을 이용하여 스크랩 함유량을 간편하고, 신속, 정확하게 분석하는 방법을 제공함으로써 스크랩 과다 사용으로 인한 성형품의 품질저하를 예측하고, 품질관리가 용이하게 한다.Since the talc-containing polypropylene composite material is cut in the carbon skeleton during the extrusion process, the physical properties of the molded product may be degraded when the molded product is recycled from scrap, so the second functional formula representing the relationship between the ratio of elastic viscosity and the scrap content is used. By providing a simple, quick and accurate method for analyzing scrap content, it is possible to predict quality degradation of molded products due to excessive use of scrap and to facilitate quality control.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050102546A KR100655973B1 (en) | 2005-10-28 | 2005-10-28 | Measurement Method Using Rheological Properties of Scrap Content of Talc-Containing Polypropylene Composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050102546A KR100655973B1 (en) | 2005-10-28 | 2005-10-28 | Measurement Method Using Rheological Properties of Scrap Content of Talc-Containing Polypropylene Composite |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100655973B1 true KR100655973B1 (en) | 2006-12-08 |
Family
ID=37732779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050102546A KR100655973B1 (en) | 2005-10-28 | 2005-10-28 | Measurement Method Using Rheological Properties of Scrap Content of Talc-Containing Polypropylene Composite |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100655973B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170107765A (en) * | 2016-03-16 | 2017-09-26 | 주식회사 엘지화학 | Assessment method for plastic form |
KR20220021944A (en) * | 2020-08-13 | 2022-02-23 | 주식회사 삼양사 | Method for evaluating durability of thermoplastic polyester elastomer resin for blow molding |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5113353A (en) | 1987-10-09 | 1992-05-12 | Alan George | Rheometrics and viscoelasticity measurement |
US5631069A (en) | 1994-05-09 | 1997-05-20 | The Dow Chemical Company | Medium modulus molded material comprising substantially linear polyethlene and fabrication method |
US6114486A (en) | 1996-03-05 | 2000-09-05 | The Dow Chemical Company | Rheology-modified polyolefins |
KR100466384B1 (en) | 2002-05-20 | 2005-01-13 | 동일고무벨트주식회사 | Thermoplastic elastomer composition for shock absorbing |
-
2005
- 2005-10-28 KR KR1020050102546A patent/KR100655973B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5113353A (en) | 1987-10-09 | 1992-05-12 | Alan George | Rheometrics and viscoelasticity measurement |
US5631069A (en) | 1994-05-09 | 1997-05-20 | The Dow Chemical Company | Medium modulus molded material comprising substantially linear polyethlene and fabrication method |
US6114486A (en) | 1996-03-05 | 2000-09-05 | The Dow Chemical Company | Rheology-modified polyolefins |
KR100466384B1 (en) | 2002-05-20 | 2005-01-13 | 동일고무벨트주식회사 | Thermoplastic elastomer composition for shock absorbing |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170107765A (en) * | 2016-03-16 | 2017-09-26 | 주식회사 엘지화학 | Assessment method for plastic form |
KR102013915B1 (en) | 2016-03-16 | 2019-08-23 | 주식회사 엘지화학 | Assessment method for plastic form |
KR20220021944A (en) * | 2020-08-13 | 2022-02-23 | 주식회사 삼양사 | Method for evaluating durability of thermoplastic polyester elastomer resin for blow molding |
KR102381429B1 (en) * | 2020-08-13 | 2022-04-01 | 주식회사 삼양사 | Method for evaluating durability of thermoplastic polyester elastomer resin for blow molding |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110746699B (en) | Long glass fiber reinforced polypropylene composite material with balanced shrinkage and preparation method thereof | |
CN103059417A (en) | Filled polypropylene composite material applied to rapid forming component | |
CN110982208A (en) | Extruded high-rigidity high-toughness polypropylene material and preparation method and application thereof | |
EP3872121A1 (en) | Expanded polypropylene beads, a process for producing expanding polypropylene beads, molded articles formed from expanded polypropylene beads, and a process for forming such molded articles | |
JP3215442B2 (en) | High rigidity oxymethylene polymer resin molded product | |
KR100655973B1 (en) | Measurement Method Using Rheological Properties of Scrap Content of Talc-Containing Polypropylene Composite | |
EP3733775B1 (en) | Thermoplastic resin composition and molded article formed therefrom | |
Kovacs et al. | Effect of glass bead content and diameter on shrinkage and warpage of injection‐molded PA6 | |
KR100717639B1 (en) | Polypropylene resin composition with excellent melt tension and heat formability | |
CN113980432A (en) | PET/ABS composite material and preparation method thereof, refrigerator door hinge and production method thereof | |
JP2004077274A (en) | Method and device for evaluating workability of visco-elastic material, working condition setting method and working device, and working management method | |
CN112745624B (en) | ACS/PET-based alloy with short molding period and preparation method and application thereof | |
JP2002146129A (en) | Polypropylene resin composition | |
KR102385832B1 (en) | Method for predicting the number of polymer recycling cycles | |
CN114591568A (en) | Standard sample for tensile detection and preparation method thereof | |
KR102707886B1 (en) | Prediction method of polymer processing stability and the device thereof | |
KR100844740B1 (en) | Method for Measuring Scrap Content of Ethylene-Containing Polypropylene Copolymer by Crystallization Half-Life Analysis | |
JP4219824B2 (en) | Thermoplastic elastomer processing condition setting method, extrusion discharge amount control device, and processing management method | |
Othman et al. | Optimising injection moulding parameters that satisfies part qualities by using Taguchi method | |
CN105542407A (en) | Glass fiber reinforced PBT composition and preparation method and application thereof | |
CN115926355B (en) | Polystyrene composite material with high rigidity, high toughness and good appearance characteristics and preparation method thereof | |
CN111303603A (en) | PC/ABS alloy material suitable for hollow support piece of display and preparation method | |
KR20240148047A (en) | Die swell prediction method and prediction device for polymer samples | |
KR100633791B1 (en) | High Rigidity Polypropylene Resin Composition with Excellent Flowability and Heat Resistance | |
CN116444892A (en) | A kind of polypropylene material and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20051028 |
|
PA0201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20060901 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20061204 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20061201 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20091202 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20101201 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20111202 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20121130 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20121130 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20131129 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20131129 Start annual number: 8 End annual number: 8 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20151109 |