KR100427719B1 - Method of Forming Bit-Line of Semiconductor Device - Google Patents
Method of Forming Bit-Line of Semiconductor Device Download PDFInfo
- Publication number
- KR100427719B1 KR100427719B1 KR10-2002-0041144A KR20020041144A KR100427719B1 KR 100427719 B1 KR100427719 B1 KR 100427719B1 KR 20020041144 A KR20020041144 A KR 20020041144A KR 100427719 B1 KR100427719 B1 KR 100427719B1
- Authority
- KR
- South Korea
- Prior art keywords
- region
- forming
- contact hole
- interlayer insulating
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 82
- 239000004065 semiconductor Substances 0.000 title claims abstract description 27
- 238000005468 ion implantation Methods 0.000 claims abstract description 18
- 230000015572 biosynthetic process Effects 0.000 claims abstract 2
- 239000010410 layer Substances 0.000 claims description 48
- 239000011229 interlayer Substances 0.000 claims description 34
- 238000005530 etching Methods 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 17
- 239000012535 impurity Substances 0.000 claims description 16
- 230000004888 barrier function Effects 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 13
- 229910052721 tungsten Inorganic materials 0.000 claims description 13
- 239000010937 tungsten Substances 0.000 claims description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 150000002500 ions Chemical class 0.000 claims description 3
- 230000001052 transient effect Effects 0.000 claims 3
- 230000000087 stabilizing effect Effects 0.000 abstract description 3
- 238000000137 annealing Methods 0.000 abstract description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 8
- 239000010936 titanium Substances 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 229910008484 TiSi Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000004151 rapid thermal annealing Methods 0.000 description 1
- WNUPENMBHHEARK-UHFFFAOYSA-N silicon tungsten Chemical compound [Si].[W] WNUPENMBHHEARK-UHFFFAOYSA-N 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/48—Data lines or contacts therefor
- H10B12/485—Bit line contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/09—Manufacture or treatment with simultaneous manufacture of the peripheral circuit region and memory cells
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Semiconductor Memories (AREA)
Abstract
본 발명은 반도체 소자의 비트 라인 (bit-line) 형성 방법에 관한 것으로, 보다 상세하게는 P+ 소오스/드레인 (source/drain; 이하 "S/D"라 칭함)영역에 콘택홀을 형성한 다음, N+ S/D 영역의 콘택홀을 형성함으로써, P+ S/D 콘택홀 영역의 저항 안정화를 위한 식각 후처리 (post etch treatment; 이하 "PET"라 칭함) 공정을 수행 시에 N+ S/D 영역의 저항이 증가되는 것을 방지하는 반도체 소자의 비트 라인 형성 방법에 관한 것이다.The present invention relates to a method for forming a bit line of a semiconductor device, and more particularly, to form a contact hole in a P + source / drain (hereinafter referred to as "S / D") region, By forming contact holes in the N + S / D regions, the post etch treatment (hereinafter referred to as "PET") process for stabilizing the resistance of the P + S / D contact hole regions is performed. The present invention relates to a method for forming a bit line of a semiconductor device which prevents an increase in resistance.
이상의 본 발명의 공정 방법에 의하여 형성된 P+ S/D 영역 및 N+ S/D 영역의 콘택홀은 안전한 저항을 가질뿐만 아니라, 웨이퍼 전면에 대해 추가 이온 주입을 실시하므로 국부적인 산화막 데미지 (demage)에 의해 발생되는 단차를 방지하여, 브리지가 형성되는 것을 막을 수 있으며, 상기 영향으로 마스크 공정 및 급속 열처리 (Rapidly Thermal Annealing : RTA) 공정 단계를 감소시켜, 반도체 소자의 성능 및 수율을 향상 시킬 수 있다.The contact holes of the P + S / D region and the N + S / D region formed by the above-described process method of the present invention not only have a safe resistance but also perform additional ion implantation on the entire surface of the wafer, thereby causing local oxide damage. It is possible to prevent the formation of the bridge by preventing the step difference, and to reduce the mask process and the Rapidly Thermal Annealing (RTA) process step, thereby improving the performance and yield of the semiconductor device.
Description
본 발명은 반도체 소자의 비트 라인 (bit-line) 형성 방법에 관한 것으로, 보다 상세하게는 P+ 소오스/드레인 (source/drain; 이하 "S/D"라 칭함)영역에 콘택홀을 형성한 다음, N+ S/D 영역의 콘택홀을 형성함으로써, P+ S/D 콘택홀 영역의 저항 안정화를 위한 식각 후처리 (post etch treatment; 이하 "PET"라 칭함) 공정을 수행 시에 N+ S/D 영역의 저항이 증가되는 것을 방지하는 반도체 소자의 비트 라인 형성 방법에 관한 것이다.The present invention relates to a method for forming a bit line of a semiconductor device, and more particularly, to form a contact hole in a P + source / drain (hereinafter referred to as "S / D") region, By forming contact holes in the N + S / D regions, the post etch treatment (hereinafter referred to as "PET") process for stabilizing the resistance of the P + S / D contact hole regions is performed. The present invention relates to a method for forming a bit line of a semiconductor device which prevents an increase in resistance.
현재, 반도체 메모리 장치는 고집적화 및 대용량화가 이뤄지면서, 반도체 메모리 장치의 단위 셀 크기도 계속 감소하고 있는 추세이다. 특히, 집적도의 증가를 주도하는 반도체 메모리 장치인 디램 (Dynamic Random Access Memory; DRAM)의 경우 메모리 셀 크기의 축소에 따라 수직 구조가 극도로 복잡해지면서, 캐패시터의 유효면적을 증가시키기 위한 방법의 개발이 필요하게 되었다.At present, as the semiconductor memory device becomes more integrated and larger in capacity, the unit cell size of the semiconductor memory device continues to decrease. In particular, in the case of DRAM (Dynamic Random Access Memory (DRAM)), which leads to an increase in the degree of integration, the vertical structure becomes extremely complicated as the memory cell size is reduced, and the development of a method for increasing the effective area of the capacitor is difficult. It became necessary.
종래에는 반도체 소자의 고집적화를 증가시키고, 정보처리능력을 높이기 위한 조건을 만족시키위하여, 다결정 실리콘 (doped poly-Si)과 텅스텐 실리사이드의 폴리 사이드를 이용하여 데이터 입출력의 경로로 사용되는 비트 라인의 콘택홀 (Contact Hole)을 형성하였다. 그러나, 상기와 같은 구조로 형성된 콘택홀은 사이즈가 감소되면서 저항이 증가하는 또 다른 문제를 발생시켰다.Conventionally, a bit line contact used as a path for data input and output using polysides of polycrystalline silicon (tungsten) and tungsten silicide in order to increase the high integration of semiconductor devices and to satisfy information processing capability. A hole was formed. However, the contact hole formed as described above has caused another problem that the resistance increases as the size decreases.
그래서, 최근에는 저항이 낮은 텅스텐으로 콘택홀을 형성하여 콘택홀의 저항 값을 낮추려고 하였다.Therefore, in recent years, a contact hole is formed of tungsten having a low resistance to reduce the resistance value of the contact hole.
하지만, 상기 텅스텐 콘택홀의 경우에도 후속 공정인 열 공정을 수행할 때, 콘택홀의 저항 변화가 크게 나타났다.However, even in the case of the tungsten contact hole, the resistance change of the contact hole was large when the thermal process was performed.
특히, 상기 P+ S/D 영역의 콘택홀 저항 현상이 크게 증가하였기 때문에, 이를 해결하기 위하여, P+ S/D 영역에만 후속 PET 공정을 수행하였다. 그러나, 상기와 같은 PET 공정은 P+ S/D 영역과 N+ S/D 영역에 동시에 콘택홀을 형성한 후에 수행되기 때문에, P+ S/D 영역의 콘택홀 저항이 낮아지는 반면, N+ S/D 영역의 콘택홀 저항은 증가하는 또다른 문제점을 발생시켰다.In particular, since the contact hole resistance of the P + S / D region has increased greatly, to solve this problem, the subsequent PET process was performed only in the P + S / D region. However, since the above PET process is performed after simultaneously forming contact holes in the P + S / D region and the N + S / D region, the contact hole resistance of the P + S / D region is lowered, while the N + S / D region is used. Has caused another problem to increase.
이러한 현상은 N+ S/D 영역과 P+ S/D 영역의 콘택홀 저항이 서로 반대 관계이기 때문인데, 결국 P+ S/D 영역의 콘택홀 저항이 낮아지면, N+ S/D 영역의 콘택홀 저항은 증가하고, N+ S/D 영역의 콘택홀 저항이 낮아지면 P+ S/D 영역의 콘택홀 저항은 증가한다는 것이다.This is because the contact hole resistances of the N + S / D region and the P + S / D region are opposite to each other. Therefore, when the contact hole resistance of the P + S / D region is lowered, the contact hole resistance of the N + S / D region becomes As the contact hole resistance in the N + S / D region decreases, the contact hole resistance in the P + S / D region increases.
즉, 상기 결과를 상세히 설명하면, 도 1에 도시한 바와 같이 평균 1200 Ω의 저항 값을 가지는 P+ S/D 영역의 콘택홀에 대해 정항을 낮추기 위하여 PET 공정을 수행하면, P+ S/D 영역의 콘택홀 저항 값은 평균 900 Ω으로 안정화 되는 반면, 도 2에 도시한 바와 같이 평균 280∼300 Ω의 저항 값을 가지고 있던 N+ S/D 영역의 콘택홀 저항 값은 상기 PET 공정에 의해 450 Ω 으로 저항 값이 증가된다는 문제점을 가지게 된다.That is, when the result is described in detail, as shown in FIG. 1, when the PET process is performed to lower the constant for the contact hole of the P + S / D region having an average resistance of 1200 kW, the P + S / D region may be formed. While the contact hole resistance was stabilized to an average of 900 kW, the contact hole resistance value of the N + S / D region, which had an average of 280 to 300 kW as shown in FIG. 2, was 450 kW by the PET process. There is a problem that the resistance value is increased.
이상의 종래 비트 라인 콘택 형성 공정을 도면을 들어 상세히 설명한다.The conventional bit line contact forming process will be described in detail with reference to the drawings.
우선, 도 3a에 도시한 바와 같이 반도체 기판의 셀 (cell) 영역에 워드 라인 패턴과 플러그 (7)를 형성하고, 주변 영역에 P+ S/D 영역 (11)과 N+ S/D 영역 (13)을 형성하였다.First, as shown in FIG. 3A, a word line pattern and a plug 7 are formed in a cell region of a semiconductor substrate, and a P + S / D region 11 and an N + S / D region 13 are formed in a peripheral region. Formed.
그리고, 상기 구조물의 전면에 층간 절연막 층 (9)을 형성하였다. 이때, 상기 층간 절연막 층 (9)은 산화막을 이용하여 형성하였다.An interlayer insulating film layer 9 was formed on the entire surface of the structure. At this time, the interlayer insulating film layer 9 was formed using an oxide film.
도 3b에 도시한 바와 같이 플러그 영역 (7), P+ S/D 영역 (11) 및 N+ S/D 영역 (13)을 동시에 식각하여 콘택홀을 형성하였다.As shown in FIG. 3B, the plug region 7, the P + S / D region 11, and the N + S / D region 13 were simultaneously etched to form contact holes.
그 후, 상기 P+ S/D 영역의 콘택홀에 대해 PET 공정을 실시하였다.Thereafter, a PET process was performed on the contact holes in the P + S / D region.
도 3C에 도시한 바와 같이 상기 콘택홀이 형성된 결과물 전면에 포토레지스트 층 (15)을 형성하였다.As shown in FIG. 3C, a photoresist layer 15 was formed on the entire surface of the resultant contact hole.
도 3d에 도시한 바와 같이 상기 P+ S/D 영역의 포토레지스트 층 (15)에 대해 마스크 작업을 수행하고, 현상 (develope)하여 콘택홀을 형성하였다.As shown in FIG. 3D, a mask operation was performed on the photoresist layer 15 in the P + S / D region and developed to form a contact hole.
그리고, P+ S/D 영역의 콘택홀 저항을 안정화 시키기 위하여 추가로 P+ 추가 불순물 이온 주입 (17)을 실시한 후, 상기 포토레지스트 (15)를 스트립 (strip) 하였다.In addition, in order to stabilize the contact hole resistance of the P + S / D region, after performing P + additional impurity ion implantation 17, the photoresist 15 is stripped.
도 3e에 도시한 바와 같이 포토레지스트 제거 후, 상기 추가 불순물 이온 주입으로 인한 P+ S/D 영역의 산화막 데미지 (damage)를 해결하기 위하여 급속 열처리 (Rapidly Thermal Annealing : 이하 "RTA"라 칭함) 방법으로 열처리 (annealing) 하였다.After removing the photoresist as shown in FIG. 3E, rapid thermal annealing (hereinafter, referred to as “RTA”) method is used to solve oxide damage of the P + S / D region due to the additional impurity ion implantation. Annealing was performed.
만약, 상기와 같은 RTA 공정을 실시하지 않고 후속 공정을 수행하면, 후속배리어 메탈 세정 (barrier metal pre-clean) 공정시 데미지를 입은 부분에서 빠른 식각 현상이 일어나서 P+ 추가 불순물 이온 주입이 된 영역과 되지 않는 영역 간에 단차 (23)가 생기고, 이로 인한 브리지 (bridge) (25)가 발생되었다 (도 4 참조).If a subsequent process is performed without performing the RTA process as described above, a rapid etching phenomenon occurs at a portion that is damaged during the subsequent barrier metal pre-clean process, and thus, the P + additional impurity ion implantation region is not formed. A step 23 was created between the regions that were not, resulting in a bridge 25 (see FIG. 4).
도 3f에 도시한 바와 같이 상기 RTA 공정 후, 콘택홀 및 층간 절연막 전면에 대해 티타늄/티타늄 나이트라이드 (Ti/TiN)를 이용한 배리어 메탈 층 (19)을 형성하고, RTA 공정으로 증착된 Ti 층과 Si 기판의 반응에 의한 TiSi2를 형성시켜 콘택홀의 저항을 안정화 시킨 후, 그 상부에 텅스텐 (W) (21)층을 형성하였다As shown in FIG. 3F, after the RTA process, a barrier metal layer 19 using titanium / titanium nitride (Ti / TiN) is formed on the contact hole and the entire surface of the interlayer insulating film, and the Ti layer deposited by the RTA process; After the TiSi 2 was formed by the reaction of the Si substrate to stabilize the contact hole resistance, a tungsten (W) 21 layer was formed thereon.
도 3g에 도시한 바와 같이 상기 텅스텐 층을 식각하여 텅스텐 비트 라인을 형성하였다.As shown in FIG. 3g, the tungsten layer was etched to form a tungsten bit line.
그러나, 상기와 같은 종래 반도체 소자의 비트 라인 형성 방법에서 P+ S/D 영역의 콘택홀과 N+ S/D 영역의 콘택홀을 동시에 형성하기 때문에, 후속 공정인 PET 공정을 수행하였을 때, N+ 영역의 콘택홀 저항이 증가하고, P+ 추가 불순물 이온 주입으로 발생되는 산화막의 데미지를 막기 위하여 RTA 공정을 도입해야 하는 등 공정 단계가 복잡하며, 콘택홀 저항이 증가되어 소자의 집적도와 고속의 정보 처리 능력이 감소되는 문제점이 발생하였다.However, since the contact holes of the P + S / D region and the contact holes of the N + S / D region are simultaneously formed in the bit line forming method of the conventional semiconductor device as described above, when the PET process, which is a subsequent process, is performed, The process steps are complicated, such as an increase in contact hole resistance, an RTA process to be introduced to prevent the oxide film damage caused by P + additional impurity ion implantation, and an increase in contact hole resistance, thereby increasing device integration and high-speed information processing capability. There was a problem of decreasing.
이에 본 발명자들은 상기와 같이 문제점을 극복하여, N+와 P+ S/D 영역이 모두 안정한 저항 값을 가지는 반도체 소자의 비트 라인 형성 방법을 제공하는 것을 목적으로 한다.Accordingly, the present inventors have overcome the above problems, and an object of the present invention is to provide a method for forming a bit line of a semiconductor device in which both N + and P + S / D regions have stable resistance values.
도 1은 종래 방법으로 형성된 P+ S/D 영역의 콘택홀에 대한 PET 공정 유무의 저항 값을 나타낸 그래프.1 is a graph showing the resistance value of the PET process presence or absence for the contact hole of the P + S / D region formed by a conventional method.
도 2는 종래 방법으로 형성된 N+ S/D 영역의 콘택홀에 대한 PET 공정 유무의 저항 값을 나타낸 그래프.Figure 2 is a graph showing the resistance value of the PET process presence or absence for the contact hole of the N + S / D region formed by a conventional method.
도 3a 내지 도 3g는 종래 방법에 의한 반도체 소자의 비트 라인 형성 공정도.3A to 3G are diagrams illustrating a bit line forming process of a semiconductor device by a conventional method.
도 4는 종래 방법에 따른 이온 주입 공정 시 발생된 단차를 나타낸 도면.4 is a view showing a step generated in the ion implantation process according to the conventional method.
도 5a 내지 도 5f는 본 발명에 의한 반도체 소자의 비트 라인 형성 공정도.5A to 5F are bit line forming process diagrams of a semiconductor device according to the present invention.
< 도면의 주요 부분에 대한 간단한 설명 ><Brief description of the main parts of the drawing>
1, 111 : 워드 라인 3, 113 : 하드 마스크1, 111: word line 3, 113: hard mask
5, 115 : 스페이서 7, 117 : 플러그5, 115: spacer 7, 117: plug
9, 119 : 층간 절연막 11, 121 : P+ 소오스/드레인9, 119: interlayer insulating film 11, 121: P + source / drain
13, 123 : N+ 소오스/드레인 15, 125 : 포토레지스트 층13, 123: N + source / drain 15, 125: photoresist layer
17, 127 : P 형 불순물 이온 주입 19, 129 : 배리어 메탈 층17, 127: P-type impurity ion implantation 19, 129: barrier metal layer
21, 131 : 텅스텐 23 : 단차21, 131: tungsten 23: step
25 : 브리지 (bridge)25: bridge
상기 목적을 달성하기 위하여 본 발명에서는 P+ S/D 콘택홀 영역을 형성하고, PET 공정을 수행한 후, N+ 콘택홀 영역을 형성함으로써, 콘택홀 저항 값을 모두 안정화 시킬 수 있는 반도체 소자의 형성 방법을 제공한다.In order to achieve the above object, in the present invention, a method of forming a semiconductor device capable of stabilizing all contact hole resistance values by forming a P + S / D contact hole region, performing a PET process, and then forming an N + contact hole region. To provide.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
반도체 기판 상부에 워드 라인 패턴, 플러그, P+ S/D 영역 및 N+ S/D 영역을 형성하는 단계;Forming a word line pattern, a plug, a P + S / D region, and an N + S / D region on the semiconductor substrate;
상기 구조의 전면에 대해 평탄화한 층간 절연막 층을 형성하는 단계;Forming a planarized interlayer insulating film layer over the entire surface of the structure;
상기 P+ S/D 영역이 노출될 때 까지 상기 층간 절연막 층을 식각하여 콘택홀을 형성하는 단계;Forming a contact hole by etching the interlayer insulating layer until the P + S / D region is exposed;
상기 층간 절연막 전면에 대해 P+ 추가 불순물 이온 주입을 실시하는 단계;Performing P + additional impurity ion implantation on the entire surface of the interlayer insulating film;
상기 N+ S/D 영역이 노출될 때 까지 상기 층간 절연막 층을 식각하여 콘택홀을 형성하는 단계;Forming a contact hole by etching the interlayer insulating layer until the N + S / D region is exposed;
상기 플러그 영역이 노출될 때 까지 상기 층간 절연막 층을 식각하여 콘택홀을 형성하는 단계;Etching the interlayer insulating layer until the plug region is exposed to form a contact hole;
상기 콘택홀이 형성된 층간 절연막 상부에 평탄화한 배리어 메탈 층을 형성하는 단계;Forming a planarized barrier metal layer on the interlayer insulating layer on which the contact hole is formed;
상기 배리어 메탈 층 상부에 텅스텐 층을 형성하는 단계; 및Forming a tungsten layer on the barrier metal layer; And
상기 층간 절연막 층이 노출 될 때까지 상기 텅스텐 층 및 배리어 메탈 층을 식각하여 텅스텐 비트 라인을 형성하는 단계를 포함하는 반도체 소자의 형성 방법을 제공한다.And forming a tungsten bit line by etching the tungsten layer and the barrier metal layer until the interlayer insulating layer is exposed.
이때, 상기 층간 절연막은 산화막을 이용하여 형성한다.In this case, the interlayer insulating film is formed using an oxide film.
상기 P+ S/D 영역의 콘택홀은 CF4,CHF3, O2,Ar 및 CO 가스를 반응 챔버 (chamber) 내부로 삽입하여 혼합한 후, 이를 이용하여 P+ 영역이 노출될 때 까지 식각한다.The contact hole of the P + S / D region is inserted into the reaction chamber by mixing CF 4 , CHF 3 , O 2 , Ar, and CO gas, and then etched until the P + region is exposed using the mixed contact.
그리고, 상기 P+ S/D 영역의 콘택홀을 형성하는 식각 공정 후에 상기 기판을 층간 절연막 높이의 20∼50%, 바람직하게는 30∼50% 정도의 두께 만큼을 더 과도 식각 (over etch) 하는 공정을 수행하는 것이 바람직하다.After the etching process of forming the contact hole in the P + S / D region, the substrate is further etched by a thickness of about 20 to 50% of the height of the interlayer insulating film, preferably about 30 to 50%. It is preferable to carry out.
그리고, 상기 노출된 P+ S/D 영역의 콘택홀 부분의 반도체 기판 즉, 실리콘 (Si)기판에 대해 반응 챔버 내의 CF4, Ar 및 O2의혼합 가스를 이용한 PET 공정을 한번 더 수행하는 것이 바람직하다. 이때, 식각되는 기판의 두께는 20∼150Å, 바람직하게는 50∼100 Å이 적당하다.In addition, it is preferable to perform the PET process using the mixed gas of CF 4 , Ar, and O 2 in the reaction chamber once more on the semiconductor substrate, that is, the silicon (Si) substrate, in the contact hole portion of the exposed P + S / D region. Do. At this time, the thickness of the substrate to be etched is 20 to 150 kPa, preferably 50 to 100 kPa.
상기와 같이 P+ S/D 영역의 콘택홀에만 수행되는 PET 공정은 실리콘 기판의 데미지 부분을 제거할 수 있으며, 또한, 식각시에 사용하는 O2가스에 의해 상기 실리콘 기판이 산화되었다가 후속 공정인 배리어 메탈 세정 시에 제거됨으로써, 배리어 메탈 층과 실리콘 기판 층의 접합 능력을 높이므로, P+ S/D 영역의 콘택홀 저항 값을 낮출 수 있다.As described above, the PET process performed only on the contact hole of the P + S / D region may remove the damage portion of the silicon substrate, and the silicon substrate may be oxidized by the O 2 gas used during etching, By removing the barrier metal during cleaning, the bonding ability of the barrier metal layer and the silicon substrate layer is increased, and thus the contact hole resistance value of the P + S / D region can be lowered.
그 후, 상기 P+ S/D 영역의 콘택홀을 안정화 시키기 위하여 콘택홀이 형성된 층간 절연막 전면에 대하여 P+ 추가 불순물 이온을 주입하는데, 이때 종래 기술과같은 국부적인 산화막 손실이 발생하지 않기 때문에, 후속 공정으로 RTA 공정을 실시하지 않는다.Thereafter, P + additional impurity ions are implanted into the entire surface of the interlayer insulating film on which the contact holes are formed in order to stabilize the contact holes in the P + S / D region, since a local oxide loss as in the prior art does not occur. Do not perform the RTA process.
상기 P+ S/D 영역의 추가 불순물 이온 주입은 BF2기체를 이용하는 것이 바람직하고, 이온 주입 시 에너지 조건은 10∼30 KeV, 바람직하게는 10∼25 KeV이며, 이온 주입의 도즈 (dose)량은 1.0×10-15∼5.0×10-15, 바람직하게는 2.0×10-15∼4.0×10-15이다.The implantation of additional impurity ions in the P + S / D region is preferably performed by using BF 2 gas, and the energy conditions at the time of ion implantation are 10-30 KeV, preferably 10-25 KeV, and the dose of ion implantation is 1.0 × 10 -15 to 5.0 × 10 -15 , preferably 2.0 × 10 -15 to 4.0 × 10 -15 .
그리고, 본 발명에서는 상기와 같은 조건으로 P+ S/D 영역의 콘택홀을 형성한 다음에 N+ S/D 영역의 콘택홀을 형성한다.In the present invention, contact holes in the P + S / D region are formed under the above conditions, and then contact holes in the N + S / D region are formed.
상기 N+ S/D 영역의 콘택홀은 CF4, CHF3, O2, Ar 및 CO의 가스 등을 반응 챔버 안에 삽입하여 혼합한 후, 이를 이용하여 N+ S/D 영역이 노출 될 때 까지 식각한다.The contact holes of the N + S / D region are inserted into the reaction chamber by mixing CF 4 , CHF 3 , O 2 , Ar, and CO, etc., and then etched until the N + S / D region is exposed. .
또한, 상기 식각 고정 후, 층간 절연막 높이의 20∼50%, 바람직하게는 30∼50% 두께 만큼을 더 과도 식각한다.Further, after the etching fixing, the substrate is further etched by 20 to 50% of the height of the interlayer insulating film, preferably 30 to 50%.
또한, 상기 플러그에 대해 콘택홀을 형성하는 경우에는 상기 N+ S/D 영역의 콘택홀을 형성하기 위한 조건과 같은 조건으로 수행한다.In addition, in the case of forming the contact hole for the plug, the same conditions as for forming the contact hole in the N + S / D region are performed.
이와 같이 본 발명은 P+ S/D 영역의 콘택홀을 형성하고, 이에 대해서만 PET 공정을 수행 하므로, N+ S/D 영역의 콘택홀에 영향을 미치지 않는다. 그래서, P+ S/D 영역의 콘택홀과 N+ 영역의 콘택홀 모두 안정한 저항 값을 가질 수 있다.As described above, the present invention forms a contact hole in the P + S / D region, and only performs the PET process, and thus does not affect the contact hole in the N + S / D region. Thus, both the contact hole in the P + S / D region and the contact hole in the N + region can have a stable resistance value.
이하 본 발명을 첨부한 도면을 들어 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
우선, 도 5a에 도시한 바와 같이 반도체 기판의 셀 영역에 워드 라인 패턴과 플러그 (117)를 형성하고, 주변 영역에 P+ S/D 영역 (121) 과 N+ S/D 영역 (123)을 형성한다.First, as shown in FIG. 5A, a word line pattern and a plug 117 are formed in a cell region of a semiconductor substrate, and a P + S / D region 121 and an N + S / D region 123 are formed in a peripheral region. .
그리고, 상기 구조의 전면에 층간 절연막 층 (119)을 형성한다. 이때, 상기 층간 절연막 층 (119)은 산화막을 이용하여 형성한다.An interlayer insulating film layer 119 is formed over the entire structure. In this case, the interlayer insulating layer 119 is formed using an oxide film.
도 5b에 도시한 바와 같이 상기 층간 절연막 상부에 포토레지스트를 도포하고, 상기 포토레지스트를 마스크로 상기 P+ S/D 영역 (121)이 노출될 때 까지 층간 절연막 층 (119)을 식각하여 콘택홀을 형성한다.As shown in FIG. 5B, a photoresist is coated on the interlayer insulating layer, and the interlayer insulating layer 119 is etched by using the photoresist as a mask until the P + S / D region 121 is exposed. Form.
그리고, 상기 포토레지스트를 스트립 한 후, P+ S/D 영역의 콘택홀에 대해서 CF4,O2및Ar 가스를 이용한 PET 공정을 실시한다.After stripping the photoresist, a PET process using CF 4 , O 2, and Ar gas is performed on the contact holes in the P + S / D region.
그 후, P+ S/D 영역의 콘택홀 저항을 안정화 시키기 위하여 상기 층간 절연막 층 (119) 전면에 대해 P+ 추가 불순물 이온 주입 공정을 실시한다.Thereafter, a P + additional impurity ion implantation process is performed on the entire surface of the interlayer insulating layer 119 to stabilize the contact hole resistance of the P + S / D region.
도 5c에 도시한 바와 같이 N+ S/D 영역에 마스크 작업을 실시한 후, N+ S/D 영역 (123)이 노출될 때 까지 층간 절연막을 식각하여 N+ S/D 영역의 콘택홀을 형성한다. 상기 식각 공정은 P+ S/D 콘택홀을 형성하기 위한 식각공정과 동일한 조건으로 식각 하지만, 상기 PET 공정 및 추가 이온 주입 공정을 수행하지 않는 것이 바람직하다.After masking the N + S / D region as shown in FIG. 5C, the interlayer insulating layer is etched until the N + S / D region 123 is exposed to form contact holes in the N + S / D region. The etching process may be etched under the same conditions as the etching process for forming the P + S / D contact hole, but the PET process and the additional ion implantation process may not be performed.
도 5d에 도시한 바와 같이 셀 영역의 플러그 (117) 상부에 콘택홀을 형성한다. 이때의 식각 공정 역시 N+ S/D 영역의 콘택홀을 형성하기 위한 식각 공정과 동일한 조건으로 식각한다.As shown in FIG. 5D, a contact hole is formed in the upper portion of the plug 117 in the cell region. The etching process is also etched under the same conditions as the etching process for forming contact holes in the N + S / D region.
도 5e에 도시한 바와 같이 상기 콘택홀이 형성된 층간 절연막 (119) 상부에 Ti/TiN을 이용하여 배리어 메탈 층 (129)을 형성한 후, RTA 공정으로 형성된 Ti 층과 Si 기판의 반응에 의해 TiSi2를 형성시켜 콘택홀의 저항을 안정화를 가져온다.As shown in FIG. 5E, after forming the barrier metal layer 129 using Ti / TiN on the interlayer insulating layer 119 on which the contact hole is formed, TiSi is formed by the reaction of the Ti layer formed by the RTA process and the Si substrate. 2 is formed to stabilize the resistance of the contact hole.
그리고, 상기 배리어 메탈 층 (129) 상부에 텅스텐 층 (131)을 형성한다.A tungsten layer 131 is formed on the barrier metal layer 129.
도 5f에 도시한 바와 같이 층간 절연막이 노출될 때 까지 상기 턴스텐 층 및 배리어 메탈 층 (129)를 식각하여 안정한 비트 라인 배선을 형성한다.As shown in FIG. 5F, the turnsten layer and the barrier metal layer 129 are etched until the interlayer insulating layer is exposed to form stable bit line wiring.
이상에서 살펴본 바와 같이, 본 발명에 의하면 P+ 추가 불순물 이온 주입을 웨이퍼 전면에 실시하므로 국부적인 단차 및 브리지가 발생 되지 않지 않아 후속 마스크 공정 및 RTA 공정 단계를 제거할 수 있을 뿐만 아니라, P+ S/D 영역의 콘택홀에 대해서만 PET 공정을 수행하므로, P+ S/D 영역의 콘택홀 및 N+ S/D 영역의 콘택홀 모두 안정한 콘택홀 저항을 가져 반도체 소자의 성능 및 수율을 향상 시킬 수 있다.As described above, according to the present invention, since the P + additional impurity ion implantation is performed on the entire surface of the wafer, local steps and bridges are not generated, so that subsequent mask processes and RTA process steps can be eliminated, and P + S / D Since the PET process is performed only on the contact holes in the region, both the contact holes in the P + S / D region and the contact holes in the N + S / D region have stable contact hole resistance, thereby improving performance and yield of the semiconductor device.
Claims (18)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0041144A KR100427719B1 (en) | 2002-07-15 | 2002-07-15 | Method of Forming Bit-Line of Semiconductor Device |
US10/608,808 US6858544B2 (en) | 2002-07-15 | 2003-06-30 | Method for forming bit line of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0041144A KR100427719B1 (en) | 2002-07-15 | 2002-07-15 | Method of Forming Bit-Line of Semiconductor Device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040006763A KR20040006763A (en) | 2004-01-24 |
KR100427719B1 true KR100427719B1 (en) | 2004-04-28 |
Family
ID=32040914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2002-0041144A Expired - Fee Related KR100427719B1 (en) | 2002-07-15 | 2002-07-15 | Method of Forming Bit-Line of Semiconductor Device |
Country Status (2)
Country | Link |
---|---|
US (1) | US6858544B2 (en) |
KR (1) | KR100427719B1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58213442A (en) * | 1982-06-04 | 1983-12-12 | Nec Corp | Method for manufacturing semiconductor integrated circuit device |
KR20020002644A (en) * | 2000-06-30 | 2002-01-10 | 박종섭 | Method for forming semiconductor device capable of preventing damage of interlayer insulating layer during additional ion implantation process for stbilizing bit line contact |
KR20020023049A (en) * | 2000-09-22 | 2002-03-28 | 윤종용 | Method for forming interconnection of semiconductor device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5796671A (en) * | 1996-03-01 | 1998-08-18 | Wahlstrom; Sven E. | Dynamic random access memory |
US6150247A (en) * | 1996-03-19 | 2000-11-21 | Vanguard International Semiconductor Corporation | Method for making polycide-to-polycide low contact resistance contacts for interconnections on integrated circuits |
US6025224A (en) * | 1997-03-31 | 2000-02-15 | Siemens Aktiengesellschaft | Device with asymmetrical channel dopant profile |
US5879986A (en) * | 1998-02-27 | 1999-03-09 | Vangaurd International Semiconductor Corporation | Method for fabrication of a one gigabit capacitor over bit line DRAM cell with an area equal to eight times the used minimum feature |
US6008085A (en) * | 1998-04-01 | 1999-12-28 | Vanguard International Semiconductor Corporation | Design and a novel process for formation of DRAM bit line and capacitor node contacts |
US6391705B1 (en) * | 2000-04-12 | 2002-05-21 | Promos Technologies, Inc. | Fabrication method of high-density semiconductor memory cell structure having a trench |
-
2002
- 2002-07-15 KR KR10-2002-0041144A patent/KR100427719B1/en not_active Expired - Fee Related
-
2003
- 2003-06-30 US US10/608,808 patent/US6858544B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58213442A (en) * | 1982-06-04 | 1983-12-12 | Nec Corp | Method for manufacturing semiconductor integrated circuit device |
KR20020002644A (en) * | 2000-06-30 | 2002-01-10 | 박종섭 | Method for forming semiconductor device capable of preventing damage of interlayer insulating layer during additional ion implantation process for stbilizing bit line contact |
KR20020023049A (en) * | 2000-09-22 | 2002-03-28 | 윤종용 | Method for forming interconnection of semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
KR20040006763A (en) | 2004-01-24 |
US20040067656A1 (en) | 2004-04-08 |
US6858544B2 (en) | 2005-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5618384A (en) | Method for forming residue free patterned conductor layers upon high step height integrated circuit substrates using reflow of photoresist | |
KR100706780B1 (en) | Semiconductor device manufacturing method to reduce the line width of the peripheral area | |
KR100316028B1 (en) | Method for forming metal electrode in memory device | |
US5895269A (en) | Methods for preventing deleterious punch-through during local interconnect formation | |
US6074952A (en) | Method for forming multi-level contacts | |
US5792708A (en) | Method for forming residue free patterned polysilicon layers upon high step height integrated circuit substrates | |
KR100427719B1 (en) | Method of Forming Bit-Line of Semiconductor Device | |
US6875684B2 (en) | Method for forming a bit line of a semiconductor device | |
KR100342828B1 (en) | Method of forming a storage node in a semiconductor device | |
JPH05267251A (en) | Formation of contact hole in semiconductor device | |
KR100835506B1 (en) | Manufacturing method of semiconductor device | |
KR20020002644A (en) | Method for forming semiconductor device capable of preventing damage of interlayer insulating layer during additional ion implantation process for stbilizing bit line contact | |
KR20010030433A (en) | Manufacturing method of semiconductor device | |
KR20060010927A (en) | Semiconductor device manufacturing method | |
KR100322885B1 (en) | Method of forming gate electrode in high integrated semiconductor device | |
US6191019B1 (en) | Method for forming a polysilicon layer in a polycide process flow | |
KR100607355B1 (en) | Method for forming damascene pattern of semiconductor device | |
KR101024252B1 (en) | Semiconductor device manufacturing method | |
KR20020018874A (en) | Method for manufacturing a contact of storage node electrode in memory device | |
KR100399935B1 (en) | Semiconductor device manufacturing method | |
KR20010063460A (en) | Method of forming a gate electrode in a semiconductor device | |
KR20000074480A (en) | Method for forming gate electrode of semiconductor device | |
KR20030050671A (en) | Method for fabricating semiconductor device | |
KR20020058486A (en) | Method for fabricating semiconductor device | |
KR19990018368A (en) | Method of manufacturing a transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20020715 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20040326 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20040407 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20040408 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20070321 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20080320 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20090327 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20100325 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20110325 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20120323 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20120323 Start annual number: 9 End annual number: 9 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |