[go: up one dir, main page]

KR100542690B1 - Silicon oxide film formation method of semiconductor device - Google Patents

Silicon oxide film formation method of semiconductor device Download PDF

Info

Publication number
KR100542690B1
KR100542690B1 KR1019980061449A KR19980061449A KR100542690B1 KR 100542690 B1 KR100542690 B1 KR 100542690B1 KR 1019980061449 A KR1019980061449 A KR 1019980061449A KR 19980061449 A KR19980061449 A KR 19980061449A KR 100542690 B1 KR100542690 B1 KR 100542690B1
Authority
KR
South Korea
Prior art keywords
oxide film
semiconductor device
chamber
forming
wafer
Prior art date
Application number
KR1019980061449A
Other languages
Korean (ko)
Other versions
KR20000044946A (en
Inventor
이기엽
임태정
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1019980061449A priority Critical patent/KR100542690B1/en
Publication of KR20000044946A publication Critical patent/KR20000044946A/en
Application granted granted Critical
Publication of KR100542690B1 publication Critical patent/KR100542690B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

본 발명은 반도체 소자의 산화막 형성 방법에 관한 것으로, 웨이퍼를 챔버 내에 로딩하고 산화막이 형성될 하부층이 실리콘 기판인 경우, 질소 가스를 포함하는 불활성 기체를 이용하여 플라즈마 전처리 공정을 실시하는 단계와, 산소 플라즈마 처리를 실시하는 단계를 통하여 산화막을 형성하므로써, 소수의 웨이퍼 또는 대구경 웨이퍼의 표면처리 및 얇은 산화막을 용이하게 형성할 수 있고, 웨이퍼 가공에 대한 단가를 줄이고 스루우풋(throughput)을 높일 수 있으며, 산화막의 신뢰성을 향상시킬 수 있는 반도체 소자의 산화막 형성 방법이 개시된다.The present invention relates to a method of forming an oxide film of a semiconductor device, wherein when the wafer is loaded into a chamber and the lower layer on which the oxide film is to be formed is a silicon substrate, performing a plasma pretreatment process using an inert gas containing nitrogen gas; By forming the oxide film through the step of plasma treatment, it is possible to easily form a thin oxide film and the surface treatment of a small number of wafers or large-diameter wafer, reduce the unit cost for wafer processing and increase the throughput, A method of forming an oxide film of a semiconductor device that can improve the reliability of an oxide film is disclosed.

Description

반도체 소자의 산화막 형성 방법Oxide film formation method of semiconductor device

본 발명은 반도체 소자의 얇은 산화막(thin oxide) 형성 방법에 관한 것으로, 특히 실리콘 기판이나 산화막 하부층을 전처리하므로써 산화막의 성장 특성을 향상시킬 수 있는 반도체 소자의 산화막 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a thin oxide film of a semiconductor device, and more particularly, to a method of forming an oxide film of a semiconductor device capable of improving growth characteristics of an oxide film by pretreatment of a silicon substrate or an oxide layer below.

일반적으로, 얇은 산화막 형성 시에는 튜브 내에서 슬롯(slot)별 가스 플로우와 온도조절이 균일하게 유지되어야 한다. 또한, 웨이퍼 삽입 위치에 따라 산화막의 증착 두께가 불균일해지는 문제가 있고, 산화막 형성시의 파티클로 인한 오염 가능성을 배제하는 것이 공정의 큰 문제로 부각되어 왔다. 뿐만 아니라, 웨이퍼 내의 산화막 증착 균일성을 확보하는 것이 중요하다. 이러한 문제는 저전력에서 동작하는 소자의 산화막(예를 들어, 게이트 산화막) 두께가 낮아짐에 따라 산화막의 신뢰성(예를 들어, 브레이크다운 전압, 상수 전류 스트레스 테스트 등)을 결정하는 새로운 문제로 부각되고 있다. 또한, 소규모 웨이퍼나 특이한 조건을 개별 웨이퍼에 적용할 때 프로세스 병목 현상이 발생하며, 산화막 형성시 필요한 가스량, 소비전력, 더미(dummy) 웨이퍼의 사용에 따른 비용이 증가되는 문제점이 있다.In general, when forming a thin oxide film, the gas flow and temperature control for each slot should be maintained uniformly in the tube. In addition, there is a problem that the deposition thickness of the oxide film is uneven depending on the wafer insertion position, and it has been highlighted as a big problem of the process to exclude the possibility of contamination due to particles during the oxide film formation. In addition, it is important to ensure uniform deposition of oxide film in the wafer. This problem is emerging as a new problem of determining the reliability (eg, breakdown voltage, constant current stress test, etc.) of the oxide film as the thickness of the oxide film (eg, gate oxide) of the device operating at low power becomes low. . In addition, a process bottleneck occurs when small wafers or unusual conditions are applied to individual wafers, and there is a problem in that an amount of gas, power consumption, and cost of using a dummy wafer are increased when an oxide film is formed.

따라서, 본 발명은 실리콘 기판 표면이나 산화막 하부층을 플라즈마를 이용하여 전처리하여 표면 상태를 개선한 후 산화막을 형성하므로써 산화막의 신뢰성을 향상시킬 수 있는 반도체 소자의 산화막 형성 방법을 제공하는 데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for forming an oxide film of a semiconductor device capable of improving the reliability of the oxide film by forming an oxide film after pretreating the surface of the silicon substrate or the oxide layer under plasma using plasma. .

상술한 목적을 달성하기 위한 본 발명에 따른 반도체 소자의 산화막 형성 방법은 반도체 소자의 산화막 형성 방법에 있어서, 웨이퍼를 챔버 내에 로딩하고 산화막이 형성될 하부층이 실리콘 기판인 경우, 질소 가스를 포함하는 불활성 기체를 이용하여 플라즈마 전처리 공정을 실시하는 단계와, 산소 플라즈마 처리를 실시하는 단계를 포함하여 이루어지는 것을 특징으로 한다.In the oxide film forming method of a semiconductor device according to the present invention for achieving the above object, in the oxide film formation method of a semiconductor device, inert nitrogen containing, when the wafer is loaded in the chamber and the lower layer to be formed oxide film is a silicon substrate And performing a plasma pretreatment process using a gas, and performing an oxygen plasma treatment.

본 발명에서 산화막을 형성하는 방법은 얇은 산화막을 실리콘 기판 상에 형성하는 경우와 실리콘 기판이 아닌 하부층 상에 형성하는 경우로 나누어 설명될 수 있다.The method of forming the oxide film in the present invention can be described by dividing it into a case where a thin oxide film is formed on a silicon substrate and a case where the oxide film is formed on a lower layer rather than a silicon substrate.

첫째, 실리콘 기판 상에 얇은 산화막을 형성하는 경우에 대하여 설명한다. 먼저, 챔버 내에 웨이퍼를 로딩하고 N2, NH3 등 질소 가스를 포함하는 불활성 기체를 500W 이하의 고주파 소오스 전력을 이용하여 플라즈마로 만들고, 웨이퍼 표면에 이온 충돌이 일어나지 않도록 바이어스 전력을 인가하지 않은 상태에서 플라즈마 전처리를 실시하여 실리콘 기판 표면을 중화시킨다. 이때, 실리콘 기판 전처리의 균일성을 향상시키기 위하여 고밀도 플라즈마 챔버의 압력은 10 ~ 80mT로 유지시킨다. 그리고, 웨이퍼가 장착되는 페디스틀(pedestal)이나 일렉트로드(electrode)의 온도를 100℃ 이상으로 유지시켜 이온 충격이 억제되도록 한다.First, a case of forming a thin oxide film on a silicon substrate will be described. First, a wafer is loaded into a chamber and an inert gas containing nitrogen gas such as N 2 or NH 3 is made into plasma using a high frequency source power of 500W or less, and a bias power is not applied to prevent ion collision on the wafer surface. Plasma pretreatment is performed to neutralize the silicon substrate surface. At this time, in order to improve the uniformity of the silicon substrate pretreatment, the pressure of the high density plasma chamber is maintained at 10 to 80 mT. Then, the temperature of the pedestal or the electrode on which the wafer is mounted is maintained at 100 ° C. or higher to suppress the ion bombardment.

이후, 산소 플라즈마에 이하여 산화 공정을 실시하여 얇은 산화막을 형성한다. 산소 플라즈마 생성시 소오스 전력은 2500W 이하로 하고, 바이어스 전력은 50W 이하로 하며, 고밀도 플라즈마 챔버의 압력은 500 내지 1000mT로 유지시킨다. 이 경우, 질소를 포함하는 가스를 이용하여 전처리를 실시하므로써 브레이크다운(breakdown) 전압이 향상되는 효과를 얻을 수 있다.Thereafter, an oxidation process is performed following the oxygen plasma to form a thin oxide film. When generating oxygen plasma, the source power is 2500W or less, the bias power is 50W or less, and the pressure of the high density plasma chamber is maintained at 500 to 1000 mT. In this case, the effect of improving the breakdown voltage can be obtained by performing pretreatment using a gas containing nitrogen.

둘째, 실리콘 기판이 아닌 하부층(예를 들어, 산화막) 상에 얇은 산화막을 형성하는 경우에 대하여 설명한다. 먼저, 웨이퍼를 챔버 내에 로딩하고, Ar, XeF2, NF3 또는 CF4+O2 중 어느 하나를 500W 이하의 고주파 소오스 전력을 이용하여 플라즈마로 만들고, 약간의 이온 충격이 수반되도록 하여, 실리콘과 산소와의 본드를 끊어 하부층 표면의 실리콘을 돌출시킨다. 이 경우, 바이어스전력을 50W 이하로 유지하므로써 하부층 표면의 실리콘 고용도를 높일 수 있다. 또한, 챔버 내의 압력을 10mT 이내에서 변화시켜 이온의 평균 자유 경로(Mean Free Path)를 확보한다. 그리고, 웨이퍼가 장착되는 캐소드(cathode)의 온도가 10℃ 이하로 유지되도록 하여 이온 충격 효과를 얻을 수 있도록 한다.Second, a case where a thin oxide film is formed on a lower layer (for example, an oxide film) rather than a silicon substrate will be described. First, the wafer is loaded into the chamber, and any one of Ar, XeF 2 , NF 3 or CF 4 + O 2 is made into a plasma using a high frequency source power of 500 W or less, accompanied by some ion bombardment, so that the silicon and The bond with oxygen is broken to protrude the silicon on the lower layer surface. In this case, by maintaining the bias power at 50 W or less, the silicon solubility of the lower layer surface can be increased. In addition, the pressure in the chamber is changed within 10 mT to secure an average free path of ions. In addition, the temperature of the cathode on which the wafer is mounted is maintained at 10 ° C. or lower to obtain an ion bombardment effect.

이후, 산소 플라즈마에 이하여 산화 공정을 실시하여 얇은 산화막을 형성한다. 산소 플라즈마 생성시 소오스 전력은 2500W 이하로 하고, 바이어스 전력은 50W 이하로 하며, 고밀도 플라즈마 챔버의 압력은 500 내지 1000mT로 유지시킨다.Thereafter, an oxidation process is performed following the oxygen plasma to form a thin oxide film. When generating oxygen plasma, the source power is 2500W or less, the bias power is 50W or less, and the pressure of the high density plasma chamber is maintained at 500 to 1000 mT.

이상 설명한 두 가지 경우 모두에 있어서, 플라즈마 턴온시 챔버의 압력을 조절하여 해리된 가스 입자의 챔버 잔류시간을 증가시키므로써, 실리콘 기판이나 하부층의 플라즈마 처리 반응 확율이 균일하도록 한다. 또한, 플라즈마 처리에 의해 표면에 Si 또는 Si-X 등의 물질이 형성되도록 하여 실리콘의 고용도를 향상시킬 수 있으며, 표면에 발생된 Si에 의해 2차 산화가 가능하게 된다.In both cases described above, the chamber residence time of the dissociated gas particles is increased by adjusting the pressure of the chamber during plasma turn-on, so that the probability of plasma treatment reaction of the silicon substrate or the lower layer is uniform. In addition, by forming a material such as Si or Si-X on the surface by the plasma treatment, it is possible to improve the solid solubility of silicon, and secondary oxidation is possible by the Si generated on the surface.

이와 같이, 플라즈마를 이용하여 실리콘 기판 표면이나 산화막 하부층을 가공하므로써 댄글링 본드(dangling bond), 차지 트랩(charge trap), 불순물, 격자결함 등의 표면 상태를 제어하여 산화막의 신뢰성을 향상시킬 수 있고, 표면에 노출되는 실리콘 입자를 이용하여 얇은 산화막 성장률을 향상시킬 수 있다. 이 방법은 특히, 300mm 웨이퍼의 가공이나 소규모 웨이퍼에서 유용하게 사용될 수 있다.As such, by processing the surface of the silicon substrate or the oxide underlayer using plasma, surface conditions such as dangling bonds, charge traps, impurities, and lattice defects can be controlled to improve the reliability of the oxide film. By using the silicon particles exposed on the surface, the thin oxide film growth rate can be improved. This method can be especially useful for processing 300mm wafers or small wafers.

도 1(a) 및 1(b)는 본 발명에 따라 산화막을 형성한 경우 브레이크다운 전압의 향상을 나타내는 그래프이다.1 (a) and 1 (b) are graphs showing an improvement in breakdown voltage when an oxide film is formed according to the present invention.

도 1(a)는 산화 압력이 5mTorr인 경우를 나타내고, 도 1(b)는 산화 압력이 1mTorr인 경우를 나타낸다. 그래프에서 알 수 있듯이, 질소 가스를 이용한 플라즈마 처리로 실리콘 기판을 전처리하게 되면, 산화막의 브레이크다운 전압이 향상됨을 알 수 있다. 이러한 브레이크다운 전압의 향상은 산화 압력 변화되는 경우에도 같은 결과를 가져온다.FIG. 1 (a) shows a case where the oxidation pressure is 5 mTorr, and FIG. 1 (b) shows a case where the oxidation pressure is 1 mTorr. As can be seen from the graph, when the silicon substrate is pretreated by plasma treatment using nitrogen gas, it can be seen that the breakdown voltage of the oxide film is improved. This improvement in breakdown voltage has the same effect even when the oxidation pressure changes.

도 2는 본 발명에 따라 산화막을 형성한 경우 산화막 성장 시간에 따른 산화막의 두께 변화를 나타내는 그래프이다.2 is a graph showing the thickness change of the oxide film according to the oxide film growth time when the oxide film is formed according to the present invention.

그래프에서 알 수 있듯이, 질소 가스 등을 이용하여 전처리를 실시한 후 산화막을 형성하게 되면, 전처리를 하지 않은 경우에 비하여 산화막의 성장률 높아지게 된다.As can be seen from the graph, when the oxide film is formed after pretreatment using nitrogen gas or the like, the growth rate of the oxide film is increased as compared with the case where the pretreatment is not performed.

상술한 바와 같이 본 발명에 의하면 산화막 형성 전 실리콘 기판 등의 하부층을 플라즈마를 이용하여 전처리하므로써, 소수의 웨이퍼 또는 대구경 웨이퍼의 표면처리 및 얇은 산화막을 용이하게 할 수 있다. 또한, 웨이퍼 가공에 대한 단가를 줄이고 스루우풋(throughput)을 높일 수 있고, 산화막의 신뢰성을 향상시킬 수 있다.As described above, according to the present invention, by pretreating a lower layer such as a silicon substrate before forming an oxide film by using plasma, surface treatment of a small number of wafers or large diameter wafers and a thin oxide film can be facilitated. In addition, it is possible to reduce the unit cost for wafer processing, increase throughput, and improve the reliability of the oxide film.

도 1(a) 및 1(b)는 본 발명에 따라 산화막을 형성한 경우 브레이크다운 전압의 향상을 나타내는 그래프.1 (a) and 1 (b) are graphs showing an improvement in breakdown voltage when an oxide film is formed according to the present invention.

도 2는 본 발명에 따라 산화막을 형성한 경우 산화막 성장 시간에 따른 산화막의 두께 변화를 나타내는 그래프.Figure 2 is a graph showing the thickness change of the oxide film according to the oxide film growth time when the oxide film is formed in accordance with the present invention.

Claims (7)

반도체 소자의 산화막 형성 방법에 있어서,In the oxide film formation method of a semiconductor element, 웨이퍼를 챔버 내에 로딩하고 산화막이 형성될 하부층이 실시콘 기판인 경우, 질소 가스를 포함하는 불활성 기체를 이용하여 플라즈마 전처리 공정을 실시하는 단계와,Loading the wafer into the chamber and performing a plasma pretreatment process using an inert gas containing nitrogen gas when the lower layer on which the oxide film is to be formed is an execution cone substrate; 산소 플라즈마 처리를 실시하는 단계를 포함하여 이루어지는 것을 특징으로 하는 반도체 소자의 산화막 형성 방법.An oxide film forming method of a semiconductor device comprising the step of performing an oxygen plasma treatment. 제 1 항에 있어서,The method of claim 1, 상기 전처리 공정은 바이어스 전력을 인가하지 않은 상태에서 실시하는 것을 특징으로 하는 반도체 소자의 산화막 형성 방법.And the pretreatment step is performed in a state where a bias power is not applied. 제 2 항에 있어서,The method of claim 2, 상기 챔버의 압력은 10 ~ 80mT인 것을 특징으로 하는 반도체 소자의 산화막 형성 방법.The pressure of the chamber is 10 to 80mT method for forming an oxide film of a semiconductor device. 제 2 항에 있어서,The method of claim 2, 상기 챔버 내에 로딩되는 웨이퍼 장착 장치의 온도는 100℃ 이상인 것을 특징으로 하는 반도체 소자의 산화막 형성 방법.The method of forming an oxide film of a semiconductor device, characterized in that the temperature of the wafer mounting apparatus loaded into the chamber is 100 ° C or more. 제 1 항에 있어서,The method of claim 1, 상기 하부층이 실리콘 기판이 아닌 경우 상기 전처리 공정은 웨이퍼를 챔버 내에 로딩하고 Ar, XeF2 또는 CF4+O2 중 어느 하나를 500W 이하의 고주파 소오스 전력을 이용하여 플라즈마로 만들고, 바이어스전력을 50W 이하로 인가하여 실시하는 것을 특징으로 하는 반도체 소자의 산화막 형성 방법.If the lower layer is not a silicon substrate, the pretreatment process loads the wafer into the chamber and turns any of Ar, XeF 2 or CF 4 + O 2 into a plasma using a high frequency source power of 500W or less, and a bias power of 50W or less. The oxide film forming method of a semiconductor device, characterized in that applied to. 제 5 항에 있어서,The method of claim 5, wherein 상기 챔버의 압력은 10mT 이내에서 변화시키는 것을 특징으로 하는 반도체 소자의 산화막 형성 방법.And the pressure of the chamber is changed within 10 mT. 제 5 항에 있어서,The method of claim 5, wherein 상기 챔버 내에 로딩되는 웨이퍼 장착 장비의 온도는 10℃ 이하인 것을 특징으로 하는 반도체 소자의 산화막 형성 방법.The method of forming an oxide film of a semiconductor device, characterized in that the temperature of the wafer mounting equipment loaded into the chamber is 10 ° C or less.
KR1019980061449A 1998-12-30 1998-12-30 Silicon oxide film formation method of semiconductor device KR100542690B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980061449A KR100542690B1 (en) 1998-12-30 1998-12-30 Silicon oxide film formation method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980061449A KR100542690B1 (en) 1998-12-30 1998-12-30 Silicon oxide film formation method of semiconductor device

Publications (2)

Publication Number Publication Date
KR20000044946A KR20000044946A (en) 2000-07-15
KR100542690B1 true KR100542690B1 (en) 2006-03-28

Family

ID=19568201

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980061449A KR100542690B1 (en) 1998-12-30 1998-12-30 Silicon oxide film formation method of semiconductor device

Country Status (1)

Country Link
KR (1) KR100542690B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040157430A1 (en) * 2003-02-07 2004-08-12 Asml Netherlands B.V. Methods and apparatus for processing semiconductor wafers with plasma processing chambers in a wafer track environment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254433A (en) * 1986-04-28 1987-11-06 Sanyo Electric Co Ltd Formation of oxide film on silicon substrate
KR0126892B1 (en) * 1993-03-31 1998-04-02 세끼사와 다까시 Apparatus for semiconductor device and manufacturing method therefor
KR19980046161A (en) * 1996-12-11 1998-09-15 양승택 Gate oxide film formation method of a semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254433A (en) * 1986-04-28 1987-11-06 Sanyo Electric Co Ltd Formation of oxide film on silicon substrate
KR0126892B1 (en) * 1993-03-31 1998-04-02 세끼사와 다까시 Apparatus for semiconductor device and manufacturing method therefor
KR19980046161A (en) * 1996-12-11 1998-09-15 양승택 Gate oxide film formation method of a semiconductor device

Also Published As

Publication number Publication date
KR20000044946A (en) 2000-07-15

Similar Documents

Publication Publication Date Title
US10083830B2 (en) Substrate cleaning method for removing oxide film
US5376223A (en) Plasma etch process
JP5172352B2 (en) Selective plasma reoxidation process using pulsed radio frequency source power
JP5172353B2 (en) Plasma gate oxidation process using pulsed radio frequency source power
US7939388B2 (en) Plasma doping method and plasma doping apparatus
US7723241B2 (en) Plasma processing method and computer storage medium
US4062747A (en) Native growth of semiconductor oxide layers
US20080011426A1 (en) Plasma reactor with inductively coupled source power applicator and a high temperature heated workpiece support
JP3084243B2 (en) Method of depositing dielectric layer by PECVD method
JP2000068227A (en) Method for processing surface and device thereof
JP5006415B2 (en) Substrate cleaning method for removing oxide film
KR100542690B1 (en) Silicon oxide film formation method of semiconductor device
US7858155B2 (en) Plasma processing method and plasma processing apparatus
JP2010074065A (en) Substrate cleaning method for removing oxide film
RU2029411C1 (en) Method of plasma etching of thin films
JPH09223684A (en) Plasma process device
JP2004128209A (en) Plasma doping method
JPH0758083A (en) Semiconductor manufacturing apparatus
Allan et al. The use of Schottky barrier diodes for the detection of surface contamination and damage in the fabrication of GaAs MESFETS
EP0405689A1 (en) Process for removing defects in a metallized semi-conductor device
JPH10199872A (en) Thin film formation method
JP2002305185A (en) Plasma processing apparatus
JPH08279474A (en) Forming method of active layer in compound semiconductor device

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19981230

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20031007

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 19981230

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20050622

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20051226

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20060104

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20060103

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20090102

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20091222

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20101224

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20101224

Start annual number: 6

End annual number: 6

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee