KR100531537B1 - Method for fabricating of semiconductor device - Google Patents
Method for fabricating of semiconductor device Download PDFInfo
- Publication number
- KR100531537B1 KR100531537B1 KR10-2003-0021645A KR20030021645A KR100531537B1 KR 100531537 B1 KR100531537 B1 KR 100531537B1 KR 20030021645 A KR20030021645 A KR 20030021645A KR 100531537 B1 KR100531537 B1 KR 100531537B1
- Authority
- KR
- South Korea
- Prior art keywords
- gate electrode
- insulating film
- substrate
- forming
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
본 발명은 소자의 전류 구동 능력을 향상시키고, 누설전류량을 줄이며, 숏채널 효과 및 펀치스루우 특성을 개선할 수 있는 반도체 소자의 제조방법을 제공하기 위한 것으로, 본 발명의 일 측면에 따르면, 기판상에 게이트절연막과 게이트전극을 적층 형성하는 단계; 상기 게이트전극 양측면에 제 1, 제 2 측벽절연막을 형성하는 단계; 상기 게이트전극의 상부 표면이 드러나도록 상기 기판 상에 버퍼절연막과 감광막을 형성하는 단계; 상기 게이트전극에 불순물이온을 주입하여 도핑시키는 단계; 상기 감광막을 제거하는 단계; 및 상기 게이트전극과 상기 제 1, 제 2 측벽절연막 양측의 상기 기판내에 소오스/드레인영역을 형성하는 단계를 포함하는 반도체소자의 제조방법이 제공된다.The present invention is to provide a method of manufacturing a semiconductor device that can improve the current driving capability of the device, reduce the amount of leakage current, improve the short channel effect and punch-through characteristics, according to one aspect of the invention, the substrate Stacking a gate insulating film and a gate electrode on the substrate; Forming first and second sidewall insulating layers on both sides of the gate electrode; Forming a buffer insulating film and a photoresist film on the substrate to expose the upper surface of the gate electrode; Doping by implanting impurity ions into the gate electrode; Removing the photosensitive film; And forming a source / drain region in the gate electrode and the substrate on both sides of the first and second sidewall insulating layers.
Description
본 발명은 반도체 제조 기술에 관한 것으로, 특히 반도체 소자 제조 공정 중 트랜지스터 제조 공정에 관한 것이며, 더 자세히는 전류 구동 능력을 향상시키고, 누설전류량을 줄이며, 숏채널 효과 및 펀치스루우 특성을 개선할 수 있는 트랜지스터의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to semiconductor manufacturing technology, and more particularly, to a transistor manufacturing process in a semiconductor device manufacturing process, and more particularly, to improve current driving capability, reduce leakage current amount, and improve short channel effect and punchthrough characteristics. The present invention relates to a method of manufacturing a transistor.
첨부 도면을 참조하여 종래 기술에 따른 반도체소자의 제조방법에 대하여 설명하면 다음과 같다. Referring to the accompanying drawings, a method of manufacturing a semiconductor device according to the prior art will be described.
도 1a 내지 도 1c는 종래 기술에 따른 반도체소자의 제조방법을 나타낸 공정 단면도이다.1A to 1C are cross-sectional views illustrating a method of manufacturing a semiconductor device according to the prior art.
종래에 따른 반도체소자의 제조방법은 도 1a에 도시한 바와 같이, 반도체기판(100)상에 제 1 절연막과 폴리실리콘층을 차례로 증착한 후, 게이트 형성 마스크를 이용하여 폴리실리콘층과 제 1 절연막을 식각하여, 일영역에 게이트절연막(101)과 게이트전극(102)을 적층 형성한다. In the conventional method of manufacturing a semiconductor device, as shown in FIG. 1A, the first insulating film and the polysilicon layer are sequentially deposited on the semiconductor substrate 100, and then the polysilicon layer and the first insulating film are formed using a gate forming mask. Is etched to form a gate insulating film 101 and a gate electrode 102 in one region.
이후에 상기 게이트전극(102)을 마스크로 반도체기판(100)에 저농도 소오스/드레인영역(103a/103b)을 형성한다. Thereafter, low concentration source / drain regions 103a and 103b are formed in the semiconductor substrate 100 using the gate electrode 102 as a mask.
다음에 게이트전극(102)을 포함한 반도체기판(100)의 전면에 제 2 절연막과 제 3 절연막을 차례로 증착하고, 에치백하여 게이트전극(102) 양측면에 제 1, 제 2 측벽절연막(104, 105)을 형성한다. Next, a second insulating film and a third insulating film are sequentially deposited on the entire surface of the semiconductor substrate 100 including the gate electrode 102, and then etched back to form first and second sidewall insulating films 104 and 105 on both sides of the gate electrode 102. ).
이때 제 1 측벽절연막(104)은 게이트전극(102)과 제 2 측벽절연막(105) 사이 및 제 2 측벽절연막(105) 하부에 각을 갖고 형성되어 있다. In this case, the first sidewall insulating film 104 is formed at an angle between the gate electrode 102 and the second sidewall insulating film 105 and under the second sidewall insulating film 105.
도 1b에 도시한 바와 같이, 상기 게이트전극(102)과 제 1, 제 2 측벽절연막(104,105)을 포함한 전면에 약 100Å의 두께를 갖도록 버퍼절연막(106)을 증착한다. As shown in FIG. 1B, a buffer insulating film 106 is deposited to have a thickness of about 100 μs on the entire surface including the gate electrode 102 and the first and second sidewall insulating films 104 and 105.
이후에 게이트전극(102)과 제 1, 제 2 측벽절연막(104,105) 양측의 반도체기판(100) 내에 고농도 불순물 이온을 주입한다. 이때 반도체기판(100) 뿐만아니라 게이트전극(102)내에도 동시에 이온을 주입한다. Thereafter, high concentration impurity ions are implanted into the semiconductor substrate 100 on both sides of the gate electrode 102 and the first and second sidewall insulating films 104 and 105. At this time, not only the semiconductor substrate 100 but also the gate electrode 102 is simultaneously implanted with ions.
도 1c에 도시한 바와 같이, 후속 급속 열처리(RTP:Rapid Thermal Process) 공정을 진행하여 게이트전극(102), 제 1, 제 2 측벽절연막(104,105) 양측의 반도체기판(100) 내에 고농도 소오스/드레인영역(107a/107b)을 형성한다. As shown in FIG. 1C, a subsequent rapid thermal process (RTP) process is performed to form a high concentration source / drain in the semiconductor substrate 100 on both sides of the gate electrode 102 and the first and second sidewall insulating films 104 and 105. The regions 107a / 107b are formed.
상술한 바와 같이 고농도 불순물이온을 주입하여 고농도 소오스/드레인영역(107a/107b)을 형성할 때, 게이트전극(102)에도 동시에 이온이 주입된다. 상기 공정에서와 같이 게이트전극(102)의 이온주입은 전적으로 고농도 소오스/드레인영역(107a/107b)의 이온주입 조건에 따라 결정된다. As described above, when the high concentration impurity ions are implanted to form the high concentration source / drain regions 107a and 107b, ions are simultaneously implanted into the gate electrode 102. As in the above process, the ion implantation of the gate electrode 102 is entirely determined by the ion implantation conditions of the high concentration source / drain regions 107a / 107b.
그러나 상기와 같이 게이트전극을 소오스/드레인영역의 이온주입조건과 동일한 조건으로 이온주입하면, 게이트전극의 두께 및 폴리 그레인 구조 등의 영향으로 게이트전극이 충분히 전기적으로 전도성을 갖는 물질로서의 역할을 하지 못하게 되는 문제가 발생할 수 있다. However, when the gate electrode is implanted under the same conditions as the ion implantation conditions of the source / drain regions, the gate electrode may not function as a material that is sufficiently electrically conductive due to the thickness of the gate electrode and the poly grain structure. Can cause problems.
상기와 같이, 게이트전극이 충분히 도핑되지 못하면 게이트전극에 인가되는 전압에 의한 공핍층영역의 발생으로 전기적 게이트-산화막 두께를 상승시켜 모스 트랜지스터의 전류구동능력을 저하시키며, 또한 오프(Off)상태에서의 누설전류도 커지는 문제가 발생한다. As described above, if the gate electrode is not sufficiently doped, the depletion layer region is generated by the voltage applied to the gate electrode, thereby increasing the thickness of the electrical gate-oxide film, thereby lowering the current driving capability of the MOS transistor, and in the off state. A problem arises in that the leakage current increases.
다시말해서, 점점 소자가 미세화되어 숏채널 효과를 방지하기 위한 일환으로 모스 트랜지스터의 소오스/드레인영역의 정션이 점점 셀로우(shallow)화 되는 상황에서, 더 이상 게이트전극을 소오스/드레인영역과 동일한 조건으로 동시에 이온주입하는 방식은 한계에 이르렀다.In other words, in the situation where the source / drain regions of the MOS transistors gradually become shallower as a device for miniaturization and preventing short channel effects, the gate electrode is no longer the same as the source / drain regions. At the same time, the ion implantation method has reached its limit.
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 제안된 것으로, 소자의 전류 구동 능력을 향상시키고, 누설전류량을 줄이며, 숏채널 효과 및 펀치스루우 특성을 개선할 수 있는 반도체소자의 제조방법을 제공하는데 그 목적이 있다. The present invention has been proposed to solve the problems of the prior art as described above, the method of manufacturing a semiconductor device that can improve the current driving capability of the device, reduce the amount of leakage current, improve the short channel effect and punch-through characteristics The purpose is to provide.
상기의 기술적 과제를 달성하기 위한 본 발명의 일 측면에 따르면, 기판상에 게이트절연막과 게이트전극을 적층 형성하는 단계; 상기 게이트전극 양측면에 제 1, 제 2 측벽절연막을 형성하는 단계; 상기 게이트전극의 상부 표면이 드러나게 상기 기판 상에 버퍼절연막과 감광막을 형성하는 단계; 상기 게이트전극에 불순물이온을 주입하여 도핑시키는 단계; 상기 감광막을 제거하는 단계; 및 상기 게이트전극과 상기 제 1, 제 2 측벽절연막 양측의 상기 기판내에 소오스/드레인영역을 형성하는 단계를 포함하는 반도체소자의 제조방법이 제공된다. According to an aspect of the present invention for achieving the above technical problem, forming a gate insulating film and a gate electrode stacked on a substrate; Forming first and second sidewall insulating layers on both sides of the gate electrode; Forming a buffer insulating film and a photoresist film on the substrate to expose the upper surface of the gate electrode; Doping by implanting impurity ions into the gate electrode; Removing the photosensitive film; And forming a source / drain region in the gate electrode and the substrate on both sides of the first and second sidewall insulating layers.
이하, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자가 본 발명을 보다 용이하게 실시할 수 있도록 하기 위하여 본 발명의 바람직한 실시예를 소개하기로 한다.Hereinafter, preferred embodiments of the present invention will be introduced in order to enable those skilled in the art to more easily carry out the present invention.
도 2a 내지 도 2d는 본 발명의 실시예에 따른 반도체소자의 제조방법을 나타낸 공정 단면도이다.2A to 2D are cross-sectional views illustrating a method of manufacturing a semiconductor device in accordance with an embodiment of the present invention.
본 발명의 실시예에 따른 반도체소자의 제조방법은 도 2a에 도시한 바와 같이, 반도체기판(200)상에 제 1 절연막과 폴리실리콘층을 차례로 증착한 후, 게이트 형성 마스크를 이용하여 폴리실리콘층과 절연막을 식각하여 일영역에 게이트절연막(201)과 게이트전극(202)을 적층 형성한다. In the method of manufacturing a semiconductor device according to an embodiment of the present invention, as shown in FIG. 2A, a first insulating film and a polysilicon layer are sequentially deposited on the semiconductor substrate 200, and then a polysilicon layer is formed using a gate formation mask. The insulating film is etched and the gate insulating film 201 and the gate electrode 202 are stacked in one region.
이후에 상기 게이트전극(202)을 마스크로 반도체기판(200)에 저농도 소오스/드레인영역(203a/203b)을 형성한다. Thereafter, low concentration source / drain regions 203a / 203b are formed in the semiconductor substrate 200 using the gate electrode 202 as a mask.
다음에 게이트전극(202)을 포함한 반도체기판(200)의 전면에 제 2 절연막과 제 3 절연막을 차례로 증착하고, 이후에 상기 제 2 절연막이 드러나도록 상기 제 3 절연막을 에치백하고, 게이트전극(202)의 표면이 드러나도록 상기 제 2 절연막을 에치백하여 게이트전극(202) 양측면에 제 1, 제 2 측벽절연막(204, 205)을 형성한다. Next, a second insulating film and a third insulating film are sequentially deposited on the entire surface of the semiconductor substrate 200 including the gate electrode 202. Then, the third insulating film is etched back so that the second insulating film is exposed, and then the gate electrode ( The second insulating film is etched back so that the surface of the metal plate 202 is exposed to form first and second sidewall insulating films 204 and 205 on both sides of the gate electrode 202.
이때 제 1 측벽절연막(204)은 게이트전극(202)과 제 2 측벽절연막(205) 사이 및 제 2 측벽절연막(205) 하부에 각을 갖고 형성되어 있다. In this case, the first sidewall insulating layer 204 is formed at an angle between the gate electrode 202 and the second sidewall insulating layer 205 and under the second sidewall insulating layer 205.
다음에 상기 게이트전극(202)과 제 1, 제 2 측벽절연막(204,205)을 포함한 전면에 약 100Å의 두께를 갖도록 버퍼절연막(206)을 증착한다. Next, a buffer insulating film 206 is deposited on the entire surface including the gate electrode 202 and the first and second sidewall insulating films 204 and 205 to have a thickness of about 100 μs.
도 2b에 도시한 바와 같이, 버퍼절연막(206)상에 감광막(207)을 도포하고, 게이트전극(202)상부의 버퍼절연막(206)이 드러나도록 감광막(207)을 노광 및 현상 공정으로 패터닝한다. As shown in FIG. 2B, a photosensitive film 207 is applied onto the buffer insulating film 206, and the photosensitive film 207 is patterned by an exposure and development process so that the buffer insulating film 206 on the gate electrode 202 is exposed. .
이후에 패터닝된 감광막(207)을 마스크로 버퍼절연막(206)을 에치백하여 게이트전극(202)의 표면이 드러나게 한다. Subsequently, the surface of the gate electrode 202 is exposed by etching back the buffer insulating film 206 using the patterned photoresist 207 as a mask.
다음에 상기 감광막(207)을 마스크로 게이트전극(202)에 이온을 주입하여 게이트전극(202)만 도핑시킨다. Next, ions are implanted into the gate electrode 202 using the photoresist 207 as a mask to dope only the gate electrode 202.
도 2c에 도시한 바와 같이, 감광막(207)을 제거하고 게이트전극(202), 제 1, 제 2 측벽절연막(204,205) 양측의 반도체기판(200) 내에 고농도 불순물 이온을 주입한다. 이때 반도체기판(200) 뿐만아니라 게이트전극(202)에도 동시에 이온이 주입된다. As shown in FIG. 2C, the photosensitive film 207 is removed and high concentration impurity ions are implanted into the semiconductor substrate 200 on both sides of the gate electrode 202 and the first and second sidewall insulating films 204 and 205. At this time, ions are simultaneously implanted into the gate electrode 202 as well as the semiconductor substrate 200.
이후에 도 2d에 도시한 바와 같이 후속 급속 열처리(RTP:Rapid Thermal Process) 공정을 진행하여 게이트전극(202), 제 1, 제 2 측벽절연막(204,205) 양측의 반도체기판(200) 내에 고농도 소오스/드레인영역(208a/208b)을 형성한다. Subsequently, as shown in FIG. 2D, a subsequent rapid thermal process (RTP) is performed to obtain a high concentration source / concentration in the semiconductor substrate 200 on both sides of the gate electrode 202 and the first and second sidewall insulating films 204 and 205. Drain regions 208a / 208b are formed.
상기와 같은 방법으로 게이트전극(202)을 도핑하면, 소오스/드레인영역에 전혀 영향을 주지 않고 독립적으로 이온주입 에너지와 농도(Dose)를 설정할 수 있다. 따라서 소자의 특성 저하 특히 숏채널 현상이 발생하는 것을 방지할 수 있다. When the gate electrode 202 is doped in the same manner as described above, ion implantation energy and concentration may be independently set without affecting the source / drain regions. Therefore, it is possible to prevent deterioration of device characteristics, in particular, occurrence of a short channel phenomenon.
다시말해서, 소자가 집적화 될수록 원활한 소자의 동작을 위해서는 게이트전극(202)과 소오스/드레인영역의 이온주입 조건을 다르게 설정할 필요(특히, 게이트전극의 도핑을 높게할 필요)가 있는데, 상기와 같이 게이트전극(202)의 상부 표면만 드러나게 감광막(207)을 패터닝하고 버퍼절연막(206)을 에치백한 후에 게이트전극(202)을 도핑시키면, 소자 특성에 직접 영향을 주는 소오스/드레인영역에 영향을 미치지 않고 독립적으로 게이트전극(202)을 충분히 도핑시킬 수 있다. In other words, as the device is integrated, the ion implantation conditions of the gate electrode 202 and the source / drain regions need to be set differently (especially, the doping of the gate electrode needs to be high) for smooth operation of the device. When the photoresist 207 is patterned to expose only the top surface of the electrode 202 and the gate insulating film 206 is etched after the buffer insulating film 206 is etched back, the source / drain regions directly affecting device characteristics are not affected. The gate electrode 202 can be sufficiently doped independently.
본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다. Although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.
전술한 본 발명의 반도체소자의 제조방법은 다음과 같은 효과가 있다.The method of manufacturing the semiconductor device of the present invention described above has the following effects.
첫째, 게이트전극을 충분히 도핑시킬 수 있으므로 반도체소자의 전류구동능력을 향상시키고 동시에 누설전류가 발생하는 것을 방지할 수 있다. First, since the gate electrode can be sufficiently doped, the current driving capability of the semiconductor device can be improved and leakage current can be prevented at the same time.
둘째, 소오스/드레인영역에 전혀 영향을 주지않고 게이트전극을 독립적으로 도핑시킬 수 있으므로, 소자의 특성 저하 특히, 숏채널 효과 및 펀치스루우(punchthrough) 특성을 개선시킬 수 있다. Second, since the gate electrode can be independently doped without affecting the source / drain regions at all, the deterioration of device characteristics, in particular, the short channel effect and punchthrough characteristics can be improved.
도 1a 내지 도 1c는 종래 기술에 따른 반도체소자의 제조방법을 나타낸 공정 단면도.1A to 1C are cross-sectional views illustrating a method of manufacturing a semiconductor device according to the prior art.
도 2a 내지 도 2d는 본 발명의 실시예에 따른 반도체소자의 제조방법을 나타낸 공정 단면도.2A to 2D are cross-sectional views illustrating a method of manufacturing a semiconductor device in accordance with an embodiment of the present invention.
* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings
200 : 반도체기판 201 : 게이트절연막 200: semiconductor substrate 201: gate insulating film
202 : 게이트전극 203a/203b : 저농도 소오스/드레인영역202: gate electrode 203a / 203b: low concentration source / drain region
204 : 제 1 측벽절연막 205 : 제 2 측벽절연막 204: first sidewall insulating film 205: second sidewall insulating film
206 : 버퍼절연막 207 : 감광막 206: buffer insulating film 207: photosensitive film
208a/208b : 고농도 소오스/드레인영역 208a / 208b: high concentration source / drain area
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0021645A KR100531537B1 (en) | 2003-04-07 | 2003-04-07 | Method for fabricating of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0021645A KR100531537B1 (en) | 2003-04-07 | 2003-04-07 | Method for fabricating of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040087628A KR20040087628A (en) | 2004-10-15 |
KR100531537B1 true KR100531537B1 (en) | 2005-11-28 |
Family
ID=37369736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2003-0021645A Expired - Fee Related KR100531537B1 (en) | 2003-04-07 | 2003-04-07 | Method for fabricating of semiconductor device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100531537B1 (en) |
-
2003
- 2003-04-07 KR KR10-2003-0021645A patent/KR100531537B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR20040087628A (en) | 2004-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100531537B1 (en) | Method for fabricating of semiconductor device | |
KR100668748B1 (en) | Method of manufacturing semiconductor device using gate-through ion implantation | |
KR20040019167A (en) | Method for forming the high voltage transistor | |
KR100533167B1 (en) | Method of manufacturing for semiconductor and the same | |
KR100302612B1 (en) | Manufacturing method for mos transistor | |
KR100280537B1 (en) | Semiconductor device manufacturing method | |
KR100486084B1 (en) | Method for fabricating ldd type cmos transistor | |
KR100339419B1 (en) | Method for manufacturing transistor having ldd structure | |
KR100487504B1 (en) | A method of forming different gate spacers | |
KR100231731B1 (en) | Method for maufacturing semiconductor device | |
KR100973091B1 (en) | MOOS transistor manufacturing method | |
KR100905182B1 (en) | Semiconductor device formation method | |
KR100609541B1 (en) | Transistor Formation Method of Semiconductor Device | |
KR101079880B1 (en) | Method for manufacturing the transistor | |
KR100501935B1 (en) | Semiconductor device manufacturing technology using second side wall process | |
KR100215836B1 (en) | Manufacturing method of semiconductor device | |
KR100537272B1 (en) | Method for fabricating of semiconductor device | |
KR100250686B1 (en) | Semiconductor device manufacturing method | |
KR20010005300A (en) | Forming method for non-symmetrical transistor of semiconductor device | |
KR20030049352A (en) | Method of manufacturing a semiconductor device | |
KR20040078240A (en) | Semiconductor device and manufacturing method thereof | |
KR20040001131A (en) | Method for forming the semiconductor device | |
KR20040099617A (en) | Manufacturing method for semiconductor device | |
KR19990041580A (en) | Manufacturing method of semiconductor device | |
KR20000052201A (en) | Method for menufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20030407 |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20031001 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20030407 Comment text: Patent Application |
|
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20041006 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20050423 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20051116 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20051121 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20051121 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20081017 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20091016 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20101019 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20111024 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20121022 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20121022 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20131017 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20131017 Start annual number: 9 End annual number: 9 |
|
FPAY | Annual fee payment |
Payment date: 20141020 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20141020 Start annual number: 10 End annual number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20151019 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
Payment date: 20151019 Start annual number: 11 End annual number: 11 |
|
FPAY | Annual fee payment |
Payment date: 20161020 Year of fee payment: 12 |
|
PR1001 | Payment of annual fee |
Payment date: 20161020 Start annual number: 12 End annual number: 12 |
|
FPAY | Annual fee payment |
Payment date: 20171020 Year of fee payment: 13 |
|
PR1001 | Payment of annual fee |
Payment date: 20171020 Start annual number: 13 End annual number: 13 |
|
FPAY | Annual fee payment |
Payment date: 20181016 Year of fee payment: 14 |
|
PR1001 | Payment of annual fee |
Payment date: 20181016 Start annual number: 14 End annual number: 14 |
|
FPAY | Annual fee payment |
Payment date: 20191016 Year of fee payment: 15 |
|
PR1001 | Payment of annual fee |
Payment date: 20191016 Start annual number: 15 End annual number: 15 |
|
PR1001 | Payment of annual fee |
Payment date: 20201019 Start annual number: 16 End annual number: 16 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20220902 |