KR100408515B1 - Organic electrolyte and lithium secondary battery using the same - Google Patents
Organic electrolyte and lithium secondary battery using the same Download PDFInfo
- Publication number
- KR100408515B1 KR100408515B1 KR1019980035848A KR19980035848A KR100408515B1 KR 100408515 B1 KR100408515 B1 KR 100408515B1 KR 1019980035848 A KR1019980035848 A KR 1019980035848A KR 19980035848 A KR19980035848 A KR 19980035848A KR 100408515 B1 KR100408515 B1 KR 100408515B1
- Authority
- KR
- South Korea
- Prior art keywords
- organic
- lithium
- lithium salt
- organic electrolyte
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0037—Mixture of solvents
- H01M2300/004—Three solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 혼합유기용매 및 리튬염을 포함하는 유기전해액에 있어서, 상기 혼합 유기용매가 고유전율 용매, 저점도 용매 및 하기 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는 2차전지용 유기전해액 및 이를 채용하는 리튬 2차전지에 관한 것이다. 본 발명에 따른 리튬 2차전지용 유기전해액은 이온전도도 및 저온저장특성이 우수하고, 전위창 영역이 넓다는 잇점이 있다. 또한, 본 발명은 상기 리튬염이 무기물계 리튬염 및 유기물계 리튬염을 포함하는 것을 특징으로 하는 유기전해액도 제공하는데, 이를 채용하는 리튬 2차전지는 전지의 용량이 크고 안정적인 충방전특성을 나타내어 전지의 수명특성이 개선될 뿐만 아니라 고온특성 및 자기방전특성 또한 향상된다.The present invention relates to an organic electrolyte solution containing a mixed organic solvent and a lithium salt, wherein the mixed organic solvent comprises a high dielectric constant solvent, a low viscosity solvent, and a compound represented by the following Chemical Formula 1; The present invention relates to a lithium secondary battery employing the same. The organic electrolyte solution for a lithium secondary battery according to the present invention has an advantage of excellent ion conductivity and low temperature storage characteristics and a wide potential window region. In addition, the present invention also provides an organic electrolyte solution, characterized in that the lithium salt includes an inorganic lithium salt and an organic lithium salt, the lithium secondary battery employing the same has a large battery capacity and stable charge and discharge characteristics of the battery In addition to improving the lifespan characteristics, the high temperature and self discharge characteristics are also improved.
상기식중,In the above formula,
R1및 R2는 서로 독립적이며, 탄소수 1 내지 3의 선형 또는 고리형의 알킬기이고, x는 1 내지 4의 정수이다.R 1 and R 2 are independent of each other, a linear or cyclic alkyl group having 1 to 3 carbon atoms, and x is an integer of 1 to 4;
Description
본 발명은 리튬 2차 전지에 관한 것으로서, 보다 상세하게는 전지용량, 저온저장성 및 충방전 싸이클 특성을 개선할 수 있을 뿐만 아니라 고온특성 및 자기방전특성을 개선할 수 있는 유기전해액 및 이를 채용한 리튬 2차 전지에 관한 것이다.The present invention relates to a lithium secondary battery, and more particularly, an organic electrolyte and lithium using the same, which can improve battery capacity, low-temperature storage and charge-discharge cycle characteristics, as well as high-temperature characteristics and self-discharge characteristics. It relates to a secondary battery.
최근, 전자기기의 소형화, 박형화 및 경량화가 급속도로 이루어지고 있으며, 특히 사무자동화 분야에 있어서는 데스크탑형 컴퓨터에서 랩탑형, 노트북형 컴퓨터로 소형 경량화되고 있으며, 캠코더, 셀룰러폰 등의 휴대용 전자기기도 급속하게 확산되고 있다.In recent years, the miniaturization, thinning, and lightening of electronic devices have been rapidly made. In particular, in the field of office automation, portable electronic devices such as camcorders, cellular phones, and the like have been rapidly reduced. Is spreading.
이와 같은 전자기기의 소형화, 경량화, 박형화 경향에 맞추어 이들에게 전력을 공급하는 2차전지에 대해서도 고성능화가 요구되고 있다. 즉, 기존의 납축전지 또는 니켈-카드뮴 전지등을 대체할 수 있으며, 소형 경량화되면서 에너지 밀도가 높고, 반복해서 충방전이 가능한 리튬 2차전지의 개발이 급속하게 진행되고 있다.In accordance with the trend toward miniaturization, light weight, and thinness of such electronic devices, high performance is also required for secondary batteries that supply power to them. That is, it is possible to replace the existing lead acid battery or nickel-cadmium battery, etc., the development of a lithium secondary battery that can be charged and discharged repeatedly with a high energy density while being compact and lightweight.
충전형 리튬전지는 리튬 이온의 인터칼레이션(intercalation), 디인터칼레이션 (deintercalation)이 가능한 물질을 활물질로서 사용하는 양극, 음극 및 양극과 음극 사이에 리튬 이온이 이동할 수 있는 유기 전해액 또는 폴리머 전해질을 충전시켜 제조한 전지로서, 리튬 이온이 상기 양극 및 음극에서 인터칼레이션/디인터칼레이션될 때의 산화, 환원 반응에 의해 전기에너지를 생성한다.A rechargeable lithium battery is an organic electrolyte or polymer electrolyte in which lithium ions can move between a positive electrode, a negative electrode, and a positive electrode and a negative electrode using a material capable of intercalation and deintercalation of lithium ions as an active material. A battery prepared by charging a lithium ion, which generates electrical energy by oxidation and reduction reactions when lithium ions are intercalated / deintercalated at the positive and negative electrodes.
충전형 리튬전지의 양극으로는 Li/Li+의 전극 전위보다 약 3-4.5V 높은 전위를 나타내며 리튬 이온의 인터칼레이션/디인터칼레이션이 가능한 전이금속과 리튬과의 복합 산화물이 주로 사용되는데, 그 예로서 리튬코발트옥사이드(LiCoO2), 리튬니켈옥사이드(LiNiO2), 리튬망간옥사이드(LiMnO2) 등을 들 수 있다.As a cathode of a rechargeable lithium battery, a complex oxide of lithium and a transition metal capable of intercalating and deintercalating lithium ions, which is about 3-4.5 V higher than the electrode potential of Li / Li + , is mainly used. Examples thereof include lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMnO 2 ), and the like.
또한, 음극으로는 구조적, 전기적 성질을 유지하면서 리튬 이온을 가역적으로 받아들이거나 공급할 수 있는 리튬금속 또는 리튬 합금, 또는 리튬 이온의 인터칼레이션/디인터칼레이션시의 케미칼 포텐셜이 금속 리튬과 거의 유사한 탄소계 물질이 주로 사용된다.In addition, as a cathode, the chemical potential at the time of intercalation / deintercalation of lithium metal or lithium alloy or lithium ion capable of reversibly accepting or supplying lithium ions while maintaining structural and electrical properties is almost similar to that of metallic lithium. Carbon-based materials are mainly used.
음극 활물질로 리튬금속이나 그 합금을 사용하는 것을 리튬금속전지라고 하며, 탄소재료를 사용하는 것을 리튬이온전지라고 한다. 리튬금속이나 합금을 음극으로 사용하는 리튬금속전지는 충방전이 진행될 때 리튬금속의 부피변화가 발생하고 리튬금속 표면에서 국부적으로 리튬이 석출되어 전지단락이 발생하는 등, 전지수명이 짧고 안정성이 낮아 상용화에 어려움이 따르므로 이를 해결하기 위하여 탄소재료를 음극 활물질로 사용하는 리튬이온전지가 개발되었다. 리튬이온전지는 충방전시 리튬이온의 이동만 있을 뿐 전극 활물질이 원형 그대로 유지되므로 리튬금속전지에 비하여 전지수명 및 안정성이 향상된다.The use of lithium metal or an alloy thereof as a negative electrode active material is called a lithium metal battery, and the use of a carbon material is called a lithium ion battery. A lithium metal battery using lithium metal or an alloy as a negative electrode has a short battery life and low stability, such as a volume change of the lithium metal during charging and discharging, and a short circuit due to local deposition of lithium on the surface of the lithium metal. In order to solve this problem, a lithium ion battery using a carbon material as a negative electrode active material has been developed. Lithium ion batteries have only the movement of lithium ions during charging and discharging, and thus the electrode active materials remain intact, improving battery life and stability compared to lithium metal batteries.
또한, 리튬2차전지는 전해질의 종류에 따라 구별되기도 하는데, 특히, 고체폴리머 전해질을 사용하는 리튬2차전지를 리튬폴리머전지라고 하며, 리튬폴리머전지는 폴리머전해질의 종류에 따라 유기전해액이 전혀 포함되지 않은 완전고체 전해질을 사용하는 완전고체형 리튬폴리머전지와, 유기전해액을 폴리머에 함침시킨 겔형 폴리머전해질을 사용하는 겔형 리튬폴리머전지로 구분할 수 있다. 또한, 리튬폴리머전지는 전술한 바와 같이 음극 활물질로 사용하는 재료에 따라 리튬이온 폴리머전지 및 리튬금속 폴리머전지로 구분할 수도 있다.In addition, lithium secondary batteries may be classified according to the type of electrolyte. In particular, lithium secondary batteries using a solid polymer electrolyte are called lithium polymer batteries, and lithium polymer batteries do not contain any organic electrolyte according to the type of polymer electrolyte. It can be divided into a fully solid lithium polymer battery using a completely solid electrolyte, and a gel lithium polymer battery using a gel polymer electrolyte in which an organic electrolyte is impregnated into a polymer. In addition, the lithium polymer battery may be classified into a lithium ion polymer battery and a lithium metal polymer battery according to a material used as a negative electrode active material as described above.
상기 유기전해액은 리튬이온전지 뿐 만 아니라 리튬 폴리머전지의 성능을 결정하는 중요한 요소이다. 유기전해액은 리튬염을 유기용매에 용해시킨 이온전도체로서, 리튬이온의 전도성, 전극에 대한 화학적 및 전기화학적 안정성이 우수하여야 한다. 그리고 사용가능한 온도 범위가 넓어야 하는 동시에, 제조단가가 낮아야 한다. 따라서, 이온전도도와 유전율이 높으면서 점도가 낮은 유기용매를 사용하는 것이 바람직하다.The organic electrolyte is an important factor for determining the performance of the lithium polymer battery as well as the lithium ion battery. The organic electrolyte is an ion conductor in which lithium salt is dissolved in an organic solvent, and should be excellent in conductivity of lithium ions and chemical and electrochemical stability of the electrode. In addition, the available temperature range should be wide and the manufacturing cost should be low. Therefore, it is preferable to use an organic solvent having high ionic conductivity and low dielectric constant and low viscosity.
그러나, 상기와 같은 조건을 만족시킬 수 있는 단일의 유기용매가 존재하지 않기 때문에 고유전율의 유기용매에 저점도의 유기용매를 혼합한 혼합유기용매계가 사용되고 있는데, 그 예로는 프로필렌카보네이트와 디에틸카보네이트의 탄산에스테르계 혼합용매; 에틸렌카보네이트, 디메틸카보네이트 및 디에틸카보네이트의 혼합용매 등을 예로 들 수 있다.However, since there is no single organic solvent that can satisfy the above conditions, a mixed organic solvent system in which a low viscosity organic solvent is mixed with a high dielectric constant organic solvent is used. Examples thereof include propylene carbonate and diethyl carbonate. Carbonate ester mixed solvents; Examples thereof include a mixed solvent of ethylene carbonate, dimethyl carbonate, and diethyl carbonate.
이와 같은 혼합유기용매를 사용하면, 리튬이온의 이동도가 증가함으로써 이온전도도가 크게 개선되고 전지의 초기용량이 커진다는 장점은 있으나, 싸이클이 진행됨에 따라 전해액이 음극 활물질과 산화반응을 하기 때문에 전지의 용량이 감소한다는 문제점이 있으며, 저온에서는 유기용매의 결빙으로 인하여 리튬이온의 이동도가 저하됨으로써 이온전도도가 급격히 떨어질 우려가 있다.The use of such a mixed organic solvent has the advantage of greatly improving the ion conductivity and increasing the initial capacity of the battery by increasing the mobility of lithium ions. However, since the electrolyte reacts with the negative electrode active material as the cycle progresses, the battery There is a problem that the capacity of is decreased, and at low temperatures, the mobility of lithium ions decreases due to freezing of the organic solvent, and thus there is a fear that the ionic conductivity drops rapidly.
일본특허출원 공개 평7-169504호에는 저온에서의 이온전도도를 향상시키기 위하여 종래의 고유전율 용매와 저점도 용매로 구성되는 2 성분계 유기용매에, 빙점이 매우 낮은 메틸프로피오네이트 및 에틸프로피오네이트와 같은 제 3 성분 용매를 첨가한 유기전해액이 기재되어 있다. 그러나, 이 경우에는 저온방전 특성은 향상되나 상온에서의 수명특성이 저하되고, 집전체와의 자발적 반응에 의한 생성물로 인해 전해액이 오염되어 전지특성에 나쁜 영향을 미친다는 문제점이 있다.Japanese Patent Application Laid-open No. Hei 7-169504 discloses a methylpropionate and ethylpropionate having a very low freezing point in a two-component organic solvent composed of a conventional high dielectric constant solvent and a low viscosity solvent in order to improve ionic conductivity at low temperature. An organic electrolyte solution to which a third component solvent such as is added is described. In this case, however, the low-temperature discharge characteristics are improved, but the lifespan characteristics at room temperature are deteriorated, and the electrolyte is contaminated due to the product by spontaneous reaction with the current collector, thereby adversely affecting the battery characteristics.
또한, 현재 리튬 2차전지의 유기전해액에 사용되는 리튬염으로는 LiClO4, LiBF4, LiPF6, LiCF3SO3또는 LiN(CF3SO2)2등이 있으나, 이들은 열적 안정성이 불량하며 이온전도도가 낮다는 문제점을 안 고 있다. 한편, LiPF6는 이온전도도는 뛰어나지만 수분에 아주 민감하기 때문에 전해액 자체가 분해되기 쉽다는 문제점을 갖고 있다.In addition, lithium salts currently used in the organic electrolyte of lithium secondary batteries include LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 or LiN (CF 3 SO 2 ) 2 , but these have poor thermal stability and ions There is a problem of low conductivity. On the other hand, LiPF 6 has excellent ion conductivity, but has a problem in that the electrolyte itself is easily decomposed because it is very sensitive to moisture.
본 발명이 이루고자 하는 기술적 과제는 음극 활물질과 쉽게 반응하지 않아 전지의 충방전 싸이클 특성이 우수하고, 저온 특성이 개선된 유기전해액을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in an effort to provide an organic electrolyte solution that does not easily react with a negative electrode active material and thus has excellent charge / discharge cycle characteristics and low temperature characteristics.
본 발명이 이루고자 하는 다른 기술적 과제는 리튬 2차전지의 고온 특성 및 자기방전특성을 개선시킬 수 있는 유기전해액을 제공하는 것이다.Another object of the present invention is to provide an organic electrolyte solution capable of improving high temperature characteristics and self discharge characteristics of a lithium secondary battery.
본 발명이 이루고자 하는 또다른 기술적 과제는 상기 유기전해액을 채용함으로써 충방전 사이클 특성, 저온 특성, 고온 특성 및 자기방전특성이 개선된 리튬 2차전지를 제공하는 것이다.Another technical problem to be achieved by the present invention is to provide a lithium secondary battery having improved charge / discharge cycle characteristics, low temperature characteristics, high temperature characteristics, and self discharge characteristics by employing the organic electrolyte.
도 1은 본 발명의 일실시예에 따른 유기전해액의 전위창 특성을 도시한 그래프이고,1 is a graph showing the potential window characteristics of an organic electrolyte according to an embodiment of the present invention,
도 2는 본 발명의 다른 실시예에 따른 유기전해액의 전위창 특성을 도시한 그래프이다.Figure 2 is a graph showing the potential window characteristics of the organic electrolytic solution according to another embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 유기전해액을 채용한 코인형 전지의 단면도이다.3 is a cross-sectional view of a coin-type battery employing an organic electrolyte according to an embodiment of the present invention.
도 4는 본 발명의 다른 실시예에 따른 유기전해액을 채용한 각형 리튬이온 폴리머 전지의 단면도이다.4 is a cross-sectional view of a rectangular lithium ion polymer battery employing an organic electrolyte according to another embodiment of the present invention.
본 발명의 기술적 과제는 혼합유기용매 및 리튬염을 포함하는 리튬2차전지용 전해액에 있어서, 상기 혼합유기용매가 고유전율 용매, 저점도 용매 및 하기 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는 유기전해액에 의하여 이루어질 수 있다:Technical problem of the present invention is a lithium secondary battery electrolyte comprising a mixed organic solvent and a lithium salt, the mixed organic solvent comprises a high dielectric constant solvent, a low viscosity solvent and a compound represented by the following formula (1) It can be done by organic electrolyte:
[화학식 1][Formula 1]
상기식중, R1및 R2는 서로 독립적이며, 탄소수 1 내지 3의 선형 또는 고리형의 알킬기이고, x는 1 내지 4의 정수이다.In the above formula, R 1 and R 2 are independent of each other, a linear or cyclic alkyl group having 1 to 3 carbon atoms, and x is an integer of 1 to 4.
본 발명의 다른 기술적 과제는 혼합유기용매 및 리튬염을 포함하는 리튬2차전지용 전해액에 있어서, 상기 혼합유기용매가 고유전율 용매, 저점도 용매 및 상기 화학식 1로 표시되는 화합물을 포함하며, 상기 리튬염이 무기물계 리튬염 및 유기물계 리튬염의 혼합물인 것을 특징으로 하는 리튬 2차전지용 유기전해액에 의하여 이루어질 수 있다.Another technical problem of the present invention is a lithium secondary battery electrolyte comprising a mixed organic solvent and a lithium salt, wherein the mixed organic solvent includes a high dielectric constant solvent, a low viscosity solvent, and a compound represented by Formula 1, wherein the lithium The salt may be made of an organic electrolyte solution for a lithium secondary battery, which is a mixture of an inorganic lithium salt and an organic lithium salt.
또한 본 발명의 또다른 기술적 과제는 리튬함유 금속의 산화물 또는 황화물을 포함하는 양극; 리튬 금속, 리튬 합금 또는 탄소재를 포함하는 음극; 및 상기한 바와 같은 본 발명의 유기전해액을 포함하는 리튬2차전지에 의하여 이루어질 수 있다.In addition, another technical problem of the present invention is an anode including an oxide or sulfide of a lithium-containing metal; A negative electrode comprising a lithium metal, a lithium alloy or a carbon material; And it can be made by a lithium secondary battery comprising the organic electrolyte of the present invention as described above.
본 발명의 첫 번째 과제를 달성하기 위한 유기전해액은 상기 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는데, 상기 화합물은 전해질과 음극 활물질과의 산화반응을 억제하며 고전압하에서도 쉽게 분해되지 않으므로 전지의 충방전 싸이클 특성을 개선하는데 기여할 수 있다. 또한, 융점이 매우 낮기 때문에 리튬 전지의 중대한 결점으로서 지적되고 있는 저온특성의 개선에도 기여할 수 있다.The organic electrolyte solution for achieving the first object of the present invention is characterized in that it comprises a compound represented by the formula (1), the compound inhibits the oxidation reaction between the electrolyte and the negative electrode active material and is not easily decomposed under high voltage battery It can contribute to improve the charge / discharge cycle characteristics of In addition, since the melting point is very low, it can contribute to the improvement of the low temperature characteristic, which is pointed out as a serious drawback of the lithium battery.
상기 화학식 1로 표시되는 화합물을 구체적으로 예를 들면, 디메틸말로네이트, 디에틸말로네이트, 디메틸석시네이트, 디메틸글루타레이트, 디메틸아디페이트 등이 있다.Specific examples of the compound represented by Formula 1 include dimethyl malonate, diethyl malonate, dimethyl succinate, dimethyl glutarate, and dimethyl adipate.
또한, 본 발명의 유기전해액에 사용되는 고유전율 용매는 유전율이 30 이상이고, 저점도 용매는 점도가 1.5 cP 이하인 것이 바람직하다.The high dielectric constant solvent used in the organic electrolytic solution of the present invention preferably has a dielectric constant of 30 or more, and the low viscosity solvent preferably has a viscosity of 1.5 cP or less.
본 발명의 유기전해액에 사용되는 고유전율 용매로는 에틸렌카보네이트, 프로필렌카보네이트 또는 감마 부티로락톤 중에서 선택되는 하나 이상의 화합물이 바람직하고, 저점도 용매로는 디메틸카보네이트, 디에틸카보네이트, 에틸메틸카보네이트, 디메톡시에탄 및 테트라하이드로퓨란 중에서 선택되는 하나 이상의 화합물이 바람직하다.As the high dielectric constant solvent used in the organic electrolytic solution of the present invention, at least one compound selected from ethylene carbonate, propylene carbonate or gamma butyrolactone is preferable, and as the low viscosity solvent, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethicone Preference is given to at least one compound selected from oxyethane and tetrahydrofuran.
본 발명의 유기전해액에 사용되는 혼합 유기용매는 상기 고유전율 용매, 저점도 용매 및 화학식 1로 표시되는 화합물의 혼합 부피비가 30-50:30-40:20-30 인 것이 바람직하다.In the mixed organic solvent used in the organic electrolytic solution of the present invention, the mixed volume ratio of the high dielectric constant solvent, the low viscosity solvent, and the compound represented by the formula (1) is preferably 30-50: 30-40: 20-30.
본 발명의 첫 번째 기술적 과제를 달성하기 위한 유기전해액에 사용되는 리튬염은 당업계에 공지된 리튬염으로서, 무기물계 및 유기물계 리튬염으로 이루어지는 군에서 선택되는 하나 이상을 포함할 수 있다.Lithium salt used in the organic electrolyte solution for achieving the first technical problem of the present invention may include one or more selected from the group consisting of inorganic and organic-based lithium salts known in the art.
무기물계 리튬염이란 화학구조식에 탄소를 함유하지 않는 리튬염으로서, 예를 들면 LiClO4, LiBF4, LiPF6등이 있다.The inorganic lithium salt is a lithium salt which does not contain carbon in the chemical structure, and examples thereof include LiClO 4 , LiBF 4 , LiPF 6, and the like.
유기물계 리튬염이란 화학구조식에 탄소를 함유하는 리튬염으로서, 예를 들면 LiCF3SO3, LiN(CF3SO2)2, LiC(CF3SO2)3, LiN(C2F5SO2)2등이 있다.Organic-based lithium salts are lithium salts containing carbon in the chemical formula, for example, LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (C 2 F 5 SO 2 ) 2 and so on.
유기전해액에 함유되는 리튬염의 총함량은 유기전해액 1ℓ당 1 몰 내지 1.5 몰인 것이 바람직하다. 유기 전해액내에서 리튬염의 이온전도도는 상기 범위에서 가장 높게 나타나기 때문이다.It is preferable that the total content of the lithium salt contained in an organic electrolyte solution is 1 mol-1.5 mol per liter of organic electrolyte solution. This is because the ionic conductivity of the lithium salt in the organic electrolyte is the highest in the above range.
한편, 본 발명의 두 번째 기술적 과제를 달성하기 위한 유기전해액은 무기물계 리튬염과, 열적 안정성이 우수하고 수분의 영향을 덜 받는 유기물계 리튬염을 일정 비율로 혼합시킴으로써 저온방전 특성 및 자기방전 특성을 향상시킨 것을 특징으로 한다.On the other hand, the organic electrolyte for achieving the second technical problem of the present invention is a low-temperature discharge characteristics and self-discharge characteristics by mixing an inorganic lithium salt and an organic lithium salt having excellent thermal stability and less influence of moisture in a certain ratio Characterized in that improved.
상기 무기물계 리튬염과 유기물계 리튬염의 혼합물에 사용될 수 있는 무기물계 리튬염은 유기용매중에서 해리되어 리튬 이온을 내는 리튬 화합물이라면 특별히 제한되지는 않으나, 그 중에서도 전기적 특성이 우수한 불소계 리튬염이 바람직하다.The inorganic lithium salt that can be used in the mixture of the inorganic lithium salt and the organic lithium salt is not particularly limited as long as it is a lithium compound that dissociates in an organic solvent to give lithium ions, and among these, a fluorine lithium salt having excellent electrical characteristics is preferable. .
상기 무기물계 리튬염과 유기물계 리튬염의 혼합물에 사용될 수 있는 유기물계 리튬염은 LiN(CF3SO2)2, LiC(CF3SO2)3및 LiN(C2F5SO2)2로 이루어지는 군에서 선택되는 하나 이상의 화합물이 바람직하다. 상기 화합물들은 열분해 온도가 높고, 수분의 영향을 덜받기 때문에 유기전해액의 고온 특성과 자기방전 특성을 향상시키는 역할을 한다.The organic lithium salt that may be used in the mixture of the inorganic lithium salt and the organic lithium salt includes LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3, and LiN (C 2 F 5 SO 2 ) 2 . At least one compound selected from the group is preferred. Since the compounds have a high pyrolysis temperature and are less affected by moisture, the compounds serve to improve high temperature and self discharge characteristics of the organic electrolyte.
상기 무기물계 리튬염과 유기물계 리튬염의 비율은 몰비로 0.7∼0.9 : 0.3∼0.1 인 것이 바람직하며, 유기물계 리튬염의 몰비율이 0.3 이상인 경우에는 전해액의 이온전도도가 급격하게 저하하여 전지의 용량특성이 불량해지며, 0.1 이하인 경우에는 자기방전 특성이 향상되지 않는다.The ratio of the inorganic lithium salt and the organic lithium salt is preferably in a molar ratio of 0.7 to 0.9: 0.3 to 0.1. When the molar ratio of the organic lithium salt is 0.3 or more, the ion conductivity of the electrolyte is sharply lowered so that the capacity characteristics of the battery are reduced. This becomes poor, and when it is 0.1 or less, the self discharge characteristic does not improve.
또한, 본 발명의 유기전해액은 자기방전 특성을 더욱 향상시키기 위하여 무기첨가제를 더 포함할 수 있다. 상기 무기첨가제로는 LiBO2, Li2CO3, Li3PO4, Li3N, SnO2등을 사용할 수 있으나, 그 중에서도 리튬붕산화합물(LiBO2)이 가장 바람직하다. 예를 들어, 붕소 원자는 원자가가 3이며 비결합 전자를 갖고 있어서, 음극 활물질인 탄소로부터 전자를 뺏으려는 전자수용체 역할을 한다. 따라서, 탄소와 붕소의 결합력이 상당히 커지며, 이 결합력의 증가 만큼 음극의 화학 포텐셜이 증가하여 리튬이온을 더 받아들이려는 경향이 생긴다. 결국, 음극내 리튬이온의 농도가 증가하고 전지의 용량이 증대되는 것이다. 이와 같은 효과를 발휘하기 위한 무기첨가제의 첨가량은 유기전해액 1ℓ당 1×10-4내지 5×10-2몰이 바람직하다.In addition, the organic electrolyte of the present invention may further include an inorganic additive in order to further improve the self-discharge characteristics. LiBO 2 , Li 2 CO 3 , Li 3 PO 4 , Li 3 N, SnO 2 , and the like may be used as the inorganic additive. Among them, a lithium boric acid compound (LiBO 2 ) is most preferable. For example, the boron atom has a valence of 3 and has unbound electrons, and thus acts as an electron acceptor to withdraw electrons from carbon as a negative electrode active material. Therefore, the bonding force between carbon and boron becomes considerably large, and the chemical potential of the negative electrode increases by the increase of the bonding force, which tends to accept lithium ions more. As a result, the concentration of lithium ions in the negative electrode increases and the capacity of the battery increases. As for the addition amount of the inorganic additive to exhibit such an effect, 1 * 10 <-4> -5 * 10 <-2> mol per 1 liter of organic electrolytes is preferable.
본 발명의 유기전해액은 겔형 고분자 고체 전해질을 구비하고 있는 리튬이온 폴리머전지에도 적용할 수 있다. 즉, 완전고체형 리튬폴리머전지를 제외한 모든 리튬 2차전지에 적용가능하다.The organic electrolyte of the present invention can also be applied to a lithium ion polymer battery having a gel polymer solid electrolyte. That is, the present invention can be applied to all lithium secondary batteries except for fully solid lithium polymer batteries.
이하에서는 실시예 및 비교예를 들어 본 발명을 보다 상세하게 설명하고자 한다. 하지만, 본 발명이 하기 실시예로만 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited only to the following examples.
하기 실시예 및 비교예에서 사용된 LiPF6은 일본 하시모토 주식회사의 전지시약급 제품을 정제없이 사용하였고, LiC(CF3SO2)3, LiN(C2F5SO2)2및 LiN(CF3SO2)2는 3M사의 전지시약급 제품을 정제없이 사용하였다. 유기전해액 제조시 사용된 용매는 Merck사의 전지시약급 제품이었으며, 모든 실험은 아르곤 가스(99.9999% 이상) 분위기하에서 실시하였다.LiPF 6 used in Examples and Comparative Examples below was used as a battery reagent grade product of Hashimoto, Japan, without purification, LiC (CF 3 SO 2 ) 3 , LiN (C 2 F 5 SO 2 ) 2 and LiN (CF 3 SO 2 ) 2 was used as a 3M battery reagent grade product without purification. The solvent used in the preparation of the organic electrolyte solution was Merck's battery reagent grade product, and all experiments were conducted in an argon gas (99.9999% or more) atmosphere.
<실시예 1><Example 1>
전기식 맨틀 속에 고체 상태인 에틸렌카보네이트가 담긴 시약통을 넣은 다음, 70-80℃로 서서히 가열하여 액화시켰다. 이어서, 전해액을 보관할 플라스틱통에 1M LiPF6용액을 만들 수 있는 함량의 LiPF6를 넣은 다음, 디메틸카보네이트를 넣고 격렬하게 흔들어주어 상기 리튬금속염을 용해시켰다. 여기에 액화된 에틸렌카보네이트 용액을 피펫을 이용하여 첨가하면서 흔들어 골고루 섞이도록 하고, 여기에 화학식 1의 화합물로서 디메틸말로네이트를 첨가하고 세게 흔들어서 용액이 골고루 혼합되도록 하였다. 이 때 에틸렌카보네이트, 디메틸카보네이트 및 디메틸말로네이트이 부피비는 40:40:30으로 하였다.A reagent bottle containing ethylene carbonate in a solid state was placed in an electric mantle, and then slowly heated to 70-80 ° C. to liquefy. Then, insert the content of LiPF 6 to make a 1M LiPF 6 solution in a plastic bucket to hold the electrolyte solution and then, given vigorous shaking into the dimethyl carbonate was dissolved in the lithium metal. The liquefied ethylene carbonate solution was added to the mixture using a pipette to shake the mixture, and dimethylmalonate was added thereto as a compound of Formula 1, and the mixture was shaken vigorously to mix the solution evenly. At this time, the volume ratio of ethylene carbonate, dimethyl carbonate and dimethyl malonate was 40:40:30.
이상과 같이 제조한 유기전해액을 드라이박스 안에서 20일 동안 보관한 다음 카알피셔(Karl-Fisher) 적정법(사용기기: 스위스 메트롬사의 737KF 쿨로미터)을 사용하여 상기 유기전해액 내의 수분량을 측정하였다. 수분측정결과, 유기전해액내의 수분 함유량은 대략 20ppm이었다.The organic electrolyte solution prepared as described above was stored for 20 days in a dry box, and then the amount of water in the organic electrolyte solution was measured using a Karl-Fisher titration method (used device: 737KF coolometer manufactured by Metrom, Switzerland). As a result of moisture measurement, the water content in the organic electrolyte solution was approximately 20 ppm.
<실시예 2><Example 2>
화학식 1의 화합물로서 디메틸말로네이트 대신에 디에틸말로네이트를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 제조하였다.It was prepared in the same manner as in Example 1 except that diethylmalonate was used instead of dimethylmalonate as the compound of Formula 1.
<실시예 3><Example 3>
화학식 1의 화합물로서 디메틸말로네이트 대신에 디메틸석시네이트를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 제조하였다.It was prepared in the same manner as in Example 1 except for using dimethyl succinate instead of dimethylmalonate as the compound of Formula 1.
<실시예 4><Example 4>
화학식 1의 화합물로서 디메틸말로네이트 대신에 디메틸글루타레이트를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 제조하였다.It was prepared in the same manner as in Example 1 except for using dimethyl glutarate instead of dimethylmalonate as the compound of Formula 1.
<실시예 5>Example 5
화학식 1의 화합물로서 디메틸말로네이트 대신에 디메틸아디페이트를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 제조하였다.It was prepared in the same manner as in Example 1 except for using dimethyladipate instead of dimethylmalonate as the compound of Formula 1.
<실시예 6><Example 6>
에틸렌 카보네이트, 디메틸카보네이트 및 디메틸말로네이트의 혼합 부피비를 40:40:20으로 한 것을 제외하고는 실시예 1과 동일한 방법으로 제조하였다.It was prepared in the same manner as in Example 1 except that the mixing volume ratio of ethylene carbonate, dimethyl carbonate and dimethyl malonate was 40:40:20.
<실시예 7><Example 7>
에틸렌 카보네이트, 디메틸카보네이트 및 디메틸말로네이트의 혼합 부피비를 50:30:20으로 한 것을 제외하고는 실시예 1과 동일한 방법으로 제조하였다.It was prepared in the same manner as in Example 1 except that the mixing volume ratio of ethylene carbonate, dimethyl carbonate and dimethyl malonate was 50:30:20.
<비교예 1>Comparative Example 1
혼합유기용매에 디메틸말로네이트를 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 전해액을 제조하였다. 이 때 에틸렌카보네이트와 디메틸카보네이트의 부피비는 1:1로 하였다.An electrolyte solution was prepared in the same manner as in Example 1, except that dimethyl malonate was not added to the mixed organic solvent. At this time, the volume ratio of ethylene carbonate and dimethyl carbonate was 1: 1.
<비교예 2>Comparative Example 2
에틸렌카보네이트, 디메틸카보네이트 및 디메틸말로네이트의 혼합 부피비를 60:20:20으로 한 것을 제외하고는 실시예 1과 동일한 방법으로 전해액을 제조하였다.An electrolyte solution was prepared in the same manner as in Example 1 except that the mixing volume ratio of ethylene carbonate, dimethyl carbonate, and dimethyl malonate was 60:20:20.
<비교예 3>Comparative Example 3
에틸렌 카보네이트, 디메틸카보네이트 및 디메틸말로네이트의 혼합 부피비를 30:30:40으로 한 것을 제외하고는 실시예 1과 동일한 방법으로 제조하였다.It was prepared in the same manner as in Example 1 except that the mixing volume ratio of ethylene carbonate, dimethyl carbonate and dimethyl malonate was 30:30:40.
상기 실시예 1-7 및 비교예 1-3에 따라 제조된 유기전해액의 이온전도도, 저온저장특성 및 전위창 특성을 평가하였다. 이 때 상기 특성 평가는 다음과 같은 방법에 따라 실시하였다.Ion conductivity, low temperature storage characteristics and potential window characteristics of the organic electrolyte prepared according to Examples 1-7 and Comparative Examples 1-3 were evaluated. At this time, the characteristic evaluation was performed according to the following method.
1) 전해액의 이온전도도1) Ion Conductivity of Electrolyte
드라이 박스에서 논-블로킹(non-blocking) 측정셀을 조립하였다. 측정하고자 하는 전해액 약 15 ㎖와 백금전극을 사용하였고, 셀이 공기와 접촉하는 것을 차단하기 위하여 시약 보관용 금속 박막 케이스에 보관하였다. 상기 금속 박막 케이스에 보관된 셀을 외부로 꺼내어 항온항습조에서 1시간 동안 보관한 다음, 임피던스 측정기로 임피던스를 측정함으로써 전도도를 평가하였다.Non-blocking measuring cells were assembled in a dry box. About 15 mL of the electrolyte to be measured and a platinum electrode were used, and the cell was stored in a metal thin case for reagent storage to prevent the cell from contacting with air. The cell stored in the metal thin film case was taken out and stored in a constant temperature and humidity chamber for 1 hour, and then the conductivity was evaluated by measuring impedance with an impedance meter.
2) 저온저장특성2) Low Temperature Storage Characteristics
30㎖들이 플라스틱 용기를 2개 준비하고 각각의 용기에 15㎖의 전해액을 넣은 다음, 뚜껑을 닫고 뚜껑 주위를 파라핀 필름으로 감아서 공기의 접촉이 완전히 차단되도록한 다음, 이 용기를 TABAI 항온항습기에 넣고 각각 -30℃ 및 -40℃의 온도에서 24시간 동안 방치한 다음 전해액의 동결 여부를 육안으로 관찰하였다.Prepare two 30 ml plastic containers, add 15 ml of electrolyte to each container, close the lid and wrap it around with a paraffin film to completely block air contact, and then place the container in the TABAI thermo-hygrostat. The mixture was allowed to stand for 24 hours at temperatures of -30 ° C and -40 ° C, respectively, and then visually observed whether the electrolyte was frozen.
3) 전위창3) potential window
실시예 1-7 및 비교예 1-3의 유기전해액에 대하여 전위주사측정법(cyclic voltammography)을 이용하여 전위창 범위를 측정하였다. 3극 측정셀을 사용하였으며, 카본전극과 리튬금속 전극을 각각 사용하였다. 1㎒의 주파수에서 주사속도는 1 mV/sec로 하였으며, 측정 결과를 도 1에 도시하였다.For the organic electrolyte solution of Example 1-7 and Comparative Example 1-3, the range of the potential window was measured using cyclic voltammography. A tripolar measuring cell was used, and a carbon electrode and a lithium metal electrode were used, respectively. The scanning speed was 1 mV / sec at a frequency of 1 MHz, and the measurement results are shown in FIG. 1.
4) 충방전 수명 특성4) Charge and discharge life characteristics
실시예 1-7 및 비교예 1-3에 따라 제조된 유기전해액을 사용한 전지의 충방전 수명특성을 평가하기 위하여 2016 타입 코인형 전지(도 3 참조)를 다음과 같이 제조하였다.In order to evaluate the charge and discharge life characteristics of the battery using the organic electrolyte prepared according to Examples 1-7 and Comparative Examples 1-3, a 2016 type coin-type battery (see FIG. 3) was prepared as follows.
LiCoO2, Super-P 카본 (M.M.M. Carbon Co.제품) 및 N-메틸피롤리돈에 용해시킨 폴리테트라플루오로에틸렌을 혼합하여 페이스트 타입의 양극 활물질을 제조한 다음, 이를 두께 200㎛의 알루미늄 호일에 캐스팅한후, 건조 및 압착하고, 절단하여 코인형 전지용 양극(34)을 제조하였다.A paste-type cathode active material was prepared by mixing LiCoO 2 , Super-P carbon (manufactured by MMM Carbon Co.) and polytetrafluoroethylene dissolved in N-methylpyrrolidone, and then, paste it onto an aluminum foil having a thickness of 200 μm. After casting, drying, pressing, and cutting to prepare a positive electrode 34 for a coin-type battery.
또한, 그라파이트 분말 (MCMB 2528, Osaka Gas Co. 제품), Super-P 카본 (M.M.M. Carbon Co.제품), N-메틸피롤리돈에 용해시킨 폴리테트라플루오로에틸렌을 혼합하여 페이스트 타입의 음극 활물질을 제조한 다음, 이를 두께 200㎛의 알루미늄 호일에 캐스팅하여 건조 및 압착한 다음 절단하여 코인형 전지용 음극(33)을 제조하였다.In addition, a paste-type negative electrode active material was prepared by mixing graphite powder (MCMB 2528, manufactured by Osaka Gas Co.), Super-P carbon (made by MMM Carbon Co.), and polytetrafluoroethylene dissolved in N-methylpyrrolidone. After manufacturing, it was cast on an aluminum foil having a thickness of 200 μm, dried, pressed, and cut to prepare a negative electrode 33 for a coin-type battery.
세퍼레이터(35)로는 훽스트 셀라니즈사(Hoechst Cellanese Co.)의 셀가드2400(Cellgard 2400)을 사용하였으며, 세퍼레이터를 음극과 양극 사이에 놓고 실시예 1-7 및 비교예 1-3의 유기전해액에 10분간 담궜다. 10분 후 이를 꺼내어 크램프머신을 사용하여 스테인레스제 케이스(31), 스테인레스제 뚜껑(32), 절연 개스킷(36)으로 완전히 밀폐된 2016 타입 코인형 전지(도 3)를 제조하였다. 이때 전지의 용량은 3.15 mAh이었다.As the separator 35, Cellgard 2400 manufactured by Hoechst Cellanese Co. was used. The separator was placed between the cathode and the anode, and the organic electrolyte solution of Examples 1-7 and Comparative Examples 1-3 was used. Soak for 10 minutes. After 10 minutes, it was removed, and a 2016 type coin-type battery (FIG. 3) was completely sealed with a stainless steel case 31, a stainless steel lid 32, and an insulating gasket 36 using a cramping machine. At this time, the battery had a capacity of 3.15 mAh.
이상과 같이 제조한 코인형 전지에 대하여 초기 용량과 100 및 200 싸이클 충방전 실험 후의 용량을 측정하여 초기용량에 대비하여 나타내었다. 1A 용량의 충방전기 (Maccor 제품)를 이용하였으며, 충전 및 방전은 각각 25℃에서 0.2C로 실시하였으며, 충전 전압은 3.0-4.2V였다.For the coin-type battery manufactured as described above, the initial capacity and the capacity after the 100 and 200 cycle charge and discharge experiments were measured and shown in relation to the initial capacity. A charge / discharger (manufactured by Maccor) with a capacity of 1 A was used, and charging and discharging were performed at 0.2 C at 25 ° C., respectively, and the charging voltage was 3.0-4.2 V.
상술한 방법에 따라 실시예 1-7 및 비교예 1-3에 따라 제조된 유기전해액의 이온전도도, 저온저장특성 및 충방전 수명 특성을 표 1에 나타내었다.Table 1 shows the ion conductivity, low temperature storage characteristics, and charge and discharge life characteristics of the organic electrolyte prepared according to Example 1-7 and Comparative Examples 1-3 according to the above-described method.
상기 표 1 및 도 1의 결과로부터, 본 발명에 따른 유기전해액 및 이를 채용한 리튬이온전지는 이온전도도값이 1×10-2S/cm 이상으로 높고, 저온저장 특성이 모두 우수한 것을 알 수 있다. 또한, 전지의 용량이 100싸이클 후에는 초기용량대비 90%이상, 200싸이클후에는 85%이상으로 싸이클 진행에 따른 용량 변화율이 적은 것으로 볼 때 수명 특성이 매우 우수한 것을 알 수 있으며, 도 1을 참조하면 전위창 영역이 넓어서 광범위한 전압 범위에서도 안정적인 전지 특성을 유지할 수 있음을 알 수있다.From the results of Table 1 and FIG. 1, it can be seen that the organic electrolyte solution and the lithium ion battery employing the same according to the present invention have high ion conductivity values of 1 × 10 −2 S / cm or more and excellent low temperature storage characteristics. . In addition, since the capacity of the battery is less than 90% of the initial capacity after 100 cycles, and 85% or more after 200 cycles, it can be seen that the lifespan characteristics are very excellent in view of the small capacity change rate due to the cycle progression. The large potential window area ensures stable battery characteristics over a wide range of voltages.
<실시예 8><Example 8>
리튬염으로서 0.9M-LiPF6및 0.1M-LiC(CF3SO2)3용액을 만들 수 있는 함량의 LiPF6와 LiC(CF3SO2)3를 사용하고, 고유전율 용매로서 에틸렌 카보네이트, 저점도용매로서 에틸메틸카보네이트, 제3의 용매로서 디메틸석시네이트를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기전해액을 제조하였다.As the lithium salt LiPF 6 and 0.9M-0.1M-LiC (CF 3 SO 2 ) the content to create a third solution, LiPF 6 and LiC (CF 3 SO 2) 3, and using, as the high dielectric constant solvents, ethylene carbonate, low viscosity An organic electrolyte solution was prepared in the same manner as in Example 1, except that ethyl methyl carbonate was used as a solvent and dimethyl succinate was used as a third solvent.
<실시예 9>Example 9
제3의 용매로서 디메틸글루타레이트를 사용한 것을 제외하고는 실시예 8과 동일한 방법으로 유기전해액을 제조하였다.An organic electrolyte solution was prepared in the same manner as in Example 8, except that dimethyl glutarate was used as the third solvent.
<실시예 10><Example 10>
제3의 용매로서 디메틸아디페이트를 사용한 것을 제외하고는 실시예 8과 동일한 방법으로 유기전해액을 제조하였다.An organic electrolyte solution was prepared in the same manner as in Example 8, except that dimethyl adipate was used as the third solvent.
<실시예 11><Example 11>
LiPF6와 LiC(CF3SO2)3의 함량을 각각 0.8M 및 0.2M로 한 것을 제외하고는 실시예 8과 동일한 방법으로 유기전해액을 제조하였다.An organic electrolyte was prepared in the same manner as in Example 8 except that the contents of LiPF 6 and LiC (CF 3 SO 2 ) 3 were 0.8M and 0.2M, respectively.
<실시예 12><Example 12>
LiPF6와 LiC(CF3SO2)3의 함량을 각각 0.7M 및 0.3M로 한 것을 제외하고는 실시예 8과 동일한 방법으로 유기전해액을 제조하였다.An organic electrolyte was prepared in the same manner as in Example 8 except that the contents of LiPF 6 and LiC (CF 3 SO 2 ) 3 were set to 0.7M and 0.3M, respectively.
<실시예 13>Example 13
2×10-2M의 LiBO2를 더 부가한 것을 제외하고는 실시예 8과 동일한 방법으로 제조하였다.It was prepared in the same manner as in Example 8 except that 2 × 10 −2 M of LiBO 2 was further added.
<비교예 4><Comparative Example 4>
에틸메틸카보네이트를 부가하지 않고, 에틸렌카보네이트와 디메틸카보네이트의 부피비를 2 : 1 로 하였으며, LiC(CF3SO2)3를 부가하지않고1M-LiPF6만을 사용한 것을 제외하고는 실시예 8과 동일한 방법으로 유기전해액을 제조하였다.The same method as in Example 8 except that no ethyl methyl carbonate was added and the volume ratio of ethylene carbonate and dimethyl carbonate was 2: 1, and only 1M-LiPF 6 was used without adding LiC (CF 3 SO 2 ) 3 . An organic electrolyte was prepared.
<비교예 5>Comparative Example 5
디메틸카보네이트 대신 에틸메틸카보네이트를 사용하였으며, 에틸렌카보네이트와 에틸메틸카보네이트의 부피비를 1:1로 한 것을 제외하고는 비교예 4와 동일한 방법으로 유기전해액을 제조하였다.Ethyl methyl carbonate was used instead of dimethyl carbonate, and an organic electrolyte was prepared in the same manner as in Comparative Example 4 except that the volume ratio of ethylene carbonate and ethyl methyl carbonate was 1: 1.
<비교예 6>Comparative Example 6
LiPF6와 LiC(CF3SO2)3의 함량을 각각 0.6M 및 0.4M로 한 것을 제외하고는 실시예 8과 동일한 방법으로 유기전해액을 제조하였다.An organic electrolyte was prepared in the same manner as in Example 8 except that the contents of LiPF 6 and LiC (CF 3 SO 2 ) 3 were set to 0.6M and 0.4M, respectively.
상기 실시예 8-13 및 비교예 4-6에 따라 제조된 유기전해액의 이온전도도 및 전위창 특성을 전술한 방법과 동일한 방법으로 측정하여 표 2 및 도 2에 나타내었다.The ion conductivity and the potential window characteristics of the organic electrolyte prepared according to Example 8-13 and Comparative Example 4-6 were measured by the same method as described above, and are shown in Table 2 and FIG. 2.
본 발명의 유기전해액(실시예 8-13 및 비교예 4-6)을 리튬이온 폴리머전지(도 4 참조)에 적용하였다. 고분자 매트릭스로는 폴리비닐리덴플루오라이드와 육불화프로필렌의 공중합체(PVdF-HFP)인 키나르 2801(상품명; Kynar2801, Altochem. Co. 제품)을 사용하였다.The organic electrolyte solution (Examples 8-13 and Comparative Examples 4-6) of the present invention was applied to a lithium ion polymer battery (see FIG. 4). Kinar 2801 (trade name; Kynar2801, manufactured by Altochem. Co.), a copolymer of polyvinylidene fluoride and propylene hexafluoride (PVdF-HFP), was used.
양극(46)은 아세톤 450㎖에 양극 활물질인 LiCoO265 중량부, 가소제인 디부틸프탈레이트 20 중량부 및 키나르 2801 15 중량부를 넣고 흔들어준 다음 50 내지 60℃의 오븐에서 키나르 2801을 충분히 용해시켰다. 볼밀기기로 48시간 동안 혼합시킨 다음 닥터블레이드를 사용하여 두께 120㎛가 되도록 캐스팅한 다음 대기중에서 건조시켜 제조하였다.In the positive electrode 46, 65 parts by weight of LiCoO 2 , a positive electrode active material, 20 parts by weight of dibutyl phthalate, and 15 parts by weight of Kinar 2801, were shaken in 450 ml of acetone, and the Kinar 2801 was sufficiently dissolved in an oven at 50 to 60 ° C. I was. It was prepared by mixing for 48 hours in a ball mill, then cast to a thickness of 120㎛ using a doctor blade and dried in the air.
음극(42)의 경우에는 양극 활물질 대신 음극 활물질인 그라파이트계 카본 활물질 65중량부를 사용하여 양극 제조시와 동일한 방법으로 제조하였다.In the case of the negative electrode 42, 65 parts by weight of the graphite-based carbon active material as the negative electrode active material, instead of the positive electrode active material, was manufactured in the same manner as in the preparation of the positive electrode.
세퍼레이터(43)는 아세톤 250㎖에 키나르 2801 30 g, 디부틸프탈레이트 40 g 및 산화규소 30 g을 혼합한 다음 50 내지 60℃의 오븐에서 고분자가 충분히 용해되도록 한 다음, 닥터블레이드를 사용하여 두께 50 내지 55㎛로 캐스팅한 한 후 공기중에서 건조시켜 아세톤을 휘발시킴으로써 제조하였다.The separator 43 is a mixture of 250 g of acetone, 30 g of Kinar 2801, 40 g of dibutyl phthalate, and 30 g of silicon oxide, and then sufficiently dissolved in an oven at 50 to 60 ° C. After casting to 50 to 55㎛ dried in air to prepare acetone by volatilization.
이상과 같이 제조한 양극(46), 음극(42), 세퍼레이터(43), 구리집전체(41) 및 알루미늄 집전체(45)를 이용하여 리튬이온 폴리머전지(도 4)를 제조하였다.A lithium ion polymer battery (FIG. 4) was manufactured using the positive electrode 46, the negative electrode 42, the separator 43, the copper current collector 41, and the aluminum current collector 45 prepared as described above.
1) 충방전 수명 특성1) Charge and discharge life characteristics
양극 활물질이 LiCoO2인 경우 130mAh/g을 기준으로 하여 전지의 이론용량을 계산한 다음 양극과 음극의 용량비율이 1 : 2.1 내지 2.2가 되도록 구성하였다. 이때 전지의 용량은 170mAh로 만들었으며, 초기용량은 177mAh이었다. 2.8 내지 4.2 V 범위에서 10시간율로 충전과 방전을 2회 실시하여 화성하였다.When the positive electrode active material is LiCoO 2 , the theoretical capacity of the battery was calculated based on 130 mAh / g, and the capacity ratio of the positive electrode and the negative electrode was 1: 2.1 to 2.2. At this time, the battery capacity was made 170mAh, the initial capacity was 177mAh. Charging and discharging were carried out twice at a rate of 10 hours in the range of 2.8 to 4.2 V for chemical formation.
전지의 충방전 사이클은 정전류/정전압 조건에서 2시간율로 2.8 내지 4.2 V에서 실시하였으며 정전압구간은 정전류구간의 1/10로 하였다. 전지의 용량 및 충방전 사이클수명 특성은 표 3에 나타나 있다The charge / discharge cycle of the battery was carried out at 2.8 to 4.2 V at a rate of 2 hours under constant current / constant voltage conditions, and the constant voltage section was 1/10 of the constant current section. The capacity and charge / discharge cycle life characteristics of the battery are shown in Table 3.
2) 저온 방전 특성2) Low temperature discharge characteristics
실시예 8-13 및 비교예 4-6의 유기전해액을 사용하여 제조한 전지를, 2시간율로 4.2 V까지 정전류/정전압 조건에서 충전하였다. 충전된 전지를 -20 ℃에서 17시간 동안 방치한 다음 0.5 시간율로 2.75 V까지 방전하였다. 그 결과는 표 3에 나타내었다.The battery produced using the organic electrolyte solution of Example 8-13 and Comparative Example 4-6 was charged under constant current / constant voltage conditions to 4.2 V at a rate of 2 hours. The charged battery was left at −20 ° C. for 17 hours and then discharged to 2.75 V at a rate of 0.5 hours. The results are shown in Table 3.
3) 자기방전 특성3) Self discharge characteristic
실시예 8-13 및 비교예 4-6의 유기전해액을 사용한 전지의 자기 방전에 의한 용량 감소율을 평가하기 위하여, 화성단계가 완료된 전지를 5시간율로 4.2 V까지 정전류/정전압 조건에서 충전한 다음 5시간율로 방전시켰다. 다시, 2 시간율로 4.2 V까지 정전류/정전압 조건에서 충전한 다음 20℃에서 30일간 방치하고나서 2.75 V까지 2시간율로 방전시켰으며, 실험결과는 표 3에 나타내었다.In order to evaluate the capacity reduction rate due to self discharge of the battery using the organic electrolyte solution of Examples 8-13 and Comparative Examples 4-6, the battery having been completed in the formation step was charged under constant current / constant voltage conditions up to 4.2 V at a rate of 5 hours. Discharged at a rate of 5 hours. Again, the battery was charged at a constant current / constant voltage condition up to 4.2 V at a rate of 2 hours, then left at 20 ° C. for 30 days, and then discharged at a rate of 2 hours up to 2.75 V. The test results are shown in Table 3.
상기 표 3으로부터, 실시예 8-13의 유기전해액을 사용한 경우를 비교예 4-6의 유기전해액을 사용한 경우와 비교하면 수명특성은 무기물계 리튬염만을 사용한 경우와 비슷하거나 보다 개선되면서 저온방전특성 및 자기방전특성이 향상되었으며, 유기물계 리튬염과 무기물계 리튬염을 함께 사용함으로써 60℃의 고온 자기방전특성도 향상되었다.From Table 3, when the organic electrolyte solution of Example 8-13 is used in comparison with the case of using the organic electrolyte solution of Comparative Example 4-6, the life characteristics are similar to or better than those of using only inorganic lithium salts. Low temperature discharge characteristics and self discharge characteristics were improved, and high temperature self discharge characteristics of 60 ° C. were also improved by using an organic lithium salt and an inorganic lithium salt together.
본 발명에 따른 리튬 2차전지용 유기전해액은 화학식 1로 표시되는 화합물을 포함함으로써 이온전도도, 저온저장성이 우수하고 전위창영역이 넓을 뿐만 아니라 충방전 수명특성이 우수하다는 장점을 갖는다. 또한, 무기물계 리튬염과 유기물계 리튬염을 일정비율로 함유하는 본 발명의 리튬 2차전지용 유기전해액은 자기방전율의 감소로 인하여 용량특성이 향상되며, 열적 안정성이 우수하여 고온에서의 방전특성이 향상된다. 따라서, 본 발명의 전해액을 채용하는 리튬 2차전지는 전지의 용량이 크고 사이클이 진행되어도 안정적인 충방전 특성을 나타낼 뿐 아니라 저온저장성, 고온특성 및 전지의 수명특성 또한 양호하다.The organic electrolyte solution for a lithium secondary battery according to the present invention has the advantages of excellent ion conductivity, low temperature storage, wide potential window area, and excellent charge / discharge life characteristics by including the compound represented by the formula (1). In addition, the organic electrolyte for lithium secondary batteries of the present invention containing inorganic lithium salts and organic lithium salts at a constant ratio has improved capacity characteristics due to a decrease in the self discharge rate, and excellent thermal stability to discharge characteristics at high temperatures. Is improved. Therefore, the lithium secondary battery employing the electrolyte solution of the present invention exhibits stable charge and discharge characteristics even when the battery capacity is large and the cycle progresses, and also has good low temperature storage characteristics, high temperature characteristics, and battery life characteristics.
Claims (14)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25134198A JP4519956B2 (en) | 1997-09-04 | 1998-09-04 | Organic electrolyte and lithium secondary battery using the same |
US09/148,507 US6117596A (en) | 1997-09-04 | 1998-09-04 | Organic electrolyte and lithium secondary cell employing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970045813A KR19990024598A (en) | 1997-09-04 | 1997-09-04 | Non-aqueous electrolyte solution for lithium ion batteries and lithium ion battery comprising same |
KR1019970045813 | 1997-09-04 | ||
KR97-45813 | 1997-09-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19990029412A KR19990029412A (en) | 1999-04-26 |
KR100408515B1 true KR100408515B1 (en) | 2004-01-24 |
Family
ID=37422820
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970045813A Pending KR19990024598A (en) | 1997-09-04 | 1997-09-04 | Non-aqueous electrolyte solution for lithium ion batteries and lithium ion battery comprising same |
KR1019980035848A Expired - Fee Related KR100408515B1 (en) | 1997-09-04 | 1998-09-01 | Organic electrolyte and lithium secondary battery using the same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970045813A Pending KR19990024598A (en) | 1997-09-04 | 1997-09-04 | Non-aqueous electrolyte solution for lithium ion batteries and lithium ion battery comprising same |
Country Status (1)
Country | Link |
---|---|
KR (2) | KR19990024598A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100833042B1 (en) * | 2005-02-15 | 2008-05-27 | 주식회사 엘지화학 | Performance and safety electrolyte and lithium secondary battery comprising the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100875112B1 (en) * | 2002-11-16 | 2008-12-22 | 삼성에스디아이 주식회사 | Non-aqueous electrolyte and lithium battery employing the same |
KR100873632B1 (en) * | 2005-08-24 | 2008-12-12 | 삼성에스디아이 주식회사 | Organic Electrolyte and Lithium Battery |
CN111224161B (en) * | 2018-11-26 | 2021-06-15 | 中国科学院大连化学物理研究所 | A method for improving low-temperature performance of lithium-ion battery with electrolyte containing additive |
-
1997
- 1997-09-04 KR KR1019970045813A patent/KR19990024598A/en active Pending
-
1998
- 1998-09-01 KR KR1019980035848A patent/KR100408515B1/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100833042B1 (en) * | 2005-02-15 | 2008-05-27 | 주식회사 엘지화학 | Performance and safety electrolyte and lithium secondary battery comprising the same |
Also Published As
Publication number | Publication date |
---|---|
KR19990029412A (en) | 1999-04-26 |
KR19990024598A (en) | 1999-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2541663B1 (en) | Nonaqueous electrolyte and lithium secondary battery using the same | |
US7241536B2 (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising same | |
US5358805A (en) | Secondary battery and manufacturing method therefor | |
US6117596A (en) | Organic electrolyte and lithium secondary cell employing the same | |
KR100325868B1 (en) | Organic electrolytic solution and lithium secondary battery adopting the same | |
KR20020002200A (en) | Charging method for charging nonaqueous electrolyte secondary battery | |
JP3369310B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery | |
KR101108945B1 (en) | Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same | |
EP2733780A2 (en) | Nonaqueous electrolyte and lithium secondary battery using same | |
KR100335222B1 (en) | Nonaqueous Electrolyte | |
JP2001057234A (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery | |
KR100325866B1 (en) | Lithium secondary battery | |
KR100408515B1 (en) | Organic electrolyte and lithium secondary battery using the same | |
JPH0696759A (en) | Nonaqueous electrolytic secondary battery and manufacture of active material used therefor | |
JP4359977B2 (en) | Nonaqueous electrolyte secondary battery | |
US6503663B1 (en) | Organic electrolyte and lithium secondary battery | |
KR100459882B1 (en) | Non-aqueous electrolytes for lithium rechargeable battery and lithium rechargeable battery using the same | |
KR100373725B1 (en) | Organic Electrolyte and Lithium Secondary Battery | |
KR100553733B1 (en) | Organic Electrolyte Composition and Lithium Secondary Battery Using the Same | |
KR100440932B1 (en) | Electrolytes for lithium rechargeable battery | |
KR100309777B1 (en) | A non-aqueous electrolyte and a lithium secondary battery made thereof | |
KR100408513B1 (en) | Organic electrolyte for lithium secondary battery and lithium secondary battery using same | |
US9705158B2 (en) | Rechargeable battery comprising non-aqueous electrolytic solution using alkyl methanesulfonate as solvent for dissolving electrolytic salt | |
KR100370386B1 (en) | Non-aqueous electrolyte solution for lithium battery | |
KR100309775B1 (en) | A non-aqueous electrolyte and a lithium secondary battery made thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
R17-X000 | Change to representative recorded |
St.27 status event code: A-3-3-R10-R17-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-3-3-R10-R18-oth-X000 |
|
PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R13-asn-PN2301 St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R13-asn-PN2301 St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
R17-X000 | Change to representative recorded |
St.27 status event code: A-3-3-R10-R17-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-3-3-R10-R18-oth-X000 |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R13-asn-PN2301 St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-3-3-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-3-3-R10-R18-oth-X000 |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U11-oth-PR1002 Fee payment year number: 1 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 4 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 5 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 6 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 7 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 8 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 9 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
FPAY | Annual fee payment |
Payment date: 20121016 Year of fee payment: 10 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 10 |
|
FPAY | Annual fee payment |
Payment date: 20131022 Year of fee payment: 11 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 11 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
St.27 status event code: A-4-4-U10-U13-oth-PC1903 Not in force date: 20141125 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE |
|
PC1903 | Unpaid annual fee |
St.27 status event code: N-4-6-H10-H13-oth-PC1903 Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20141125 |
|
P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |