JP3369310B2 - Non-aqueous electrolyte and non-aqueous electrolyte battery - Google Patents
Non-aqueous electrolyte and non-aqueous electrolyte batteryInfo
- Publication number
- JP3369310B2 JP3369310B2 JP15613794A JP15613794A JP3369310B2 JP 3369310 B2 JP3369310 B2 JP 3369310B2 JP 15613794 A JP15613794 A JP 15613794A JP 15613794 A JP15613794 A JP 15613794A JP 3369310 B2 JP3369310 B2 JP 3369310B2
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- aqueous electrolyte
- battery
- carbonate
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims description 28
- 239000002904 solvent Substances 0.000 claims description 42
- 239000003792 electrolyte Substances 0.000 claims description 37
- 239000008151 electrolyte solution Substances 0.000 claims description 36
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 claims description 33
- 229910013870 LiPF 6 Inorganic materials 0.000 claims description 15
- -1 cyclic carbonic acid ester Chemical class 0.000 claims description 15
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 13
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 11
- 229910052744 lithium Inorganic materials 0.000 claims description 11
- 239000003575 carbonaceous material Substances 0.000 claims description 10
- 150000004651 carbonic acid esters Chemical class 0.000 claims description 7
- 229910052723 transition metal Inorganic materials 0.000 claims description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 5
- 229910001416 lithium ion Inorganic materials 0.000 claims description 5
- 239000007773 negative electrode material Substances 0.000 claims description 5
- 239000007774 positive electrode material Substances 0.000 claims description 5
- 150000003624 transition metals Chemical class 0.000 claims description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims 1
- 125000004122 cyclic group Chemical group 0.000 claims 1
- 239000000203 mixture Substances 0.000 description 14
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 13
- 238000007600 charging Methods 0.000 description 8
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 6
- 150000005678 chain carbonates Chemical class 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 206010052428 Wound Diseases 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 210000001787 dendrite Anatomy 0.000 description 3
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 3
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- 208000012266 Needlestick injury Diseases 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 229910021397 glassy carbon Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000001989 lithium alloy Substances 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- 229910015892 BF 4 Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013375 LiC Inorganic materials 0.000 description 1
- 229910013372 LiC 4 Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 1
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- RCIJMMSZBQEWKW-UHFFFAOYSA-N methyl propan-2-yl carbonate Chemical compound COC(=O)OC(C)C RCIJMMSZBQEWKW-UHFFFAOYSA-N 0.000 description 1
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Primary Cells (AREA)
- Secondary Cells (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は新規な非水電解液及びそ
れを用いた非水電解液電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel non-aqueous electrolyte and a non-aqueous electrolyte battery using the same.
【0002】[0002]
【従来の技術】非水電解液を用いた電池は、高電圧・高
エネルギー密度を有し、かつ貯蔵性などの信頼性に優れ
ているため、広く民生用電子機器の電源に用いられてい
る。非水電解液としては、一般に高誘電率溶媒である炭
酸プロピレン、γ−ブチロラクトン、スルホラン等に低
粘度溶媒であるジメトキシエタンやテトラヒドロフラン
または1,3−ジオキソラン等を混合した溶媒に、Li
BF4、LiPF6、LiClO4、LiAsF6、LiC
F3SO3、LiAlCl4、LiSiF6等の電解質を混
合したものが用いられている。2. Description of the Related Art Batteries using non-aqueous electrolytes are widely used as power sources for consumer electronic devices because they have high voltage and high energy density and are highly reliable in terms of storability. . As the non-aqueous electrolyte, propylene carbonate which is a high dielectric constant solvent, γ-butyrolactone, sulfolane and the like are mixed with a low viscosity solvent such as dimethoxyethane, tetrahydrofuran or 1,3-dioxolane, and Li.
BF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , LiC
A mixture of electrolytes such as F 3 SO 3 , LiAlCl 4 , and LiSiF 6 is used.
【0003】しかし、このような非水電解液の溶媒は耐
電圧の低いものが多く、耐電圧の低い溶媒を用いた電解
液を二次電池に使用した場合、充放電を繰返すと溶媒が
電気分解され、そのため生成したガスにより電池の内圧
が上昇したり、生成物が重合反応を起こし、電極に付着
する等の事態が生じてしまう。このため、電池充放電効
率が低下し、電池エネルギー密度の低下により、電池の
寿命が短くなる等の問題があった。電解液の耐久性を向
上させる試みとしては、従来用いられていたγ−ブチロ
ラクトン、エチルアセテート等のエステル類や、1,3
−ジオキソラン、テトラヒドロフラン、ジメトキシエタ
ン等のエーテル類の耐電圧の低い溶媒の代りに耐電圧の
高い炭酸ジエチル等の炭酸エステルを使用し、充放電の
反復後の電池エネルギー密度低下の抑制がなされている
(例えば特開平2−10666号公報)。However, many of the solvents of such non-aqueous electrolytes have a low withstand voltage, and when an electrolyte using a solvent with a low withstand voltage is used for a secondary battery, the solvent becomes an electric solvent when charging and discharging are repeated. As a result of the decomposition, the generated gas raises the internal pressure of the battery, and the product causes a polymerization reaction to adhere to the electrode. Therefore, there is a problem that the battery charge / discharge efficiency is reduced, the battery energy density is reduced, and the battery life is shortened. As an attempt to improve the durability of the electrolytic solution, conventionally used esters such as γ-butyrolactone and ethyl acetate, and 1,3
-Use of carbonic acid ester such as diethyl carbonate, which has high withstand voltage, instead of solvent with low withstand voltage of ethers such as dioxolane, tetrahydrofuran, dimethoxyethane, etc., to suppress the decrease in battery energy density after repeated charging and discharging. (For example, JP-A-2-10666).
【0004】一方、リチウム二次電池の負極には金属リ
チウム、またはリチウム合金が用いられているが、充放
電を繰返すと電解液中のリチウムイオンが負極上で析出
し、デンドライトと呼ばれる針状の反応性の高い金属が
生成される場合があった。デンドライトが電極から脱落
すると、自己消耗し電池のサイクル寿命が短くなってし
まう、正極と負極を隔てるセパレータをデンドライトが
貫通しショートする可能性が高い等の問題があり、ま
た、安全性を充分に確保できないなどの改善すべき点が
あった。On the other hand, metallic lithium or a lithium alloy is used for the negative electrode of the lithium secondary battery, and lithium ions in the electrolytic solution are deposited on the negative electrode when charging and discharging are repeated, resulting in needle-shaped dendrites. Highly reactive metals were sometimes produced. If the dendrite falls off the electrode, it will self-deplete and the cycle life of the battery will be shortened, and there is a high possibility that the dendrite will penetrate the separator that separates the positive electrode and the negative electrode, resulting in a short circuit. There were some points to be improved, such as not being able to secure it.
【0005】[0005]
【発明が解決すべき課題】ところで、エネルギー密度の
高い電池が望まれていることから、高電圧電池について
各方面から研究が進められている。例えば、電池の正極
にLiCoO2、LiNiO2、LiMn2O4等のリチウ
ムと遷移金属の複合酸化物を使用し、負極に炭素材料を
使用した、ロッキングチェア型と呼ばれる二次電池が研
究されてきた。この場合、電池電圧は4V以上を発生す
ることができ、しかも、金属リチウムの析出がないた
め、過充電、外部ショート、針刺し、押し潰し等の実験
によっても安全性が確保されていることが確認され、民
生用として出回るようになっている。しかしながら、今
後の大幅な高エネルギー密度化、また、大型化がなされ
た場合には、更に難燃化等の安全性を向上差せておく必
要がある。By the way, since a battery having a high energy density is desired, research on a high-voltage battery is being promoted from various fields. For example, a secondary battery called a rocking chair type, in which a composite oxide of lithium and a transition metal such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 is used for the positive electrode of the battery and a carbon material is used for the negative electrode, has been studied. It was In this case, the battery voltage can generate 4 V or more, and since there is no deposition of metallic lithium, it is confirmed that safety is ensured by experiments such as overcharging, external short circuit, needle stick, and crushing. It has been made available for commercial use. However, it is necessary to further improve the safety such as flame retardancy in the case where the energy density is increased drastically and the size is increased in the future.
【0006】現在使用されている電解液溶媒では必ずし
も満足のいく高い引火点を有するものでなく、自己消火
性もない。このため、自己消火性のある化合物として知
られるリン酸エステル類を電解液に添加することが提案
されている(特開平4−184870号公報)。しかし
ながら、この種の化合物を15wt%以上添加した電解
液は、難燃性であって安全性は向上されるが、電池充放
電効率、電池のエネルギー密度、電池寿命の点で問題が
あった。また、リン酸トリメチルを電解液の溶媒として
使用するものが提案されている(特開平1−10286
2号公報)が、リン酸トリメチルは自己消火の性能に優
れたものではなく、耐電圧及び電気伝導性に優れ、且つ
安全性に優れた高電圧の二次電池に好適に適用される非
水電解液はなかった。The electrolyte solvents currently used do not necessarily have a satisfactory high flash point and are not self-extinguishing. Therefore, it has been proposed to add phosphoric acid esters, which are known as self-extinguishing compounds, to the electrolytic solution (JP-A-4-184870). However, the electrolyte containing 15 wt% or more of this type of compound is flame-retardant and has improved safety, but has problems in terms of battery charge / discharge efficiency, battery energy density, and battery life. Further, there has been proposed one using trimethyl phosphate as a solvent for an electrolytic solution (JP-A-1-10286).
No. 2), trimethyl phosphate is not excellent in self-extinguishing performance, and is suitable for high-voltage secondary batteries that are excellent in withstand voltage and electrical conductivity, and are excellent in safety. There was no electrolyte.
【0007】[0007]
【発明の目的】本発明は上記の問題点に鑑みなされたも
ので、繰返し充放電を行なっても、電池エネルギー密度
の低下を生じることがなく、且つ過充電、外部ショー
ト、針刺し、押し潰し等の過酷な条件においても安全性
を充分に確保でき、耐電圧及び電気伝導性に優れ、引火
点が高く安全性に優れ、負荷特性、低温特性に優れた非
水電解液を提供することを目的とする。また、本発明
は、安全で高電圧を発生することができ、かつ電池性能
が優れ、長寿命の非水電解液電池を提供することを目的
とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and does not cause a decrease in battery energy density even after repeated charging / discharging, and overcharge, external short circuit, needle stick, crushing, etc. The objective is to provide a non-aqueous electrolyte solution that can ensure sufficient safety even under severe conditions, has excellent withstand voltage and electrical conductivity, has a high flash point, excellent safety, and excellent load characteristics and low temperature characteristics. And Another object of the present invention is to provide a non-aqueous electrolyte battery that is safe, can generate a high voltage, has excellent battery performance, and has a long life.
【0008】[0008]
【課題を解決するための手段】発明者らは安全で高電圧
を発生でき、かつ安全性に優れた非水電解液電池を作る
ため、耐電圧および充放電サイクル特性に優れ、着火し
にくく且つ自己消火性を備えた電解液を見出すため鋭意
研究を行った。その結果、電解質溶媒としてリン酸トリ
メチルと、一般式[I]で表わされる鎖状炭酸エステル
の1種または2種以上と、環状炭酸エステルとを含有
し、電解質としてLiPF6を含有するものが引火点が
高く、着火しにくく、自己消火性であって、且つ、耐電
圧および充放電サイクル特性に優れたものであることを
見出した。Means for Solving the Problems In order to produce a non-aqueous electrolyte battery which is safe, can generate high voltage, and is excellent in safety, the inventors have excellent withstand voltage and charge / discharge cycle characteristics, are hard to ignite, and An intensive research was conducted to find out an electrolytic solution having self-extinguishing property. As a result, the one containing trimethyl phosphate as an electrolyte solvent, one or more kinds of chain carbonate represented by the general formula [I], and a cyclic carbonate, and containing LiPF 6 as an electrolyte is flammable. It has been found that it has high points, is hard to ignite, is self-extinguishing, and is excellent in withstand voltage and charge / discharge cycle characteristics.
【0009】[0009]
【化2】 [Chemical 2]
【0010】式中R1はメチル基又はエチル基であり、
R2は炭素数1から3の鎖状または分枝状アルキル基で
ある。そしてこのような電解液を使用した電池が、安全
性が向上し、加えて充放電サイクル寿命が向上すること
を見出した。即ち、本発明の非水電解液は電解質溶媒と
してリン酸トリメチルと、一般式[I]で表わされる鎖
状炭酸エステルの1種または2種以上と、環状炭酸エス
テルを含有するものである。Wherein R 1 is a methyl group or an ethyl group,
R 2 is a chain or branched alkyl group having 1 to 3 carbon atoms. The inventors have found that batteries using such an electrolytic solution have improved safety and, in addition, improved charge / discharge cycle life. That is, the non-aqueous electrolytic solution of the present invention contains trimethyl phosphate as an electrolyte solvent, one or more chain carbonates represented by the general formula [I], and a cyclic carbonate.
【0011】[0011]
【化3】 [Chemical 3]
【0012】式中R1はメチル基又はエチル基を表わ
し、R2は炭素数1から3の鎖状または分枝状アルキル
基を表わす。リン酸トリメチルは引火点が高く、混合さ
れた溶媒の引火点を上昇させる作用を有する。更に、リ
ン酸トリメチルは難燃性であり、溶媒に自己消火性を付
与する。しかし、リン酸トリメチルは同時に充放電効率
を低下させ、電池エネルギー密度を下げる性質を有する
ため、適量を使用することが重要である。リン酸トリメ
チルが溶媒に難燃性を付与するためには少なくとも電解
液溶媒の1体積%以上含有される必要がある。更に好ま
しくは3体積%以上含有されることである。3体積%以
上含有されれば、非水電解液に十分な難燃性を付与する
ことができる。また、リン酸トリメチルが電解液溶媒の
10体積%以上含有されると電池の充電効率を低下させ
るため、リン酸トリメチルの含有量は10体積%以下で
あり、好ましくは7体積%以下であることが望ましい。
7体積%以下であれば電池の充電効率を低下させること
がない。In the formula, R 1 represents a methyl group or an ethyl group, and R 2 represents a chain or branched alkyl group having 1 to 3 carbon atoms. Trimethyl phosphate has a high flash point and has an action of increasing the flash point of the mixed solvent. Furthermore, trimethyl phosphate is flame-retardant and imparts self-extinguishing properties to the solvent. However, it is important to use an appropriate amount of trimethyl phosphate because it has the properties of simultaneously lowering the charge / discharge efficiency and lowering the battery energy density. In order to impart flame retardancy to the solvent, trimethyl phosphate must be contained in at least 1% by volume of the electrolytic solution solvent. More preferably, the content is 3% by volume or more. When it is contained in an amount of 3% by volume or more, it is possible to impart sufficient flame retardancy to the non-aqueous electrolyte. If trimethyl phosphate is contained in the electrolyte solvent in an amount of 10% by volume or more, the charging efficiency of the battery is reduced. Therefore, the content of trimethyl phosphate is 10% by volume or less, preferably 7% by volume or less. Is desirable.
If it is 7% by volume or less, the charging efficiency of the battery is not lowered.
【0013】一般式[I]で表される鎖状炭酸エステル
のR1は、メチル基またはエチル基を表わし、R2は炭素
数1〜3の鎖状あるいは分枝状アルキル基を表わす。こ
のような炭酸エステルとして、例えば、ジメチルカーボ
ネート、メチルエチルカーボネート、ジエチルカーボネ
ート、メチルプロピルカーボネート、メチルイソプロピ
ルカーボネート等を挙げることができ、このうち特にジ
メチルカーボネート、メチルエチルカーボネート、ジエ
チルカーボネートが好ましい。これら炭酸エステルは1
種または2種以上を混合して用いることができる。R 1 of the chain ester carbonate represented by the general formula [I] represents a methyl group or an ethyl group, and R 2 represents a chain or branched alkyl group having 1 to 3 carbon atoms. Examples of such carbonic acid ester include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, and methyl isopropyl carbonate. Of these, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate are particularly preferable. These carbonates are 1
One kind or a mixture of two or more kinds can be used.
【0014】このような鎖状炭酸エステルはリン酸トリ
メチルと組合せて使用されることにより耐電圧性を向上
させ電解液溶媒が酸化により分解するのを抑制する。更
に、電解質の溶解度を高めることができ、常温、低温で
の電気伝導性に優れた電解液とすることができる。この
ような特性の電解液を得るため、鎖状炭酸エステルは電
解液溶媒に対して通常20〜90体積%含有され、好ま
しくは、40〜75体積%含有される。鎖状炭酸エステ
ルの含有量が20体積%以下であると酸化されやすく、
溶媒の分解が生じてしまい、90体積%以上含有される
と自己消火性を損ねてしまう。40〜75体積%であれ
ば所望の耐電圧及び自己消火性の溶媒とすることができ
る。When such a chain ester carbonate is used in combination with trimethyl phosphate, the withstand voltage is improved and decomposition of the electrolyte solvent due to oxidation is suppressed. Furthermore, the solubility of the electrolyte can be increased, and an electrolytic solution having excellent electric conductivity at room temperature and low temperature can be obtained. In order to obtain the electrolytic solution having such characteristics, the chain ester carbonate is usually contained in the electrolytic solution solvent in an amount of 20 to 90% by volume, preferably 40 to 75% by volume. When the content of the chain carbonic acid ester is 20% by volume or less, it is easily oxidized,
If the solvent is decomposed, and 90% by volume or more is contained, the self-extinguishing property is impaired. If it is 40 to 75% by volume, a solvent having desired withstand voltage and self-extinguishing property can be obtained.
【0015】更に、非水電解液の溶媒に含有される環状
炭酸エステルとしては、ブチレンカーボネート、ビニレ
ンカーボネート等も使用できるが、プロピレンカーボネ
ート、エチレンカーボネートのいずれかまたは2種を混
合したものが好適である。この炭酸エステルを添加する
ことによって低温であっても電解質の溶解度を高めるこ
とができ、粘度を低くすることができ、電気伝導度を更
に向上させ、電解質の輸送を容易にすることができる。
環状炭酸エステルの含有量は電解液溶媒に対して10〜
70体積%、好ましくは20〜60体積%の範囲とす
る。この範囲にあると、粘度が低くかつ誘電率が高いの
で、電気伝導度が高くなるので好ましい。Further, as the cyclic carbonic acid ester contained in the solvent of the non-aqueous electrolytic solution, butylene carbonate, vinylene carbonate and the like can be used, but propylene carbonate, ethylene carbonate or a mixture of two kinds is preferable. is there. By adding this carbonic acid ester, the solubility of the electrolyte can be increased even at low temperature, the viscosity can be lowered, the electric conductivity can be further improved, and the transport of the electrolyte can be facilitated.
The content of cyclic carbonic acid ester is 10 to the electrolytic solution solvent.
70% by volume, preferably 20 to 60% by volume. Within this range, the viscosity is low and the dielectric constant is high, and the electrical conductivity is high, which is preferable.
【0016】本発明の電解質溶媒は、上述のリン酸トリ
メチル、鎖状炭酸エステル、環状炭酸エステルの他、通
常電池用電解液溶媒として用いられるエーテル系、エス
テル系、γ−ブチロラクトン、スルホラン等の非水溶媒
を、本発明の電解液溶媒の特性を損わない範囲で適宜添
加することができる。上述の電解質溶媒に溶解される電
解質としては、LiPF6を使用するのが好ましい。電
解質としてLiPF6を用いた場合、リン酸トリメチル
の含有量を低くしても高度に自己消火性を保持できる。
電解質として通常の電池電解液に用いられるもの、例え
ばLiBF4、LiClO4、LiAsF6、LiCF3S
O3、LiAlCl3、LiSiF6、LiN(SO3CF
3)2、LiC4F9SO3、LiC8F17SO3等のリチウ
ム塩を使用することもできるが、これらのリチウム塩を
使用した場合、リン酸トリメチルの含有量を溶媒の10
体積%以上としなければ、十分な自己消火性を発揮する
ことができず、そのため、電池の充放電効率、エネルギ
ー密度の低下を来してしまう。The electrolyte solvent of the present invention is not limited to the above-mentioned trimethyl phosphate, chain carbonic acid ester, cyclic carbonic acid ester, and other non-solvents such as ether type, ester type, γ-butyrolactone and sulfolane which are usually used as electrolyte solution solvents for batteries. A water solvent can be appropriately added within a range that does not impair the characteristics of the electrolytic solution solvent of the present invention. LiPF 6 is preferably used as the electrolyte dissolved in the above-mentioned electrolyte solvent. When LiPF 6 is used as the electrolyte, the self-extinguishing property can be maintained to a high degree even if the content of trimethyl phosphate is lowered.
What is used as an electrolyte in a normal battery electrolytic solution, for example, LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 S
O 3 , LiAlCl 3 , LiSiF 6 , LiN (SO 3 CF
3 ) 2 , lithium salts such as LiC 4 F 9 SO 3 and LiC 8 F 17 SO 3 can also be used, but when these lithium salts are used, the content of trimethyl phosphate is 10
If it is not more than the volume%, sufficient self-extinguishing property cannot be exhibited, and therefore, the charge / discharge efficiency and energy density of the battery will be reduced.
【0017】電解質を溶媒に溶かす濃度は通常、0.1
〜3モル/lで実施することができ、好ましくは、0.
5〜2.0モル/lで用いることができる。また、本発
明の非水電解液電池は、上記の非水電解液と、負極材料
としてリチウムイオンのドープ・脱ドープが可能な炭素
材料が用いられ、正極材料としては、リチウムと遷移金
属の複合酸化物が用いられる。The concentration of the electrolyte dissolved in the solvent is usually 0.1.
~ 3 mol / l, preferably 0.
It can be used at 5 to 2.0 mol / l. Further, the non-aqueous electrolyte battery of the present invention uses the above-mentioned non-aqueous electrolyte and a carbon material capable of doping / dedoping lithium ions as a negative electrode material, and as a positive electrode material, a composite of lithium and a transition metal. Oxides are used.
【0018】本発明によれば電解液溶媒として、リン酸
トリメチルと、一般式[I]で表される鎖状炭酸エステ
ルと、環状炭酸エステルとを含有し、この電解液溶媒に
溶解される電解質としてLiPF6を用いることによっ
て、金属リチウムとの反応性が低くなり、引火点が高く
なると共に酸化による電解液溶媒の分解も起こりにくく
なり、電池の充放電のサイクル寿命が長くなる。According to the present invention, an electrolyte containing trimethyl phosphate, a chain carbonic acid ester represented by the general formula [I], and a cyclic carbonic acid ester as an electrolytic solution solvent, which is dissolved in the electrolytic solution solvent. By using LiPF 6 as the compound, the reactivity with metallic lithium becomes low, the flash point becomes high, and the decomposition of the electrolytic solution solvent due to oxidation hardly occurs, so that the cycle life of charge / discharge of the battery becomes long.
【0019】本発明の非水電解液電池は一実施例とし
て、円筒型非水電解液二次電池に適用できる。円筒型非
水電解液二次電池は、図1に示すように、負極集電体9
に負極活物質を塗布してなる負極1と、正極集電体10
に正極活物質を塗布してなる正極2とを、セパレータ3
を介して巻回し、巻回体の上下に絶縁体4を載置した状
態で電池缶5に収納してなるものである。電池缶5には
電池蓋7が封口ガスケット6を介してかしめることによ
って取付られ、それぞれ負極リード11及び正極リード
12を介して負極1あるいは正極2と電気的に接続さ
れ、電池の負極あるいは正極として機能するように構成
されている。The non-aqueous electrolyte battery of the present invention can be applied to a cylindrical non-aqueous electrolyte secondary battery as an example. The cylindrical non-aqueous electrolyte secondary battery has a negative electrode current collector 9 as shown in FIG.
A negative electrode 1 formed by applying a negative electrode active material to a positive electrode current collector 10
A positive electrode 2 formed by applying a positive electrode active material to a separator 3
It is wound through the battery, and is housed in the battery can 5 with the insulator 4 placed on the upper and lower sides of the wound body. A battery lid 7 is attached to the battery can 5 by caulking via a sealing gasket 6, and is electrically connected to the negative electrode 1 or the positive electrode 2 via a negative electrode lead 11 and a positive electrode lead 12, respectively, and is a negative electrode or a positive electrode of the battery. Is configured to function as.
【0020】このような負極1を構成する負極活物質と
しては、金属リチウム、リチウム合金、リチウムイオン
を吸蔵・放出可能な炭素材料を用いることができ、特に
好ましくはリチウムイオンをドープ・脱ドープすること
が可能な炭素材料が適用される。このような炭素材料と
してグラファイトでも非晶質炭素でもよく、活性炭、炭
素繊維、カーボンブラック、メソカーボンマイクロビー
ズ等あらゆる炭素材料を適用することができる。As the negative electrode active material constituting such a negative electrode 1, metallic lithium, lithium alloys, and carbon materials capable of occluding / releasing lithium ions can be used, and particularly preferably lithium ions are doped / dedoped. A carbon material capable of being applied is applied. Graphite or amorphous carbon may be used as such a carbon material, and any carbon material such as activated carbon, carbon fiber, carbon black, and mesocarbon microbeads can be applied.
【0021】また、正極2を構成する正極活物質として
は、MoS2、TiS2、MnO2、V2O5等の遷移金属
酸化物、遷移金属硫化物或いはLiCoO2、LiMn
O2、LiMn2O4、LiNiO2等のリチウムと遷移金
属から成る複合酸化物を用いることができが、特に好ま
しくはリチウムと遷移金属の複合酸化物が好適に使用さ
れる。As the positive electrode active material constituting the positive electrode 2, transition metal oxides such as MoS 2 , TiS 2 , MnO 2 and V 2 O 5 , transition metal sulfides or LiCoO 2 , LiMn.
A composite oxide composed of lithium and a transition metal such as O 2 , LiMn 2 O 4 , and LiNiO 2 can be used, but a composite oxide of lithium and a transition metal is particularly preferably used.
【0022】尚、本発明の非水電解液電池は、電解液と
して以上説明した非水電解液を含むものであり、その形
状、形態等は上述の一実施例に限定されず、円筒型、角
型、コイン型、大型等本発明の範囲内で任意に選択する
ことができる。The non-aqueous electrolyte battery of the present invention contains the above-mentioned non-aqueous electrolyte solution as an electrolyte solution, and its shape, form, etc. are not limited to those of the above-mentioned embodiment, but may be of a cylindrical type, A square type, a coin type, a large size, etc. can be arbitrarily selected within the scope of the present invention.
【0023】[0023]
【実施例】以下に実施例を挙げて本発明を具体的に説明
するが、本発明はこれら実施例により何ら限定されるも
のではない。
1.電解液の自己消火性
厚さ0.04mmのセパレータ用マニラ紙を幅15m
m、長さ320mmの短冊状に切断し、これを以下の実
施例に示すように作成した電解液の試料の入ったビーカ
ーに1分以上浸した。マニラ紙から滴り落ちる過剰の試
料をビーカー壁で拭い、マニラ紙を25mm間隔で支持
針を有するサンプル台の支持針に刺して水平に固定し
た。マニラ紙を固定したサンプル台を250mm×25
0mm×500mmの金属製の箱に入れ、一端にライタ
ーで着火し、マニラ紙の燃えた長さを3回測定した。3
回の長さの平均値を表に示した。EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. 1. Self-extinguishing property of electrolyte Manila paper for separator with thickness of 0.04mm is 15m wide
It was cut into a strip having a length of m and a length of 320 mm, and immersed in a beaker containing a sample of an electrolyte solution prepared as shown in the following examples for 1 minute or more. Excess sample dripping from the Manila paper was wiped with a beaker wall, and the Manila paper was pierced at 25 mm intervals on a supporting needle of a sample table having a supporting needle and fixed horizontally. 250mm x 25 sample stand with Manila paper fixed
It was put in a metal box of 0 mm x 500 mm, one end was ignited by a lighter, and the burned length of the Manila paper was measured three times. Three
The average value of the length of the times is shown in the table.
【0024】1)溶媒組成と電解液の自己消火性
プロピレンカーボネート(PC)、メチルエチルカーボ
ネート(MEC)、リン酸トリメチル(TMPA)の混
合割合を変えた電解液溶媒の試料について試験を行なっ
た。尚、電解質のLiPF6を濃度1.0mol/lと
して溶解した。表1に示す結果を得た。1) Tests were carried out on electrolyte solvent samples in which the solvent composition and the self-extinguishing property of the electrolyte solution were changed such that propylene carbonate (PC), methyl ethyl carbonate (MEC) and trimethyl phosphate (TMPA) were mixed in different proportions. The electrolyte LiPF 6 was dissolved at a concentration of 1.0 mol / l. The results shown in Table 1 were obtained.
【0025】比較例としてリン酸トリエチル(TEP
A)を使用したもの、リン酸トリメチルを全く使用しな
かったものについて同様に試験した。結果を表1に示し
た。As a comparative example, triethyl phosphate (TEP
A test using A) and a test using no trimethyl phosphate were similarly conducted. The results are shown in Table 1.
【0026】[0026]
【表1】 [Table 1]
【0027】表1から明らかなように、リン酸トリメチ
ルを含有したものは自己消火性を有することがわかっ
た。
2)電解質の種類と電解液の自己消火性
プロピレンカーボネート/メチルエチルカーボネート/
リン酸トリメチル=40/55/5(体積比)の組成の
溶媒に、濃度1.0mol/lとして電解質を溶解した
電解液について試験を行なった。表2に示す結果を得
た。As is clear from Table 1, those containing trimethyl phosphate were found to have self-extinguishing properties. 2) Type of electrolyte and self-extinguishing property of electrolyte propylene carbonate / methyl ethyl carbonate /
A test was conducted on an electrolytic solution in which an electrolyte was dissolved in a solvent having a composition of trimethyl phosphate = 40/55/5 (volume ratio) at a concentration of 1.0 mol / l. The results shown in Table 2 were obtained.
【0028】[0028]
【表2】 [Table 2]
【0029】表2から明らかなように電解質としてLi
PF6を含有するは電解液は極めて自己消火性に優れて
いることが示された。
3)LiPF6濃度と電解液の自己消火性
プロピレンカーボネート/メチルエチルカーボネート/
リン酸トリメチル=40/55/5(体積比)の組成の
溶媒に溶解して試験を行なった。表3に示す結果を得
た。As is clear from Table 2, Li was used as the electrolyte.
It was shown that the electrolytic solution containing PF 6 was extremely excellent in self-extinguishing property. 3) LiPF 6 concentration and self-extinguishing property of electrolyte propylene carbonate / methyl ethyl carbonate /
The test was carried out by dissolving in a solvent having a composition of trimethyl phosphate = 40/55/5 (volume ratio). The results shown in Table 3 were obtained.
【0030】[0030]
【表3】 [Table 3]
【0031】表3から明らかなようにLiPF6の僅か
な含有で自己消火性を示した。
4)鎖状カーボネートの種類と電解液の自己消火性
鎖状カーボネートとしてジメチルカーボネート(DM
C)、メチルエチルカーボネート(MEC)、ジエチル
カーボネート(DEC)それぞれについて、プロピレン
カーボネート/鎖状カーボネート/リン酸トリメチル=
40/55/5(体積比)の組成の溶媒とし、濃度1.
0mol/lのLiPF6を溶解し電解液を作成して試
験を行なった。表4に示す結果を得た。As is clear from Table 3, the self-extinguishing property was exhibited with a small content of LiPF 6 . 4) Types of chain carbonate and dimethyl carbonate (DM) as self-extinguishing chain carbonate of electrolyte
C), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC), propylene carbonate / chain carbonate / trimethyl phosphate =
A solvent having a composition of 40/55/5 (volume ratio) and a concentration of 1.
A test was conducted by dissolving 0 mol / l of LiPF 6 to prepare an electrolytic solution. The results shown in Table 4 were obtained.
【0032】[0032]
【表4】 [Table 4]
【0033】表4から明らかなようにこれらの鎖状カー
ボネートを含有するは電解液は自己消火性に優れている
ことが示された。
2.電解液の耐電圧と電気伝導度の測定
電解質としてLiPF6の1.0mol/lの電解液を
調整した。電解液の電気伝導度はインピーダンスメータ
ーを用い10kHzで、常温(25℃)、低温(−20
℃)下で測定した。電解液の耐電圧は、作用極、対極に
グラッシーカーボンを使用し参照極に金属リチウムを使
用した3電極式耐電圧測定セルに電解液を入れ、ポテン
シオスタットで50mV/secで電位走引し、分解電
流が0.1mA以上流れなかった範囲を耐電圧とした。As is clear from Table 4, the electrolyte containing these chain carbonates was shown to have excellent self-extinguishing properties. 2. Measurement of Withstand Voltage and Electric Conductivity of Electrolyte Solution An electrolyte solution of LiPF 6 at 1.0 mol / l was prepared as an electrolyte. The electric conductivity of the electrolytic solution is 10 kHz using an impedance meter, and is room temperature (25 ° C.) and low temperature (−20).
(° C). The withstand voltage of the electrolytic solution is as follows: Put the electrolytic solution in a three-electrode type withstand voltage measuring cell using glassy carbon for the working electrode and the counter electrode and metallic lithium for the reference electrode, and conduct a potential sweep at 50 mV / sec with a potentiostat. The breakdown voltage was defined as the range in which the decomposition current did not flow by 0.1 mA or more.
【0034】1)電解液の溶媒組成と耐電圧及び電気伝
導度
プロピレンカーボネート(PC)、メチルエチルカーボ
ネート(MEC)、リン酸トリメチル(TMPA)の混
合割合を変えた電解液溶媒の試料について試験を行なっ
た。表5に示す結果を得た。比較例としてリン酸トリメ
チルを含有しないものについて同様に試験を行なった。
得られた結果を表5に示す。1) Solvent composition and withstand voltage and electric conductivity of electrolyte solution Tests were carried out on electrolyte solvent samples in which the mixing ratio of propylene carbonate (PC), methyl ethyl carbonate (MEC) and trimethyl phosphate (TMPA) was changed. I did. The results shown in Table 5 were obtained. As a comparative example, the same test was carried out for those containing no trimethyl phosphate.
The results obtained are shown in Table 5.
【0035】[0035]
【表5】 [Table 5]
【0036】表5から明らかなように、本発明の電解液
は高い耐電圧と、常温、低温下においても実用レベルの
優れた電気伝導度を有することがわかった。
2)電解液のLiPF6濃度と耐電圧及び電気伝導度
溶媒の体積組成比PC/MEC/TMPA=40/55
/5についてLiPF6を溶解し試験を行なった。結果
を表6に示す。As is clear from Table 5, it was found that the electrolytic solution of the present invention has a high withstand voltage and excellent electric conductivity at a practical level even at room temperature and low temperature. 2) LiPF 6 concentration of electrolytic solution, withstand voltage and electric conductivity Volume composition ratio of solvent PC / MEC / TMPA = 40/55
For / 5, LiPF6 was dissolved and tested. The results are shown in Table 6.
【0037】[0037]
【表6】 [Table 6]
【0038】表6から明らかなようにLiPF6の僅か
な含有で電解液は高い耐電圧と、常温、低温下において
も実用レベルの優れた電気伝導度を有することがわかっ
た。
3.電池の放電容量及び電池サイクル特性
先ず、負極1を次のように作製した。負極活物質には、
石油ピッチを出発原料とし不活性ガス気流中1000℃
で焼成して得たガラス状炭素に近い性質の難黒鉛炭素材
料を用いた。この材料について、X線解析測定を行なっ
た結果、(002)面の面間隔は、3.76Åで、また
真比重は1.58g/cm2であった。このようにして
得た炭素材料を粉砕して平均粒径10μmの炭素材料粉
末とし、この炭素材料粉末を90重量部、結着剤として
ポリフッ化ビニリデン(PVDF)10重量部の割合で
混合して負極合剤を作製し、これをN−メチル−2−ピ
ロリドンに分散させてスラリー状とした。次にこのスラ
リーを負極集電体9である厚さ10μmの帯状の銅箔の
両面に均一に塗布し、乾燥後、ロールプレス機で圧縮成
型し、負極1を作製した。As is apparent from Table 6, it was found that the electrolytic solution has a high withstand voltage and a practical level of excellent electrical conductivity even at room temperature and low temperature with a slight content of LiPF 6 . 3. Discharge Capacity and Battery Cycle Characteristics of Battery First, the negative electrode 1 was manufactured as follows. For the negative electrode active material,
Petroleum pitch as the starting material, 1000 ° C in an inert gas stream
A non-graphite carbon material having properties close to those of glassy carbon obtained by firing at was used. As a result of X-ray analysis measurement of this material, the spacing between (002) planes was 3.76 Å and the true specific gravity was 1.58 g / cm 2 . The carbon material thus obtained was pulverized into a carbon material powder having an average particle size of 10 μm, and 90 parts by weight of this carbon material powder and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder were mixed. A negative electrode mixture was prepared and dispersed in N-methyl-2-pyrrolidone to form a slurry. Next, this slurry was uniformly applied to both sides of a strip-shaped copper foil having a thickness of 10 μm, which is the negative electrode current collector 9, dried, and compression-molded with a roll press machine to prepare a negative electrode 1.
【0039】次に正極2を次のように作製した。正極活
物質(LiCoO2)は、炭酸リチウムと炭酸コバルト
を0.5モル対1モルの比で混合し、空気中で900
℃、5時間焼成して得た。このようにして得たLiCo
O2を91重量部、導電剤としてグラファイトを6重量
部、結着剤としてポリフッ化ビニリデン(PVDF)3
重量部の割合で混合して正極合剤を作製し、これをN−
メチル−2−ピロリドンに分散させてスラリー状とし
た。次にこのスラリーを正極集電体10である厚さ20
μmの帯状のアルミニウム箔の両面に均一に塗布し、乾
燥後、ロールプレル機で圧縮成型し、正極2を作製し
た。Next, the positive electrode 2 was produced as follows. As the positive electrode active material (LiCoO 2 ), lithium carbonate and cobalt carbonate were mixed at a ratio of 0.5 mol to 1 mol, and the mixture was heated to 900
It was obtained by firing at ℃ for 5 hours. LiCo thus obtained
91 parts by weight of O 2 , 6 parts by weight of graphite as a conductive agent, polyvinylidene fluoride (PVDF) 3 as a binder
The mixture was mixed at a ratio of parts by weight to prepare a positive electrode mixture, and this was mixed with N-
It was dispersed in methyl-2-pyrrolidone to form a slurry. Next, this slurry is applied to a positive electrode current collector 10 having a thickness of 20.
A positive electrode 2 was produced by uniformly coating both surfaces of a strip-shaped aluminum foil having a thickness of μm, drying the mixture, and then compression-molding it with a roll plater.
【0040】この帯状の正極2、負極1及び25μmの
微孔性ポリプロピレンフィルムからなるセパレータ3を
順々に積層してから渦巻き型に多数回巻回することによ
り巻回体を収納した。次に、ニッケルメッキを施した鉄
製の電池缶5の底部に絶縁体4を挿入し、上記巻回体を
収納した。そして、負極の集電をとるためにニッケル製
の負極リード11の一端を負極1に圧着し、他端を電池
缶5に溶接した。また、正極の集電をとるためにアルミ
ニウム製の正極リード12の一端を正極2にとりつけ、
他端を電池内圧に応じて電流を遮断する電流遮断用薄板
8を介して電池蓋7と電気的に接続した。The strip-shaped positive electrode 2, negative electrode 1, and separator 3 made of a microporous polypropylene film having a thickness of 25 μm were laminated in this order and then spirally wound many times to accommodate the wound body. Next, the insulator 4 was inserted into the bottom of the nickel-plated iron battery can 5 to house the wound body. Then, in order to collect the current of the negative electrode, one end of a negative electrode lead 11 made of nickel was pressure-bonded to the negative electrode 1, and the other end was welded to the battery can 5. In addition, one end of a positive electrode lead 12 made of aluminum is attached to the positive electrode 2 in order to collect current from the positive electrode.
The other end was electrically connected to the battery lid 7 via a current interrupting thin plate 8 that interrupts the current according to the battery internal pressure.
【0041】そして、この電池缶5の中に、炭酸プロピ
レン(PC)50容量%、炭酸メチルエチル(MEC)
50容量%の混合溶媒中に、リン酸トリメチルを表7に
示す体積%添加し、更にLiPF6を1モル/lを溶解
させた電解液を注入した。そして、アスファルトを塗布
した絶縁封口ガスケット6を介して電池缶5をかいしめ
ることで、電池蓋7を固定し、直径18mm、高さ65
mmの円筒型非水電解液電池(実施例1、2)を作製し
た。Then, in the battery can 5, 50% by volume of propylene carbonate (PC) and methyl ethyl carbonate (MEC) were used.
Trimethyl phosphate was added in a volume ratio shown in Table 7 to a mixed solvent of 50% by volume, and an electrolytic solution in which 1 mol / l of LiPF 6 was dissolved was injected. The battery lid 5 is fixed by caulking the battery can 5 through the insulating sealing gasket 6 coated with asphalt, and the diameter is 18 mm and the height is 65 mm.
mm cylindrical non-aqueous electrolyte batteries (Examples 1 and 2) were produced.
【0042】比較例としてリン酸トリメチルの代りにリ
ン酸トリエチルを表7に示す体積%添加したもの、リン
酸トリメチルを使用しないものについて実施例と同様に
円筒型非水電解液電池(比較例1〜5)を作製した。得
られた円筒型非水電解液電池について、容量及びサイク
ル特性を評価するために以下の検討を行なった。As comparative examples, a cylindrical non-aqueous electrolyte battery (Comparative Example 1) was prepared in the same manner as in Examples except that triethyl phosphate was added in a volume% shown in Table 7 in place of trimethyl phosphate and trimethyl phosphate was not used. ~ 5) were produced. The following examinations were conducted to evaluate the capacity and cycle characteristics of the obtained cylindrical non-aqueous electrolyte battery.
【0043】充電条件は、4.2V、1A、2.5hの
定電流定電圧充電、また放電は1000mAの定電流で
終止電圧を2.75Vとした。この充放電を100サイ
クルまで行ない、2サイクル目の各実施例の電池の放電
容量を測定した。結果を表7に示す。また1サイクル目
の放電容量を100としたときの100サイクル目の容
量維持率(%)を測定した。結果を表7に示す。The charging conditions were 4.2 V, 1 A, 2.5 h of constant current and constant voltage charging, and the discharging was a constant current of 1000 mA, and the final voltage was 2.75 V. This charging / discharging was performed up to 100 cycles, and the discharge capacity of the battery of each Example of the 2nd cycle was measured. The results are shown in Table 7. Further, the capacity retention rate (%) at the 100th cycle was measured when the discharge capacity at the first cycle was 100. The results are shown in Table 7.
【0044】[0044]
【表7】 [Table 7]
【0045】表7から明らかなように、リン酸トリメチ
ルを10体積%以下添加したものは、無添加のものと比
べ、放電容量は若干小さくなり、サイクル特性も若干低
下するが、添加量が15体積%のものの劣化が顕著であ
るのに対し、劣化の大きさは僅かであることがわかっ
た。また、同量のリン酸トリエチルを添加したものに比
べ、放電容量は大きく、サイクル後の容量維持率も高い
ことがわかった。As is clear from Table 7, the discharge capacity of trimethyl phosphate added in an amount of 10% by volume or less is slightly smaller than that of no addition, and the cycle characteristics are slightly lowered, but the addition amount is 15%. It was found that the deterioration of volume% was remarkable, while the size of the deterioration was slight. Further, it was found that the discharge capacity was larger and the capacity retention rate after the cycle was higher than that in the case where the same amount of triethyl phosphate was added.
【0046】[0046]
【発明の効果】以上の説明から明らかなように、本発明
によれば、電解液溶媒として新規な鎖状炭酸エステル、
リン酸トリメチル、環状炭酸エステルを含み、電解質と
してLiPF6を含有させることにより、引火点が高
く、自己消火性に優れ、電気伝導度、耐電圧共に優れた
非水電解液とすることができた。また、本発明によれ
ば、これら非水電解液を二次電池に応用することによっ
て、充放電効率及びサイクル特性が優れ、エネルギー密
度の高い電池を作ることができる。As is apparent from the above description, according to the present invention, a novel chain ester carbonate as an electrolyte solvent,
By including trimethyl phosphate and cyclic carbonic acid ester and containing LiPF 6 as an electrolyte, a non-aqueous electrolyte having a high flash point, excellent self-extinguishing property, and excellent electric conductivity and withstand voltage could be obtained. . Further, according to the present invention, by applying these non-aqueous electrolytes to a secondary battery, a battery having excellent charge / discharge efficiency and cycle characteristics and high energy density can be produced.
【図1】本発明の非水電解液二次電池の一実施例を示す
概略断面図。FIG. 1 is a schematic cross-sectional view showing an embodiment of a non-aqueous electrolyte secondary battery of the present invention.
1・・・・・・負極 2・・・・・・正極 1 ... Negative electrode 2 ... ・ Positive electrode
───────────────────────────────────────────────────── フロントページの続き (72)発明者 檜原 昭男 千葉県袖ヶ浦市長浦字拓二号580番32 三井石油化学工業株式会社内 (72)発明者 成瀬 義明 東京都品川区北品川六丁目7番35号 ソ ニー株式会社内 (72)発明者 鳥井田 昌弘 千葉県袖ヶ浦市長浦字拓二号580番32 三井石油化学工業株式会社内 (56)参考文献 特開 平5−13088(JP,A) 特開 平4−184870(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 6/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akio Hinohara 580-2 Takuji Nagaura, Sodegaura-shi, Chiba 32 Mitsui Petrochemical Industries, Ltd. (72) Yoshiaki Naruse 6-7 Kitashinagawa, Shinagawa-ku, Tokyo No. 35 Sonny Co., Ltd. (72) Inventor Masahiro Torida No. 580-32, Takuji Nagaura, Sodegaura City, Chiba Prefecture Mitsui Petrochemical Industry Co., Ltd. (56) Reference JP-A-5-13088 JP-A-4-184870 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 10/40 H01M 6/16
Claims (3)
般式[I]で表わされる鎖状炭酸エステルの1種または
2種以上と、環状炭酸エステルとを含有し、電解質とし
てLiPF6を含有し、前記リン酸トリメチルの含有量
が前記電解質溶媒の1〜10体積%としたことにより引
火点が高く、自己消火性に優れ、電気伝導度、耐電圧共
に優れた特性をもたせたことを特徴とする非水電解液。 (式中R1はメチル基又はエチル基を表わし、R2は炭素
数1から3の鎖状または分枝状アルキル基を表わす。)1. Trimethyl phosphate as an electrolyte solvent, one or more kinds of chain carbonic acid ester represented by the general formula [I], and a cyclic carbonic acid ester, and LiPF 6 as an electrolyte, When the content of the trimethyl phosphate is 1 to 10% by volume of the electrolyte solvent, the
It has a high flash point, excellent self-extinguishing properties, electrical conductivity and withstand voltage.
A non-aqueous electrolyte characterized by having excellent properties . (In the formula, R 1 represents a methyl group or an ethyl group, and R 2 represents a chain or branched alkyl group having 1 to 3 carbon atoms.)
ネートまたはエチレンカーボネートの1種または2種で
あることを特徴とする請求項1記載の非水電解液。2. The non-aqueous electrolyte solution according to claim 1, wherein the cyclic ester carbonate is one or two of propylene carbonate and ethylene carbonate.
・脱ドープが可能な炭素材料を含む負極と、正極活物質
としてリチウムと遷移金属の複合酸化物を含む正極と、
電解液として請求項1記載の非水電解液とを有すること
により充放電効率及びサイクル特性が優れ、エネルギー
密度の高い特性をもたせたことを特徴とする非水電解液
電池。3. A negative electrode containing a carbon material capable of doping and dedoping lithium ions as a negative electrode active material, and a positive electrode containing a composite oxide of lithium and a transition metal as a positive electrode active material,
Having a non-aqueous electrolyte solution of claim 1, wherein as the electrolyte solution
Has excellent charge / discharge efficiency and cycle characteristics,
A non-aqueous electrolyte battery characterized by having high density characteristics .
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15613794A JP3369310B2 (en) | 1994-07-07 | 1994-07-07 | Non-aqueous electrolyte and non-aqueous electrolyte battery |
EP95304775A EP0696077B1 (en) | 1994-07-07 | 1995-07-07 | Non-aqueous electrolyte solutions and secondary cells comprising the same |
EP97119010A EP0825664B1 (en) | 1994-07-07 | 1995-07-07 | Non-aqueous electrolytic solutions and non-aqueous electrolyte cells comprising the same |
CA002153478A CA2153478C (en) | 1994-07-07 | 1995-07-07 | Non-aqueous electrolytic solutions and non-aqueous electrolyte cells comprising the same |
US08/499,393 US5580684A (en) | 1994-07-07 | 1995-07-07 | Non-aqueous electrolytic solutions and non-aqueous electrolyte cells comprising the same |
DE69508671T DE69508671T2 (en) | 1994-07-07 | 1995-07-07 | Non-aqueous electrolyte solutions and secondary cells containing them |
DE69531901T DE69531901T2 (en) | 1994-07-07 | 1995-07-07 | Non-aqueous electrolyte solutions and cells containing these electrolyte solutions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15613794A JP3369310B2 (en) | 1994-07-07 | 1994-07-07 | Non-aqueous electrolyte and non-aqueous electrolyte battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0822839A JPH0822839A (en) | 1996-01-23 |
JP3369310B2 true JP3369310B2 (en) | 2003-01-20 |
Family
ID=15621143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15613794A Expired - Lifetime JP3369310B2 (en) | 1994-07-07 | 1994-07-07 | Non-aqueous electrolyte and non-aqueous electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3369310B2 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5830600A (en) * | 1996-05-24 | 1998-11-03 | Sri International | Nonflammable/self-extinguishing electrolytes for batteries |
US5861224A (en) * | 1997-07-15 | 1999-01-19 | Valence Technology, Inc. | Electrolyte solvent for lithium ion electrochemical cell |
US6096447A (en) * | 1997-11-05 | 2000-08-01 | Wilson Greatbatch Ltd. | Phosphonate additives for nonaqueous electrolyte in alkali metal electrochemical cells |
US6495285B2 (en) | 1999-01-25 | 2002-12-17 | Wilson Greatbatch Ltd. | Phosphonate additives for nonaqueous electrolyte in rechargeable electrochemical cells |
US6200701B1 (en) | 1999-01-25 | 2001-03-13 | Wilson Greatbatch Ltd. | Phosphonate additives for nonaqueous electrolyte in rechargeable cells |
JP3422769B2 (en) | 2000-11-01 | 2003-06-30 | 松下電器産業株式会社 | Electrolyte for non-aqueous battery and secondary battery using the same |
US6537698B2 (en) | 2001-03-21 | 2003-03-25 | Wilson Greatbatch Ltd. | Electrochemical cell having an electrode with a phosphonate additive in the electrode active mixture |
JP4043254B2 (en) * | 2002-02-26 | 2008-02-06 | 三洋電機株式会社 | Lithium secondary battery for board mounting |
JP4407237B2 (en) * | 2002-12-24 | 2010-02-03 | 三菱化学株式会社 | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same |
US7947399B2 (en) | 2004-04-19 | 2011-05-24 | Bridgestone Corporation | Non-aqueous electrolyte for battery and non-aqueous electrolyte battery comprising the same |
JP2008053211A (en) | 2006-07-24 | 2008-03-06 | Bridgestone Corp | Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it |
JP2008258022A (en) | 2007-04-05 | 2008-10-23 | Bridgestone Corp | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery equipped with it |
JP5314885B2 (en) | 2007-12-13 | 2013-10-16 | 株式会社ブリヂストン | Non-aqueous electrolyte and non-aqueous electrolyte secondary power source including the same |
KR101075319B1 (en) | 2008-05-21 | 2011-10-19 | 삼성에스디아이 주식회사 | Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same |
WO2010030008A1 (en) | 2008-09-11 | 2010-03-18 | 日本電気株式会社 | Secondary battery |
US20120094190A1 (en) | 2009-08-04 | 2012-04-19 | Tosoh F-Tech, Inc. | Asymmetric and/or low-symmetric fluorine-containing phosphate for non-aqueous electrolyte solution |
JP5630189B2 (en) | 2010-10-05 | 2014-11-26 | 新神戸電機株式会社 | Lithium ion battery |
US8852813B2 (en) | 2011-07-22 | 2014-10-07 | Chemtura Corporation | Electrolytes comprising polycyclic aromatic amine derivatives |
US9040203B2 (en) | 2013-01-16 | 2015-05-26 | Samsung Sdi Co., Ltd. | Lithium battery |
KR101973055B1 (en) | 2013-01-29 | 2019-04-26 | 삼성에스디아이 주식회사 | Protection circuit module integrated cap assembly, manufacturing method of cap assembly, and battery assembly |
-
1994
- 1994-07-07 JP JP15613794A patent/JP3369310B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0822839A (en) | 1996-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0696077B1 (en) | Non-aqueous electrolyte solutions and secondary cells comprising the same | |
JP3369310B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery | |
CN101188313B (en) | Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including same | |
JP4463333B2 (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery | |
JP3294400B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery | |
US5891588A (en) | Lithium secondary battery | |
JP4489207B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery | |
JP2000195544A (en) | Nonaqueous electrolyte and secondary battery using it | |
JPH10189039A (en) | Nonaqueous electrolyte and nonaqueous electrolytic secondary battery | |
JP4149042B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery | |
JP2000294278A (en) | Nonaqueous electrolyte and secondary battery using it | |
JP3695947B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery | |
JP2000348759A (en) | Nonaqueous electrolytic solution and secondary battery using it | |
JP3986216B2 (en) | Non-aqueous electrolyte and secondary battery using the same | |
JP3949337B2 (en) | Non-aqueous electrolyte and secondary battery using the same | |
JP2000348760A (en) | Nonaqueous electrolytic solution and secondary battery using it | |
JPH1140193A (en) | Nonaqueous electrolyte battery | |
JP2000243440A (en) | Nonaqueous electrolytic solution and secondary battery using same | |
JP2000294273A (en) | Nonaqueous electrolyte and secondary battery using it | |
JP2000243444A (en) | Nonaqueous electrolytic solution and secondary battery using same | |
JP2001052743A (en) | Nonaqueous electrolyte and secondary battery using the same | |
JP4231145B2 (en) | Non-aqueous electrolyte and secondary battery using the same | |
JP3503239B2 (en) | Lithium secondary battery | |
JP2000294272A (en) | Nonaqueous electrolyte and secondary battery using it | |
JPH10189038A (en) | Nonaqueous electrolyte and nonaqueous electrolytic secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20021008 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071115 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081115 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091115 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091115 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101115 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111115 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121115 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121115 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131115 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |