[go: up one dir, main page]

KR100588404B1 - Ceria slurry for polishing semiconductor thin layer - Google Patents

Ceria slurry for polishing semiconductor thin layer Download PDF

Info

Publication number
KR100588404B1
KR100588404B1 KR1020050021259A KR20050021259A KR100588404B1 KR 100588404 B1 KR100588404 B1 KR 100588404B1 KR 1020050021259 A KR1020050021259 A KR 1020050021259A KR 20050021259 A KR20050021259 A KR 20050021259A KR 100588404 B1 KR100588404 B1 KR 100588404B1
Authority
KR
South Korea
Prior art keywords
slurry
cerium oxide
polishing
semiconductor thin
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020050021259A
Other languages
Korean (ko)
Other versions
KR20060043627A (en
Inventor
조윤주
정종식
최동천
Original Assignee
삼성코닝 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성코닝 주식회사 filed Critical 삼성코닝 주식회사
Publication of KR20060043627A publication Critical patent/KR20060043627A/en
Application granted granted Critical
Publication of KR100588404B1 publication Critical patent/KR100588404B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

본 발명은 반도체 박막 연마용 산화세륨 수성 슬러리에 관한 것으로, 본 발명에 따른, 원심분리에 의한 슬러리 농도 감소(CSL) 시험에서 중량 변화가 20% 이하인 반도체 박막 연마용 산화세륨 슬러리는 장기 안정성이 우수하고, 반도체 웨이퍼의 평탄화 공정 시에 연마 생산성이 우수하면서도 피연마막에 스크래치를 발생시키지 않는다.The present invention relates to an aqueous cerium oxide slurry for polishing a semiconductor thin film. According to the present invention, a cerium oxide slurry for polishing a semiconductor thin film having a weight change of 20% or less in a slurry concentration reduction (CSL) test by centrifugation has excellent long-term stability. In addition, the polishing productivity is excellent during the planarization of the semiconductor wafer, and scratches are not generated on the polished film.

Description

반도체 박막 연마용 산화세륨 슬러리 {CERIA SLURRY FOR POLISHING SEMICONDUCTOR THIN LAYER}Cerium oxide slurry for semiconductor thin film polishing {CERIA SLURRY FOR POLISHING SEMICONDUCTOR THIN LAYER}

본 발명은 반도체 박막 연마용 산화세륨 슬러리에 관한 것으로서, 특히 원심분리에 의한 슬러리 농도시험에서 중량 변화가 20% 이하로서 높은 연마속도와 우수한 스크래치 특성을 가진 산화세륨 슬러리에 관한 것이다.The present invention relates to a cerium oxide slurry for polishing a semiconductor thin film, and more particularly, to a cerium oxide slurry having a high polishing rate and excellent scratch characteristics with a weight change of 20% or less in a slurry concentration test by centrifugation.

반도체의 화학적 기계적 연마(CMP) 용도에는 주로 산화세륨을 수중 현탁액으로 분산하여 슬러리화한 후 사용되고 있는데, 지금까지는 많은 연마량을 나타내는 것을 산화세륨 슬러리의 주요 목적으로 해왔다. 그러나, 최근 반도체 공정의 배선이 점차 미세화 되고 칩간의 간격이 감소됨에 따라 화학적 기계적 연마용 슬러리는 연마량 이외에도 적은 수의 스크래치, 발생된 스크래치의 크기 감소의 특성이 요구되고 있다.In the chemical mechanical polishing (CMP) application of semiconductors, cerium oxide is mainly dispersed in an aqueous suspension and then used in slurry. Until now, the main purpose of the cerium oxide slurry has been to show a large amount of polishing. However, in recent years, as the wiring of semiconductor processes is gradually miniaturized and the spacing between chips is reduced, a small number of scratches in addition to the amount of polishing and the size of the generated scratches are required.

기존의 화학적 기계적 슬러리에 사용된 산화세륨은 밀도가 커서 장시간 보관시 대부분의 입자가 가라앉고, 재분산시 입자가 응집되어 스크래치의 원인이 되곤 했다. 따라서 분산안정성을 갖는 슬러리를 제조하기 위해 많은 노력을 기울여 왔 으며, 연마 입자에 맞는 계면활성제의 적용과 분산기의 개발로 분산안정성은 실제로 많이 개선되었다.The cerium oxide used in the conventional chemical mechanical slurry has a high density, which causes most particles to sink when stored for a long time, and when redispersed, the particles aggregate and cause scratches. Therefore, many efforts have been made to prepare a slurry having dispersion stability, and the dispersion stability has been substantially improved by applying a surfactant to abrasive particles and developing a disperser.

최근 들어서는, 발생되는 연마 후의 불량이 주로 스크래치에 의한 것으로, 특히 슬러리 내에 미량 존재하는 큰 입자들이 그 원인임이 밝혀지고 있다. 그러한 스크래치의 감소를 위한 노력으로서, 일본 공개특허 2003-171653에는 응집된 입자의 입경을 3 미크론 이하로 관리하고 있으나, 이 또한 실제 0.16㎛ 이하의 미세 패턴에서는 스크래치에 의해 수율이 현저하게 떨어지는 문제가 발생하게 된다. 이것은 실제 웨이퍼 표면에 스크래치를 일으키는 입자는 700nm 이상, 특히 1㎛ 이상의 입자들이기 때문이다.In recent years, it has been found that defects after polishing are mainly caused by scratches, in particular, large particles present in trace amounts in the slurry. As an effort to reduce such scratches, Japanese Patent Laid-Open Publication No. 2003-171653 manages the particle size of the aggregated particles to 3 microns or less, but in addition, in the fine pattern of 0.16 μm or less, the yield is significantly reduced by scratching. Will occur. This is because the particles causing scratches on the actual wafer surface are particles of 700 nm or more, particularly 1 μm or more.

또한 최근들어 반도체 제조에 있어서 선폭의 감소가 추진되어 예전에 비해 한 장의 웨이퍼에서 생산되는 칩의 수가 늘어나게 되었는데, 이러한 선폭이 감소된 패턴을 가진 반도체 칩 제조 공정에 기존의 슬러리를 그대로 사용할 경우 마이크로 크기의 스크래치도 치명적으로 작용하므로 생산량을 높이는데 한계가 있게 된다. 더욱이 반도체 제조 공정에 화학적 기계적 연마 공정이 적용되는 수가 점차 증가되는 추세이므로, 이러한 연마 공정 후의 스크래치의 유무 및 크기는 웨이퍼내의 칩의 수율과 밀접한 관계가 있다.In addition, in recent years, the reduction of line width has been promoted in semiconductor manufacturing, and the number of chips produced on a single wafer has been increased, and when the conventional slurry is used as it is in a semiconductor chip manufacturing process with a reduced pattern, Scratches also act as lethality, limiting the yield. Moreover, since the number of chemical mechanical polishing processes is gradually applied to the semiconductor manufacturing process, the presence and size of scratches after such polishing process are closely related to the yield of chips in the wafer.

따라서 스크래치의 발생과 직접 관련이 있는 큰 입자의 제거는 더욱 중요한 기술이라 할 수 있는데, 이러한 스크래치 감소를 위해 슬러리의 평균 입경을 감소시키게 되면 연마량의 감소로 생산량이 감소하는 문제점이 나타나게 된다. 예를 들어 일본 공개특허 2003-188122의 경우 스크래치 감소를 위해 0.56㎛ 이상의 연마 입자량을 규제하고 있으나, 실제 사용한 슬러리는 평균 입경이 30~88nm로 너무 작아 실제 연마 공정에 사용시 연마량 감소 및 연마후 웨이퍼의 평탄도에도 문제를 일으킬 수 있어 실효성이 낮다.Therefore, the removal of large particles directly related to the occurrence of scratches is a more important technique, if the average particle size of the slurry is reduced for such scratches, there is a problem that the production amount decreases due to the decrease in the amount of polishing. For example, Japanese Patent Laid-Open Publication No. 2003-188122 regulates the amount of abrasive particles of 0.56 μm or more in order to reduce scratches, but the slurry actually used has an average particle diameter of 30 to 88 nm, which is too small. Problems can also occur in the flatness of the wafer, and the effectiveness thereof is low.

따라서, 본 발명의 목적은 연마량이 감소하지 않으면서도 큰 입자가 효과적으로 제거되어 스크래치 저감은 물론 발생되는 스크래치의 크기를 작게 함으로써 스크래치로 인한 불량률을 최소로 할 수 있는 산화세륨 슬러리를 제공하는데 있다.Accordingly, an object of the present invention is to provide a cerium oxide slurry which can minimize the defect rate due to scratches by reducing the scratches as well as reducing the scratches by effectively removing large particles without reducing the polishing amount.

상기 목적을 달성하기 위해, 본 발명에서는 평균입경이 0.1 내지 0.2 ㎛ 범위의 산화세륨 분말을 포함하고 하기 수학식을 만족하는, 반도체 박막 연마용 산화세륨 슬러리를 제공한다:In order to achieve the above object, the present invention provides a cerium oxide slurry for polishing a semiconductor thin film comprising a cerium oxide powder having an average particle diameter in the range of 0.1 to 0.2 ㎛ and satisfies the following equation:

(C0-C1)/C0 X 100 ≤20(C 0 -C 1 ) / C 0 X 100 ≤20

C0은 최초 슬러리의 고형분 농도이고,C 0 is the solids concentration of the original slurry,

C1은 슬러리가 받는 평균원심력 g가 1970 g0인 조건에서 2분간 원심분리한 후의 고형분 농도이고, g0는 중력가속도 (9.8 m/sec2)이다.C 1 is the solid content concentration after centrifugation for 2 minutes under the condition that the average centrifugal force g of the slurry is 1970 g 0 , and g 0 is the acceleration of gravity (9.8 m / sec 2 ).

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 슬러리는, 상기 수학식 1을 만족하는, 특정 조건에서 원심분리시 중량 변화가 20% 이하임을 특징으로 하며, 입도분석기(laser scattering particle size distribution analyzer)로 측정시 평균입경 (mean volume size)이 0.1 내지 0.2 ㎛ 범위이며, D100(입도분포기로 측정시 분포 누적치가 100이 되는 입경)이 약 0.5 내지 0.7㎛ 범위이다.Slurry of the present invention, characterized in that the weight change is 20% or less during centrifugation under certain conditions, satisfying the above Equation 1, the average particle size (mean volume size) measured by a laser scattering particle size distribution analyzer ) Ranges from 0.1 to 0.2 μm, and D 100 (particle diameter at which the cumulative distribution value becomes 100 as measured by a particle size distribution) ranges from about 0.5 to 0.7 μm.

통상적인 분산 공정, 예를 들면 대항충돌기 또는 초음파기를 통과하거나 습식 밀링 공정을 거친 산화세륨 슬러리는, 대부분의 입자가 수십 마이크로 크기에서 수백 나노크기의 입자로 쪼개어져 수중에 고르게 분산되는데, 지금까지는 이렇게 분산기를 통과하여 분산된 슬러리를 그대로 사용하거나, 필터를 사용하여 미처 쪼개지지 않은 큰 입자를 여과한 후 사용하는 정도였다. 그러나, 반도체 배선의 폭이 0.16㎛ 이하가 되면서 스크래치는 반도체 웨이퍼 수율을 낮추는 가장 큰 원인이 되었으며, 이러한 직접적인 원인은 0.7㎛ 이상의 큰 입자의 존재라는 것이 밝혀졌다. 그러나, 기존 슬러리의 경우 산화세륨 슬러리의 입도 분포의 평균 입경이 350nm 전후였으며, 1㎛ 이상의 큰 입자도 소량 존재하였고, 이러한 큰 입자들은 슬러리내 존재량이 극히 미량일지라도 CMP 공정에서 박막에 다수의 스크래치를 발생시키며, 발생된 스크래치의 크기나 깊이가 커서, 수율에 치명적인 영향을 끼치게 된다. 그러나, 상기 조건을 만족하는 본 발명에 따른 슬러리는 장기간 보관하여도 용기 바닥에 가라앉는 고형분 양이 적으므로 산화세륨 입자간의 응집을 방지할 수 있어 안정성도 크게 향상될 수 있고, 따라서 장기간 보관 후 사용하더라도 스크래치 수가 증가하지 않는다.Cerium oxide slurries, which have been passed through conventional dispersion processes such as counter-colliders or sonicators, or have undergone wet milling, disperse evenly into the water, with most of the particles splitting from tens of microns to hundreds of nanosizes. The slurry dispersed through the disperser was used as it was, or a filter was used to filter large particles that were not split. However, as the width of the semiconductor wiring became 0.16 µm or less, the scratch was the biggest cause of lowering the semiconductor wafer yield, and this direct cause was found to be the presence of large particles of 0.7 µm or more. However, in the case of the conventional slurry, the average particle diameter of the particle size distribution of the cerium oxide slurry was around 350 nm, and small particles of 1 μm or more existed, and these large particles contained a large number of scratches on the thin film in the CMP process even though the amount of the particles in the slurry was extremely small. The size and depth of scratches generated are large, which can have a fatal effect on yield. However, the slurry according to the present invention, which satisfies the above conditions, has a small amount of solids that sinks to the bottom of the container even when stored for a long period of time, thereby preventing agglomeration between the cerium oxide particles, thereby greatly improving stability, and thus, using it after long-term storage. Even if the scratch count does not increase.

본 발명에 따른 산화세륨 슬러리는 산화세륨 분말을 물에 분산시켜 얻은 슬러리를 원심분리 공정 및 임의로 추가의 필터링 공정을 거쳐 수득할 수 있다.The cerium oxide slurry according to the present invention can be obtained by centrifugation and optionally further filtering process of the slurry obtained by dispersing the cerium oxide powder in water.

구체적으로, 본 발명에 따른 산화세륨 슬러리 제조에 사용되는 산화세륨 분말은, 그 제조방법이 특별히 제한되지는 않으며, 통상의 방법으로 제조될 수 있다. 예를 들면, 탄산세륨, 수산화세륨, 질화세륨(cerium nitrate), 염화세륨, 초산세륨 등의 원료를 650 내지 900℃에서 소성하여 산화시켜 산화세륨을 수득한 후, 이를 습식밀, 건식밀 등을 이용하여 분쇄함으로써 얻을 수 있으며, 10∼100nm 범위의 평균 크기를 가질 수 있다. 상기 소성 공정 및 밀링 공정은 순서를 바꾸어 수행할 수도 있다.Specifically, the cerium oxide powder used for producing the cerium oxide slurry according to the present invention is not particularly limited in its production method, and may be produced by conventional methods. For example, raw materials, such as cerium carbonate, cerium hydroxide, cerium nitrate, cerium chloride, and cerium acetate, are calcined at 650 to 900 ° C. to oxidize to obtain cerium oxide, and then wet mill, dry mill, and the like. It can be obtained by grinding using, and may have an average size in the range of 10 to 100 nm. The firing process and the milling process may be performed in reverse order.

이렇게 제조된 산화세륨 분말을 물에 넣어 분산시키게 되는데, 이때 분산을 용이하게 하기 위한 산화세륨의 농도는 0.5 내지 20 중량%의 범위가 바람직하다. 분산 공정도 특별히 제한되지는 않으며, 대항충돌 방식, 초음파 방식, 습식밀링 방식 등을 이용할 수 있다.The cerium oxide powder thus prepared is dispersed in water, and the concentration of cerium oxide to facilitate dispersion is preferably in the range of 0.5 to 20% by weight. The dispersion process is not particularly limited, and a counter collision method, an ultrasonic method, a wet milling method, or the like may be used.

상기 분산시 분산을 용이하게 하기 위해 분산제를 사용할 수 있으며, 분산제는 산화세륨이 수중에서 띠게 되는 표면전위값을 고려하여 선택하는 것이 바람직하나, 특별한 제한은 없다. 산화세륨의 분산은 통상 pH 4-9의 범위에서 이루어지고, 이때 산화세륨의 표면전위값이 양의 값을 가지므로 음이온성 유기 화합물이 바람직하게 사용될 수 있으며, 이의 구체적인 예로는, 폴리아크릴산, 폴리비닐황산, 폴리 메타크릴산, 폴리아크릴아마이드, 폴리아릴아민 등이 있다. 상기 분산제는 중량평균분자량이 1,000 이상 50,000 이하인 것이 바람직하며, 분자량이 1,000 미만인 경우에는 산화세륨 슬러리의 분산안정성을 확보하기 어렵고, 50,000을 초과하는 경우에는 슬러리의 점도가 증가하여 장기안정성을 확보하기 어렵다.A dispersant may be used to facilitate dispersion during the dispersion, and the dispersant may be selected in consideration of the surface potential value of cerium oxide in water, but there is no particular limitation. Dispersion of cerium oxide is usually in the range of pH 4-9, wherein the surface potential of cerium oxide has a positive value, an anionic organic compound may be preferably used. Specific examples thereof include polyacrylic acid and poly Vinyl sulfuric acid, poly methacrylic acid, polyacrylamide, polyarylamine, and the like. Preferably, the dispersant has a weight average molecular weight of 1,000 or more and 50,000 or less, and if the molecular weight is less than 1,000, it is difficult to secure dispersion stability of the cerium oxide slurry. If the dispersant exceeds 50,000, the viscosity of the slurry increases, making it difficult to secure long-term stability. .

상술한 바와 같이 분산처리된 산화세륨 슬러리에 대해 슬러리 내에 존재하는 큰 입자를 제거하기 위해 본 발명에서는 원심분리기를 사용하여 입경이 0.7 ㎛ 이상인 큰 입자를 강제로 원심분리에 의해 제거하게 된다. 예를 들면 수천 rpm, 바람직하게는 1,000 내지 5,000 rpm으로 회전하고 있는 원통에 슬러리를 통과시킴으로써 원통 내벽에 슬러리 중의 큰 입자가 달라붙도록 하여 입경이 상대적으로 큰 입자들을 제거할 수 있다. 원통 내부를 일정한 유속을 갖고 슬러리가 통과하게 되면, 큰 입자들의 경우 원심력이 크게 작용하여 기벽에 붙게 되고, 크기가 작은 입자들은 기벽에 붙지 않고 원통을 통과하게 되는 것이다.As described above, in order to remove the large particles existing in the slurry with respect to the cerium oxide slurry treated as described above, in the present invention, the large particles having a particle diameter of 0.7 μm or more are forcibly removed by centrifugation. For example, by passing the slurry through a cylinder rotating at several thousand rpm, preferably 1,000 to 5,000 rpm, large particles in the slurry can adhere to the inner wall of the cylinder, thereby removing particles having a relatively large particle size. When the slurry passes through the cylinder at a constant flow rate, the centrifugal force acts on the large walls in the case of large particles, and the small particles pass through the cylinder without being attached to the walls.

상기와 같이 원심분리 공정으로 큰 입자를 제거한 세리아 슬러리는, 본 발명에 따라, 슬러리가 받는 평균 원심력이 1970g0 (g0=중력가속도)인 조건에서 2분간 회전시켜 입자를 강제 침강시킨 후 시험 전후의 중량을 비교하는 시험('원심분리 슬러리 농도 감소 시험')을 수행할 때, 20 중량% 이하, 바람직하게는 10 중량% 이하의 슬러리 농도(즉, 고형분) 감소를 나타낼 수 있다.Ceria slurry to remove the large particles in a centrifugal separation process as described above, before and after the after in accordance with the present invention, the slurry is the average centrifugal force to the second rotary minutes at the conditions 1970g 0 (g 0 = gravitational acceleration) force sedimentation the particles receive test When carrying out a test comparing the weight of the (centrifugal slurry concentration reduction test), it is possible to exhibit a slurry concentration (ie solids) reduction of up to 20% by weight, preferably up to 10% by weight.

일반적으로 사용하는 입도분석기를 이용하여 분석하는 경우 1% 이하로 존재하는 큰 입자들에 대한 정보는 얻기가 어려운 반면, 본 발명에 따른 원심분리 슬러 리 농도감소 시험법은 평균입경이 동일한 슬러리에 있어서의 큰 입자 함량을 알 수 있는 방법이라 할 수 있다. While it is difficult to obtain information on the large particles present in the 1% or less when analyzing by using a commonly used particle size analyzer, the centrifugal slurry concentration reduction test according to the present invention is a slurry for the same average particle diameter It can be said that the large particle content of.

이렇게 제조된 본 발명의 슬러리는 이미 큰 입자의 대부분이 감소된 것으로 화학적 기계적 연마 공정에 연마제 완제품으로 사용시 연마 성능이 우수하면서도 기존의 분산기만을 사용한 슬러리와 비교하여 상당한 스크래치 저감 효과를 얻을 수 있다. 즉, 본 발명에 따른 세리아 슬러리는 큰 입자만 제거될 뿐 평균입경은 0.1 내지 0.2 ㎛ 범위로 유지되므로 기존의 공정대로 연마를 수행할 경우 연마생산성은 유지하면서도 그 보다 90% 이상의 스크래치 저감 효과를 거둘 수 있다.The slurry of the present invention prepared in this way is that most of the large particles are already reduced, and when used as a finished abrasive product in the chemical mechanical polishing process, excellent polishing performance can be obtained compared to a slurry using only a conventional disperser and a significant scratch reduction effect. That is, since the ceria slurry according to the present invention only removes large particles, the average particle diameter is maintained in the range of 0.1 to 0.2 μm, so that polishing productivity can be reduced by more than 90% when polishing is performed according to the conventional process. Can be.

본 발명에 따른 슬러리는, 슬러리 제조과정에서, 상술한 바와 같이 큰 입자를 제거하기 위한 원심분리 공정을 거친 후 필요에 따라 필터링 공정을 거칠 수도 있다.The slurry according to the present invention may be subjected to a filtering process as necessary after the centrifugation process for removing large particles as described above in the slurry manufacturing process.

본 발명에 따른 산화세륨 슬러리는 0.16 ㎛ 이하의 미세 패턴용 반도체 박막의 연마 뿐 아니라, 기존의 실리카 슬러리로 연마되던 반도체 층간절연막층(ILD층)과 STI(shallow trench isolation)의 CMP 연마에도 적용이 가능하며, 장기간 보관하여도 가라앉는 입자의 양이 적어 장기 안정성 또한 매우 우수하다.The cerium oxide slurry according to the present invention is applicable not only to polishing semiconductor films for fine patterns of 0.16 μm or less, but also to CMP polishing of semiconductor interlayer insulating layer (ILD layer) and shallow trench isolation (STI), which have been polished with conventional silica slurry. It is possible, and the long-term stability is also very good due to the small amount of sinking particles even after long-term storage.

하기의 실시예는 본 발명의 이해를 돕기 위한 예시 목적으로 제공될 뿐 특허청구범위에 기재된 보호범위를 제한하고자 하는 것은 아니다.The following examples are provided for illustrative purposes only to aid in understanding the present invention and are not intended to limit the scope of protection described in the claims.

실시예Example

제조예 1: 산화세륨 분말 조제Preparation Example 1 Cerium Oxide Powder Preparation

수산화세륨을 750℃에서 열처리하여 산화세륨을 얻은 후 이를 볼밀로 분쇄하여, XRD로 측정시 40nm 크기의 산화세륨을 수득하였다.The cerium hydroxide was heat treated at 750 ° C. to obtain cerium oxide, which was then milled with a ball mill to obtain a cerium oxide having a size of 40 nm as measured by XRD.

제조예 2: 피연마막 제조Preparation Example 2 Preparation of Abrasive Finish

8인치 실리콘 웨이퍼 위에, TEOS (테트라에틸 오르토실리케이트(tetraethyl orthosilicate))를 사용한 PE-CVD (plasma enhanced-chemical vapor deposition) 방식, 즉 PE-TEOS 공정에 의해 10,000Å의 두께로 이산화규소막을 성막하여 피연마막을 제조하였다.On an 8-inch silicon wafer, a silicon dioxide film was deposited to a thickness of 10,000 Å by plasma enhanced-chemical vapor deposition (PE-CVD) method using TEOS (tetraethyl orthosilicate), or PE-TEOS process. An abrasive film was prepared.

제조예 3: 산화세륨 슬러리의 제조Preparation Example 3 Preparation of Cerium Oxide Slurry

제조예 1에서 수득된 산화세륨 분말 800g을 탈이온수 9160g에 가한 후, 산화세륨 분말 조제시에 뭉쳐진 분말 덩어리가 수중에 남지 않도록 프로펠러 교반기를 이용하여 30분간 교반하였다. 분산제인 폴리아크릴산(중량평균분자량 3000, 농도 40 중량%) 20g을 교반하면서 첨가한 후, 대항충돌 분산기를 이용하여 200 MPa의 압력으로 입자를 충돌시킴으로써, 수중에 균일하게 분산된 8 중량% 농도의 산화세륨 슬러리를 수득하였다.After adding 800 g of cerium oxide powder obtained in Preparation Example 1 to 9160 g of deionized water, the mixture was stirred for 30 minutes using a propeller stirrer so that the powder agglomerates agglomerated in the preparation of cerium oxide powder did not remain in water. After adding 20 g of polyacrylic acid (weight average molecular weight 3000, concentration 40% by weight) as a dispersing agent with stirring, the particles were collided at a pressure of 200 MPa using an anti-collision disperser to uniformly disperse 8% by weight of water. Cerium oxide slurry was obtained.

산화세륨 연마 슬러리의 제조Preparation of Cerium Oxide Polishing Slurry

실시예 1Example 1

제조 3의 산화세륨 슬러리를 1,500rpm으로 회전하는 원통형의 원심분리기의 하단에서 주입하여 상단으로 빼내는 방식으로(이때, 큰 입자들은 원심분리기의 기벽에 붙게되고 작은 입자들만 원심분리기 상단으로 나오게 됨)하여, 큰 입자들을 제거하였다. 이후 슬러리의 wt%를 측정한 후 탈이온수를 가하여 5wt% 세리아 슬러리를 제조하였다. Injecting the cerium oxide slurry of Preparation 3 from the bottom of the cylindrical centrifuge rotating at 1,500rpm and withdrawn to the top (at this time, the large particles are attached to the base wall of the centrifuge and only small particles come out of the top of the centrifuge) , Large particles were removed. Then, after measuring the wt% of the slurry, deionized water was added to prepare a 5 wt% ceria slurry.

실시예 2Example 2

원심분리기의 회전 속도가 2,000rpm인 것을 제외하고는 실시예 1과 동일하게 수행하여 5wt% 세리아 슬러리를 제조하였다.A 5 wt% ceria slurry was prepared in the same manner as in Example 1 except that the rotation speed of the centrifuge was 2,000 rpm.

실시예 3Example 3

제조예 3의 산화세륨 슬러리를 1,500rpm으로 원심분리 하여 큰 입자를 1차로 제거한 다음 1㎛ 크기의 필터를 사용하여 여과하였으며, 이후 공정은 실시예 1과 동일하게 수행하여 5wt% 세리아 슬러리를 제조하였다.The cerium oxide slurry of Preparation Example 3 was centrifuged at 1,500 rpm to remove large particles first, and then filtered using a filter having a size of 1 μm. The process was then performed in the same manner as in Example 1 to prepare a 5 wt% ceria slurry. .

비교예 1Comparative Example 1

제조예 3의 산화세륨 슬러리를 원심분리하지 않고 탈이온수만 첨가하여 5wt% 세리아 슬러리를 제조하였다.The cerium oxide slurry of Preparation Example 3 was added to only deionized water without centrifugation to prepare a 5 wt% ceria slurry.

비교예 2Comparative Example 2

제조예 3의 산화세륨 슬러리를 원심분리하지 않고 직접 3㎛ 크기 필터에 10L/분의 유속으로 여과하였으며, 이후의 공정은 실시예 1과 동일하게 수행하여 5wt% 세리아 슬러리를 제조하였다.Cerium oxide slurry of Preparation Example 3 was filtered directly at a flow rate of 10L / min in a 3㎛ size filter without centrifugation, and the process was carried out in the same manner as in Example 1 to prepare a 5wt% ceria slurry.

비교예 3Comparative Example 3

수산화세륨을 650 ℃에서 열처리하여 산화세륨을 얻은 후 이를 볼밀로 분쇄하여 XRD로 측정시 평균입경 25 nm 크기의 산화세륨 분말을 얻었다. 이를 제조예 3 및 실시예 1과 동일하게 수행하여 5wt% 세리아 슬러리를 제조하였다. Cerium hydroxide was heat-treated at 650 ° C. to obtain cerium oxide, which was then milled with a ball mill to obtain a cerium oxide powder having an average particle diameter of 25 nm as measured by XRD. This was carried out in the same manner as in Preparation Example 3 and Example 1 to prepare a 5wt% ceria slurry.

참조예Reference Example

실시예 1에 따른 산화세륨 슬러리에 대해 rpm과 시간을 변화시켜 가면서 CSL 시험을 수행하였으며, 그 결과는 하기 표 1과 같다.The CSL test was performed while changing the rpm and time for the cerium oxide slurry according to Example 1, and the results are shown in Table 1 below.

Figure 112005013464366-pat00001
Figure 112005013464366-pat00001

슬러리 내 입자의 입경 측정Particle size measurement of particles in slurry

상기 실시예 1 내지 3 및 비교예 1 내지 3의 슬러리에 대해, 일본 호리바(Horiba)사의 입도분포분석기 LA910 이용하여 평균입경을 측정하였으며, 그 결과를 표 2에 나타내었다.For the slurries of Examples 1 to 3 and Comparative Examples 1 to 3, the average particle diameter was measured using a particle size analyzer LA910 manufactured by Horiba, Japan, and the results are shown in Table 2.

원심분리 침강 농도 감소 시험 및 큰 입자 함량 시험Centrifugal sedimentation concentration reduction test and large particle content test

상기 실시예 1 내지 3 및 비교예 1 내지 3의 슬러리에 대해, 장기간 보관시 슬러리 보관 용기 바닥에 가라앉아 응집될 가능성이 있는 입자의 함량을 알아보기 위해 튜브형 원심분리기 (Hanil Science Industrial MF80)를 이용하여 강제 침강시켜 산화세륨 고형분의 농도 감소량을 서로 비교하였다. 시험 방법은 높이 11.5 cm 및 부피 50ml의 원심분리용 시험관에 40ml의 5 중량% 산화 세륨 슬러리를 각각 채운 후 4,000rpm에서 2분간 회전시킨 후 (원심분리시, 시험관은 수평 상태로 되어 원심분리시의 회전중심축에서 시험관 바닥까지의 거리는 14 cm, 시험관 입구까지의 거리는 2.5 cm가 되며, 이때의 슬러리가 받는 원심력은 1970 g0 이 된다), 시험관 바닥에 가라앉은 단단한 케익을 제외한 상층액을 다른 시험관으로 옮긴 다음 상층액의 중량%를 측정하여 상기 수학식 1과 같이 계산하여 원심분리 침강 농도 감소 %(CSL%)를 구하였다. 감소 %가 적은 것이 큰 입자의 농도가 적은 것을 의미한다. 이 시험을 통하여 장기 안정성을 확인할 수 있으며, 큰 입자의 함유 정도도 확인할 수 있다. 시험 결과는 표 2에 나타내었다. For the slurries of Examples 1 to 3 and Comparative Examples 1 to 3, a tubular centrifuge (Hanil Science Industrial MF80) was used to determine the content of particles that could sink and agglomerate to the bottom of the slurry storage container during long term storage. Forced sedimentation to reduce the concentration of cerium oxide solids. The test method was filled with 40 ml of 5% by weight cerium oxide slurry in a centrifuge tube having a height of 11.5 cm and a volume of 50 ml, respectively, and rotated at 4,000 rpm for 2 minutes (when centrifuged, the test tube was in a horizontal state. The distance from the center of rotation to the bottom of the test tube is 14 cm and the distance to the test tube entrance is 2.5 cm, the centrifugal force of the slurry is 1970 g 0 ), and the supernatant except for the solid cake that has settled to the bottom of the test tube After transferring to the weight percentage of the supernatant was calculated as shown in Equation 1 to obtain the centrifugal sedimentation concentration reduction% (CSL%). A smaller percentage reduction means less concentration of larger particles. Through this test, long-term stability can be confirmed, and the content of large particles can also be confirmed. The test results are shown in Table 2.

피연마막의 연마 특성Polishing Characteristics of Finished Film

실시예 1 내지 3, 및 비교예 1 내지 3에서 수득된 각각의 산화세륨 슬러리로, 8인치용 CMP 연마기로서, 미라(Mirra) 장치(미국 AMAT사)를 이용하여 제조예 2에서 수득된 피연마막을 3.5 psi의 압력으로 90초 동안 연마하였다. 상기 슬러리는 150 ml/min의 속도로 공급하였으며, 상정반 웨이퍼 헤드(wafer head)의 회전속도는 104 rpm이고, 하정반의 회전속도는 110 rpm 이었다. 여기에 사용된 패드는 미국 로델(Rodel)사의 IC1000/suba Ⅳ stacked pad를 사용하였다. Each cerium oxide slurry obtained in Examples 1 to 3 and Comparative Examples 1 to 3, as an 8-inch CMP polishing machine, to be polished obtained in Preparation Example 2 using a Mirra apparatus (AMAT USA) The membrane was polished for 90 seconds at a pressure of 3.5 psi. The slurry was supplied at a rate of 150 ml / min, the rotation speed of the top plate wafer head was 104 rpm, and the rotation speed of the bottom plate was 110 rpm. The pad used here used IC1000 / suba IV stacked pads of Rodel, USA.

피연마막의 연마 후, 미국 KLA-Tenco 사의 스크래치 평가 장비인 AIT-XP를 사용하여 0.16 ㎛ 이상 크기의 스크래치 수에 대해 평가한 결과 및 미국 THERMA-WAVE 사의 Therma-wave Optiprobe 300 series를 사용하여 연마 전후의 막 두께 측정으로 연마량을 평가한 결과를 또한 표 2에 나타내었다. After polishing of the finished film, the results were evaluated for the number of scratches with a size of 0.16 μm or more using AIT-XP, a scratch evaluation device of KLA-Tenco, USA, and before and after polishing using Therma-wave Optiprobe 300 series, THERMA-WAVE, USA. Table 2 also shows the results of evaluating the amount of polishing by the film thickness measurement.

Figure 112005013464366-pat00002
Figure 112005013464366-pat00002

상기 표 2로부터, 본 발명에 따른 산화세륨 슬러리는 평균입경 0.1 내지 0.2 ㎛를 유지하여 연마량이 우수하면서도 CSL%가 적어 장기 안정성이 우수하고 반도체 연마시 생성되는 스크래치 수를 현저히 감소시킬 수 있음을 알 수 있다.From Table 2, it can be seen that the cerium oxide slurry according to the present invention maintains an average particle diameter of 0.1 to 0.2 μm, and thus has excellent polishing amount and low CSL%, which is excellent in long-term stability and can significantly reduce the number of scratches generated during semiconductor polishing. Can be.

본 발명에 따른, 소정의 조건에서 원심분리슬러리농도감소(CSL) 시험시 중량%농도 변화가 20%이하인 산화세륨 슬러리는 화학적 기계적 연마시 생성 스크래치 수가 현저히 적고 크기가 작으며, 또한 저장 용기의 바닥에 가라앉는 입자들이 적어 입자간의 응집이 일어나지 않아 장기간 보관한 후 사용하여도 스크래치 수가 증가하지 않는 등 우수한 성능을 나타낸다.According to the present invention, a cerium oxide slurry having a weight percent concentration change of 20% or less in a CSL test under predetermined conditions has a significantly smaller number of scratches and a smaller size during chemical mechanical polishing, and also a bottom of a storage container. As there are few particles sinking in, there is no agglomeration between particles, so the number of scratches does not increase even after long-term storage.

Claims (5)

평균입경이 0.1 내지 0.2 ㎛ 범위의 산화세륨 분말을 포함하고, 하기 수학식 1을 만족하는 반도체 박막 연마용 산화세륨 슬러리:A cerium oxide slurry for polishing a semiconductor thin film comprising an cerium oxide powder having an average particle diameter in the range of 0.1 to 0.2 μm, and satisfying Equation 1 below: <수학식 1><Equation 1> (C0-C1)/C0 X 100 ≤20(C 0 -C 1 ) / C 0 X 100 ≤20 C0은 최초 슬러리의 고형분 농도이고,C 0 is the solids concentration of the original slurry, C1은 슬러리가 받는 평균원심력 g가 1970 g0인 조건에서 2분간 원심분리한 후의 고형분 농도이고, g0는 중력가속도이다.C 1 is the solid content concentration after centrifugation for 2 minutes under the condition that the average centrifugal force g received by the slurry is 1970 g 0 , and g 0 is the gravitational acceleration. 제 1 항에 있어서,The method of claim 1, 산화세륨 분말을 물에 0.5 내지 20 중량% 농도로 분산시킨 후 1,000 내지 5,000 rpm의 회전속도로 원심분리시켜 제조된 것임을 특징으로 하는 산화세륨 슬러리.A cerium oxide slurry, which is prepared by dispersing cerium oxide powder in water at a concentration of 0.5 to 20% by weight and centrifuging at a rotational speed of 1,000 to 5,000 rpm. 제 2 항에 있어서, The method of claim 2, 원심분리 공정이, 슬러리를 고속으로 회전하는 원통 하단에 일정 유속으로 주입하여 상단으로 배출하는 방식임을 특징으로 하는 산화세륨 슬러리.The cerium oxide slurry, characterized in that the centrifugation process is a method of injecting the slurry at a constant flow rate at the lower end of the cylinder rotating at a high speed to discharge to the top. 제 1 항 내지 제 3 항 중 어느 한 항에 따른 산화세륨 슬러리를 이용하여 반도체 박막 또는 절연막을 연마하는 방법.A method of polishing a semiconductor thin film or an insulating film using the cerium oxide slurry according to any one of claims 1 to 3. 제 4 항에 있어서, The method of claim 4, wherein 선폭 0.16㎛ 이하의 미세 패턴용 반도체 박막을 연마하는 것을 특징으로 하는 방법.A method of grinding a semiconductor thin film for fine patterns having a line width of 0.16 µm or less.
KR1020050021259A 2004-03-16 2005-03-15 Ceria slurry for polishing semiconductor thin layer Expired - Fee Related KR100588404B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20040017741 2004-03-16
KR1020040017741 2004-03-16

Publications (2)

Publication Number Publication Date
KR20060043627A KR20060043627A (en) 2006-05-15
KR100588404B1 true KR100588404B1 (en) 2006-06-12

Family

ID=34986979

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050021259A Expired - Fee Related KR100588404B1 (en) 2004-03-16 2005-03-15 Ceria slurry for polishing semiconductor thin layer

Country Status (5)

Country Link
US (1) US20050208882A1 (en)
JP (1) JP4927342B2 (en)
KR (1) KR100588404B1 (en)
CN (1) CN1680510A (en)
TW (1) TWI370843B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4541796B2 (en) * 2004-07-30 2010-09-08 ルネサスエレクトロニクス株式会社 Manufacturing method of polishing slurry
CN101032001B (en) * 2004-09-28 2011-12-28 日立化成工业株式会社 CMP polishing compound and method for polishing substrate
EP1994112B1 (en) * 2006-01-25 2018-09-19 LG Chem, Ltd. Cmp slurry and method for polishing semiconductor wafer using the same
KR101107524B1 (en) * 2008-09-25 2012-01-31 솔브레인 주식회사 Process for preparing cerium oxide aqueous dispersion
JP2015120845A (en) * 2013-12-24 2015-07-02 旭硝子株式会社 Manufacturing method of polishing agent, polishing method, and manufacturing method of semiconductor integrated circuit device
KR101706975B1 (en) * 2014-02-14 2017-02-16 주식회사 케이씨텍 Manufacturing method of slurry composition and slurry composition thereby
US10319601B2 (en) 2017-03-23 2019-06-11 Applied Materials, Inc. Slurry for polishing of integrated circuit packaging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000048471A (en) * 1998-12-31 2000-07-25 윌리엄 비. 켐플러 Ball grid array package with multiple power/ground planes
JP2001011432A (en) 1999-06-29 2001-01-16 Seimi Chem Co Ltd Abrasive agent for semiconductor
KR20020016596A (en) * 2000-08-24 2002-03-04 코시야마 아키라 Polishing composition and polishing method employing it
KR20050018975A (en) * 1997-12-18 2005-02-28 히다치 가세고교 가부시끼가이샤 Abrasive

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3560151B2 (en) * 1996-02-07 2004-09-02 日立化成工業株式会社 Cerium oxide abrasive, semiconductor chip, method for producing them, and method for polishing substrate
JPH11320418A (en) * 1996-03-29 1999-11-24 Hitachi Chem Co Ltd Cerium oxide abrasive and substrate manufacturing method
US6383905B2 (en) * 1998-07-31 2002-05-07 Stmicroelectronics, Inc. Formation of micro rough poly surface for low sheet resistance salicided sub-quarter micron poly lines
JP3983949B2 (en) * 1998-12-21 2007-09-26 昭和電工株式会社 Polishing cerium oxide slurry, its production method and polishing method
US6244935B1 (en) * 1999-02-04 2001-06-12 Applied Materials, Inc. Apparatus and methods for chemical mechanical polishing with an advanceable polishing sheet
WO2000079577A1 (en) * 1999-06-18 2000-12-28 Hitachi Chemical Co., Ltd. Abrasive compound for cmp, method for polishing substrate and method for manufacturing semiconductor device using the same, and additive for cmp abrasive compound
US6348076B1 (en) * 1999-10-08 2002-02-19 International Business Machines Corporation Slurry for mechanical polishing (CMP) of metals and use thereof
EP1235261A4 (en) * 1999-11-04 2003-02-05 Seimi Chem Kk Polishing compound for semiconductor containing peptide
US6319096B1 (en) * 1999-11-15 2001-11-20 Cabot Corporation Composition and method for planarizing surfaces
US6293848B1 (en) * 1999-11-15 2001-09-25 Cabot Microelectronics Corporation Composition and method for planarizing surfaces
JP2001308044A (en) * 2000-04-26 2001-11-02 Hitachi Chem Co Ltd Oxide cerium polishing agent and polishing method for substrate
DE10063492A1 (en) * 2000-12-20 2002-06-27 Bayer Ag Process for chemical-mechanical polishing of insulation layers using the STI technique at elevated temperatures
JP3685481B2 (en) * 2000-12-27 2005-08-17 三井金属鉱業株式会社 Cerium-based abrasive particle powder excellent in particle size distribution, abrasive slurry containing the particle powder, and method for producing the particle powder
JP2002241739A (en) * 2001-02-20 2002-08-28 Hitachi Chem Co Ltd Polishing agent and method for polishing substrate
US6726534B1 (en) * 2001-03-01 2004-04-27 Cabot Microelectronics Corporation Preequilibrium polishing method and system
JP2003209076A (en) * 2002-01-15 2003-07-25 Hitachi Chem Co Ltd Cmp abrasive and abrading method for substrate
KR100449948B1 (en) * 2002-05-18 2004-09-30 주식회사 하이닉스반도체 Method for fabricating contact plug with low contact resistance
US6913634B2 (en) * 2003-02-14 2005-07-05 J. M. Huber Corporation Abrasives for copper CMP and methods for making
JP2005093785A (en) * 2003-09-18 2005-04-07 Toshiba Corp Slurry for cmp, polish method, and method for manufacturing semiconductor device
US7241725B2 (en) * 2003-09-25 2007-07-10 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Barrier polishing fluid
US6964600B2 (en) * 2003-11-21 2005-11-15 Praxair Technology, Inc. High selectivity colloidal silica slurry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050018975A (en) * 1997-12-18 2005-02-28 히다치 가세고교 가부시끼가이샤 Abrasive
KR20000048471A (en) * 1998-12-31 2000-07-25 윌리엄 비. 켐플러 Ball grid array package with multiple power/ground planes
JP2001011432A (en) 1999-06-29 2001-01-16 Seimi Chem Co Ltd Abrasive agent for semiconductor
KR20020016596A (en) * 2000-08-24 2002-03-04 코시야마 아키라 Polishing composition and polishing method employing it

Also Published As

Publication number Publication date
TWI370843B (en) 2012-08-21
TW200536930A (en) 2005-11-16
US20050208882A1 (en) 2005-09-22
KR20060043627A (en) 2006-05-15
CN1680510A (en) 2005-10-12
JP4927342B2 (en) 2012-05-09
JP2005268799A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
KR102240249B1 (en) Composite abrasive particles for chemical mechanical planarization composition and method of using same
KR101134590B1 (en) Process for preparing a polishing slurry having high dispersion stability
JP4554363B2 (en) Abrasive for semiconductor, manufacturing method thereof and polishing method
TWI613284B (en) Honing fluid and honing method for CMP
EP1566420A1 (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
JP2018513552A (en) Polishing composition containing ceria particles and method of use
KR100588404B1 (en) Ceria slurry for polishing semiconductor thin layer
KR101091532B1 (en) Method for producing cerium oxide slurry for CPM
CN1437643A (en) Slurries of abrasive inorganic oxide particles and method for polishing copper containing surfaces
US10428240B2 (en) Method for preparing slurry composition and slurry composition prepared thereby
TW201544586A (en) Polishing liquid for CMP, polishing liquid set for CMP, and polishing method
KR100555432B1 (en) Cerium Oxide Aqueous Slurry for Polishing Semiconductor Thin Films and Manufacturing Method Thereof
KR101134596B1 (en) Ceruim-based abrasive slurry
KR101107524B1 (en) Process for preparing cerium oxide aqueous dispersion
KR101090913B1 (en) Cerium oxide abrasive suspension for chemical mechanical polishing and method for producing the same
KR100574162B1 (en) Method for producing cerium-based abrasive
KR20150067784A (en) Metal oxide slurry for cmp and method of the same
JP2008063421A (en) Polishing material composition and its manufacturing method
WO2021161462A1 (en) Cmp polishing solution and polishing method
KR100679460B1 (en) Ceria-plate mica composite abrasive and its manufacturing method
KR101103748B1 (en) Cerium oxide slurry for semiconductor thin film polishing and method for producing same
JP2004289170A (en) Cerium oxide polishing agent and method of polishing substrate
KR20160040856A (en) Manufacturing method of slurry composition for polishing using multiple times centrifugation
KR20180034935A (en) Manufacturing method of slurry composition and slurry composition thereby
KR20070073411A (en) Method of manufacturing cerium oxide for semiconductor thin film polishing

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20050315

PA0201 Request for examination
PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20060529

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20060602

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20060605

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20090407

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20100402

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20110411

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20120327

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20130327

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20130327

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20140311

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20140311

Start annual number: 9

End annual number: 9

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20160509