KR100405375B1 - Manufactural method of activated carbon as a bactericidal photo-catalyst - Google Patents
Manufactural method of activated carbon as a bactericidal photo-catalyst Download PDFInfo
- Publication number
- KR100405375B1 KR100405375B1 KR10-2000-0009382A KR20000009382A KR100405375B1 KR 100405375 B1 KR100405375 B1 KR 100405375B1 KR 20000009382 A KR20000009382 A KR 20000009382A KR 100405375 B1 KR100405375 B1 KR 100405375B1
- Authority
- KR
- South Korea
- Prior art keywords
- activated carbon
- sol
- hours
- tio
- minutes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/06—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
Abstract
본 발명은 공기 및 수질의 살균용에 사용되는 광촉매활성탄을 조제하는 방법에 관한 것이다. 구체적으로 설명하면 티타늄 이소프로폭사이드(Ti(OCH(CH3)2)4)를 각각 1.66㎖, 8.28㎖, 16.65㎖로 하여 99% 이상의 순도를 가진 에탄올 1.5ℓ에 혼합하여 30rpm의 교반기를 사용하여 48시간 교반하면서 진한질산을 2~3방울 넣으면서 교반하여 각각 0.006, 0.0314, 0.314M의 TiO2졸을 만들고 그중 각각 20㎖를 취하여 증류수 1ℓ로 깨끗이 세척하고, 105℃에서 2시간 건조시킨 활성탄 30g에 혼합하여 100-200℃에서 1-2시간 건조시키고 다시 20-60분간 산소가 없는 상태에서 801-1000℃로 가열하는 제조방법과, 0.0314M의 TiO2졸 4㎖와 0.05M의 ZnO졸 26㎖, 0.0314M의 TiO2졸 15㎖와 0.05M의 ZnO졸 15㎖, 0.0314M의 TiO2졸 26㎖와 0.05M의 ZnO졸 4㎖를 각각 섞어 30㎖ 되게 하여 활성탄 30g에 혼합하여 100-200℃에서 1-2시간 건조시키고, 다시 20-60분간 산소가 없는 상태에서 801-1000℃로 가열하는 제조방법과, 질산아연(Zn(NO3)26H2O)을 각각 156.2mg, 15.65g, 156.5g을 순도가 99% 이상인 1.0ℓ의 에탄올에 넣고 상온에서 교반기를 사용하여 30rpm으로 12시간 교반시키면서 진한질산을 2~3방울 넣으면서 48시간 교반하여 각각 0.0005, 0.05, 0.5M의 ZnO졸을 조제하고 그중 각각 20㎖를 취하여 증류수 1ℓ로 깨끗이 세척하고, 105℃에서 2시간 건조시킨 활성탄 30g에 혼합하여 100-200℃에서 1-2시간 건조시키고 20-60분간 산소가 없는 상태에서 801-1000℃로 가열하는 제조하는 것으로서 무기계인 TiO2를 분말상태로 이용하거나 금속체나 메쉬체, 유리표면 등에 직접 코팅을 하여 광촉매제에 의한 유기물질의 제거나 탈취제로 사용하였으나 광촉매제 졸을 단독으로 활성탄에 첨착하거나 또는 광촉매제 분말이나 광촉매제 졸을 글루코스, 제올라이트, 활성탄, 톱밥, 왕겨, 폐타이어, 제올라이트, 재료에 일정비율로 혼합하여 광촉매활성탄을 제조하여 공기 및 수처리시의 미생물을 살균하고 동시에 난분해휘발성물질(VOC)을 제거할 수 있다.The present invention relates to a method for preparing photocatalytic activated carbon used for the sterilization of air and water. Specifically, titanium isopropoxide (Ti (OCH (CH 3 ) 2 ) 4 ) was mixed into 1.5 l of ethanol having a purity of 99% or higher by using 1.66 ml, 8.28 ml, and 16.65 ml, respectively, using a 30 rpm agitator. After stirring for 48 hours, add 2-3 drops of concentrated nitric acid to make TiO 2 sol of 0.006, 0.0314, and 0.314M, respectively, take 20ml of each, wash it clean with 1L of distilled water, and dry the dried carbon at 105 ℃ for 2 hours. Mixed with water and dried at 100-200 ° C. for 1-2 hours and heated to 801-1000 ° C. in the absence of oxygen for 20-60 minutes, and 4 ml of 0.0314 M TiO 2 sol and 0.05 M ZnO sol 26 ㎖, 15 ml of 0.0314M TiO 2 sol, 15 ml of 0.05M ZnO sol, 26 ml of 0.0314M TiO 2 sol and 4 ml of 0.05M ZnO sol were mixed to make 30 ml, and mixed with 30 g of activated carbon. Drying for 1-2 hours at 0 ° C., and heating to 801-1000 ° C. in the absence of oxygen for 20-60 minutes, 156.2 mg, 15.65 g, and 156.5 g of zinc nitrate (Zn (NO 3 ) 2 6H 2 O), respectively, were added to 1.0 L of ethanol having a purity of 99% or higher, and concentrated nitric acid was stirred at 30 rpm for 12 hours using a stirrer at room temperature. Stir for 48 hours while adding 2 ~ 3 drops to prepare ZnO sol of 0.0005, 0.05 and 0.5M, respectively, take 20ml of them, wash them clean with 1L of distilled water, and mix with 30g of activated carbon dried at 105 ℃ for 2 hours, and then 100-200 It is dried for 1-2 hours at ℃ and heated to 801-1000 ℃ in the absence of oxygen for 20-60 minutes, using inorganic TiO 2 in powder form or by direct coating on metal body, mesh body or glass surface. Although it is used as an organic substance removal or deodorant agent, the photocatalyst sol is impregnated to activated carbon alone, or the photocatalyst powder or photocatalyst sol is added to glucose, zeolite, activated carbon, sawdust, rice hull, waste tire, zeolite , It may be mixed in a certain ratio to the material to prepare a photocatalyst activated carbon to remove the air and sterilizing the microorganisms in water treatment and when I decomposed volatiles at the same time (VOC).
Description
본 발명은 공기 및 수질의 미생물 살균용에 사용되는 광촉매활성탄을 조제하는 방법에 관한 것이다.구체적으로 설명하면 99% 이상의 순도를 가진 에탄올 1.5ℓ에 티타늄 이소프로폭사이드(Ti(OCH(CH3)2)4)를 각각 1.66㎖, 8.28㎖, 16.65㎖로 하여 혼합하여 각각 0.006, 0.0314, 0.314M의 TiO2졸을 만들고 그 중 각각 20㎖를 취하여 증류수 1ℓ로 깨끗이 세척하고, 105℃에서 2시간 건조시킨 활성탄 30g에 혼합하여 100~200℃에서 1~2시간 건조시키고 20~60분간 산소가 없는 상태에서 801~1000℃로 가열된 것을 특징으로 하고, 질산아연(Zn(NO3)26H2O)을 각각 156.2mg, 15.65g, 156.5g을 순도가 99% 이상인 1.0ℓ의 에탄올에 넣고 상온에서 교반기를 사용하여 30rpm으로 12시간 교반시키면서 진한질산을 2~3방울 넣으면서 48시간 교반하여 각각 0.0005, 0.05, 0.5M의 ZnO졸을 조제하고, 그 중 20㎖를 취하여 증류수 1ℓ로 깨끗이 세척하고, 105℃에서 2시간 건조시킨 활성탄 30g에 혼합하여 100~200℃에서 1~2시간 건조시키고 20~60분간 산소가 없는 상태에서 801~1000℃로 가열된 것을 특징으로 하며, 0.0314M의 TiO2졸 4㎖와 0.05M의 ZnO졸 26㎖, 0.0314M의 TiO2졸 15㎖와 0.05M의 ZnO졸 15㎖, 0.0314M의 TiO2졸 26㎖와 0.05M의 ZnO졸 4㎖를 각각 섞어 30㎖ 되게 하여 활성탄 30g에 혼합하여 100~200℃에서 1~2시간 건조시키고 20~60분간 산소가 없는 상태에서 801~1000℃로 가열된 것을 특징으로 하는 광촉매활성탄의 제조방법에 관한 것이다.현재 물의 미생물을 살균하기 위해 첨가하는 염소는 대장균의 살균에는 적합하나 물속의 유기물과 반응하여 발암물질인 트리할로메탄을 생성하여 큰 문제점으로 지적되고 있다. 또한 오존처리는 고가이고 신속히 살균효과가 없어지고 인간에게 유해한 부산물을 형성하는 문제점이 있다.현재 많이 사용하는 은(Ag) 활성탄은 활성탄에 은(Ag)을 첨착하여 살균제 소독제로 이용하는 것으로 살균에 요하는 은(Ag) 이온을 지속적으로 용출시키고 가격이 고가인 단점이 있다.본 발명은 인간에게 유해하지 않으면서 광에너지를 받으면 살균성을 지니는 광촉매 활성탄을 제조하는 것이다. 광촉매 이산화티타늄은 태양에너지나 자외선을 받으면 자신이 지니고 있는 전자로 채워진 가전자대(vaℓenece band)로 부터 전자가 비어있는 전도대(conduction band)로 전자가 이동하며 여기된다. 여기된 촉매는 강력한 산화제인 수소라디칼을 형성하여 수중의 미생물을 살균하게 된다.대장균을 살균하는 방법은 ZnO, TiO2가 밴드갭(bandgap) 이상의 에너지를 받으면 전자가 하나 이동하여 전자-정공쌍이 생성되고, 이것이 물, O2와 반응하여 H2O2, OH 등이 생성되고 이것들에 의한 강력한 살균 효과가 있다.생성된 H2O2, OH 등에 의해 미생물이 살균되거나 유기물질의 분해가 이루어지면 CO2나 H2O로 전환되어 반도체표면에서 외부로 이용하고 다시 빛에너지를 받으면 광촉매의 기능을 수행하게 된다. TiO2, ZnO 분말에 의한 살균은 살균 후에 이들 분말을 제거해야 하는 어려움 때문에 TiO2, ZnO를 분말과 졸로 만들어 활성탄에 혼합하여 100-200℃에서 1-2시간 건조시키고 20-60분간 산소가 없는 상태에서 801-1000℃로 가열하여 광촉매 활성탄을 제조하였다. 물의 정수처리에서 많이 사용되는 기존의 활성탄은 주로 야자껍질, 톱밥, 갈탄을 염화아연이나 인산등으로 처리하여 건조증류하거나 고온처리하면서 수증기를 분사하여 다공성의 활성탄을 제조하는 것으로 휘발성유기물질의 흡착제거에는 효과적이나 휘발성물질의 흡착이 다 이루어지면 다시 용출되거나 흡착된 물질이 배출되는 파과시간이 빠르게 나타나고, 살균력도 떨어진다.또한 종래의 기술은 무기계인 TiO2를 분말상태로 이용하거나 금속체나 메쉬체, 유리표면 등에 직접 코팅을 하여 광촉매제에 의한 유기물질의 제거나 탈취제로 사용하였으나 코팅된 물질의 친화력이 낮아 탈리가 잘되는 단점 때문에 산업상 이용이 한정되어 있다. 또한 촉매제를 코팅할 경우에는 경화제를 섞어 탈취나 항균 촉매제를 제조하였으나 경화제의 사용시에는 물에 용해되어 산업상 이용에 한정을 가져오고 있다.The present invention relates to a method for preparing photocatalytic activated carbon used for microbial sterilization of air and water. Specifically, titanium isopropoxide (Ti (OCH (CH 3 )) in 1.5 l of ethanol having a purity of 99% or more. 2 ) 4 ) were mixed with 1.66ml, 8.28ml, and 16.65ml, respectively, to make 0.006, 0.0314, 0.314M of TiO 2 sol, respectively, 20ml of which was washed thoroughly with 1L of distilled water and washed for 2 hours at 105 ° C. It is mixed with 30 g of dried activated carbon and dried for 1 to 2 hours at 100 to 200 ° C. and heated to 801 to 1000 ° C. in the absence of oxygen for 20 to 60 minutes. Zinc nitrate (Zn (NO 3 ) 26 H 2 O ) 156.2mg, 15.65g, 156.5g respectively into 1.0ℓ ethanol of more than 99% purity and stirred for 12 hours at 30rpm using a stirrer at room temperature while stirring for 48 hours while adding 2-3 drops of concentrated nitric acid to 0.0005, Prepare 0.05, 0.5 M ZnO sol, taking 20 ml The mixture was washed with distilled water 1 L, mixed with 30 g of activated carbon dried at 105 ° C. for 2 hours, dried at 100 ° C. for 1 to 2 hours, and heated to 801 to 1000 ° C. for 20 to 60 minutes in the absence of oxygen. and a TiO 2 sol 4㎖ of 0.0314M and ZnO 0.05M sol 26㎖, the TiO 2 sol 15㎖ of 0.0314M and ZnO 0.05M sol 15㎖, 0.0314M of TiO 2 sol 26㎖ and 0.05M of ZnO sol 4mL each of them to make 30mL mixed with activated carbon 30g, dried for 1 to 2 hours at 100 ~ 200 ℃ and heated to 801 ~ 1000 ℃ in the absence of oxygen for 20 to 60 minutes, characterized in that Chlorine, which is added to sterilize microorganisms in water, is suitable for the sterilization of Escherichia coli, but it has been pointed out as a big problem by generating trihalomethane, a carcinogen by reacting with organic matter in water. In addition, ozone treatment has a problem of expensive and rapid disinfection effect and formation of by-products harmful to humans. Silver (Ag) activated carbon, which is currently used, is used as a disinfectant by adding silver (Ag) to activated carbon. The present invention has the disadvantage of continuously eluting silver (Ag) ions and having a high price. The present invention is to prepare photocatalytic activated carbon having bactericidal properties upon receiving light energy without being harmful to humans. When photocatalyst titanium dioxide receives solar energy or ultraviolet rays, electrons move from the valence band filled with their own electrons to the conduction band where the electrons are empty. The excited catalyst forms hydrogen radicals, a powerful oxidizing agent, to sterilize microorganisms in water. The method of sterilizing Escherichia coli involves the transfer of electrons and electron-hole pairs when ZnO and TiO 2 receive energy above the bandgap. It reacts with water and O 2 to produce H 2 O 2 , OH, etc., and there is a strong sterilization effect by these. When microorganisms are sterilized by the generated H 2 O 2 , OH, etc. When converted into CO 2 or H 2 O and used outside of the semiconductor surface and receiving light energy again, it functions as a photocatalyst. Sterilization by TiO 2 and ZnO powders is difficult to remove these powders after sterilization, making TiO 2 and ZnO powders and sol, mixed with activated carbon, drying for 1-2 hours at 100-200 ℃ and free of oxygen for 20-60 minutes. Photocatalytic activated carbon was prepared by heating to 801-1000 ° C. in the state. Conventional activated carbon, which is widely used in water purification treatment, mainly treats coconut shell, sawdust and lignite with zinc chloride or phosphoric acid to produce porous activated carbon by spraying water vapor during dry distillation or high temperature treatment to remove adsorption of volatile organic substances. However, when the adsorption of volatile substances is completed, the breakthrough time at which the eluted or adsorbed substance is discharged quickly appears, and the sterilizing power is also decreased. In addition, the conventional technique uses inorganic TiO 2 in powder form, metal or mesh body, The coating is applied directly to the glass surface and used as an organic material removal or deodorant by the photocatalyst, but the industrial use is limited due to the disadvantage that the coating material has a low affinity and is easily detached. In addition, when coating the catalyst, the deodorizing agent or antibacterial catalyst was prepared by mixing the curing agent, but when the curing agent is used, it is dissolved in water, which brings limitations to industrial use.
따라서 본 발명에서는 상기한 종래의 문제점을 해결하기 위해 광촉매제 졸을 단독으로 활성탄에 첨착하거나 또는 광촉매제 분말이나 광촉매제 졸을 글루코스, 활성탄, 왕겨, 폐타이어, 제올라이트 등이 첨가된 톱밥에 일정비율로 혼합하여 공기 및 수처리시의 미생물을 살균하고 동시에 난분해휘발성물질(VOC)을 제거하는 광촉매활성탄을 조제하는 방법에 관한 것이다.Therefore, in the present invention, in order to solve the above-mentioned problems, a fixed ratio of the photocatalyst sol is added to activated carbon alone, or the photocatalyst powder or photocatalyst sol is added to glucose, activated carbon, rice hull, waste tire, zeolite, etc. The present invention relates to a method for preparing photocatalytic activated carbon which sterilizes microorganisms in air and water treatment and simultaneously removes volatile volatile substances (VOC).
도 1. 이산화티타늄 졸로 함침시킨 광촉매활성탄(T-1)Figure 1. Photocatalytic Activated Carbon Impregnated with Titanium Dioxide Sol (T-1)
도 2. 질산아연 으로 함침시킨 광촉매활성탄(Z-1)Figure 2. Photocatalytic activated carbon impregnated with zinc nitrate (Z-1)
도 3. 톱밥으로 첨착성형톱밥활성탄(톱성활-4-1120)3. Sawdust impregnated molding sawdust activated carbon (saw activated carbon-4-1120)
도 4. 첨착성형톱밥활성탄(톱성활-8-1120)4. Impregnated molding sawdust activated carbon (saw performance bow-8-1120)
도 5. 첨착성형톱밥활성탄(A-0111)5. Impregnated molding sawdust activated carbon (A-0111)
도 6. 이산화티타늄 졸로 함침시킨 첨착성형톱밥활성탄(B-0111)6. Impregnated sawdust activated carbon impregnated with titanium dioxide sol (B-0111)
도 7. 이산화티타늄 졸로 함침시킨 첨착활성탄(C-0111)Figure 7. Impregnated activated carbon impregnated with titanium dioxide sol (C-0111)
도 8. 이산화티타늄 졸로 함침시킨 첨착성형톱밥활성탄(F-0111)8. Impregnated sawdust activated carbon impregnated with titanium dioxide sol (F-0111)
상기 목적을 달성하기 위하여 광촉매제인 TiO2졸은 99% 이상의 순도를 가진 에탄올 1.5ℓ에 티타늄 이소프로폭사이드(Ti(OCH(CH3)2)4) 1.66㎖를 혼합하여 30rpm의 교반기를 사용하여 48시간 교반하면서 진한질산을 2~3방울 넣으면서 교반하여 0.006M의 TiO2졸을 만들고 그 중 20㎖를 취하여 증류수 1ℓ로 깨끗이 세척하고, 105℃에서 2시간 건조시킨 활성탄 30g에 혼합하여 100~200℃에서 1~2시간 건조시켜 20~60분간 산소가 없는 상태에서 801~1000℃로 가열하여 T-1의 광촉매활성탄을 조제하였다.99% 이상의 순도를 가진 에탄올 1.5ℓ에 티타늄 이소프로폭사이드(Ti(OCH(CH3)2)4) 8.28㎖를 혼합하여 30rpm의 교반기를 사용하여 48시간 교반하면서 진한질산을 2~3방울 넣으면서 교반하여 0.0314M의 TiO2졸을 만들고 그 중 20㎖를 취하여 증류수 1ℓ로 깨끗이 세척하고, 105℃에서 2시간 건조시킨 활성탄 30g에 혼합하여 100~200℃에서 1~2시간 건조시켜 20~60분간 산소가 없는 상태에서 801~1000℃로 가열하여 T-2의 광촉매 활성탄을 조제하였다.99% 이상의 순도를 가진 에탄올 1.5ℓ에 티타늄 이소프로폭사이드(Ti(OCH(CH3)2)4) 16.65㎖를 혼합하여 30rpm의 교반기를 사용하여 48시간 교반하면서 진한질산을 2~3방울 넣으면서 교반하여 0.314M의 TiO2졸을 만들고 그 중 20㎖를 취하여 증류수 1ℓ로 깨끗이 세척하고, 105℃에서 2시간 건조시킨 활성탄 30g에 혼합하여 100~200℃에서 1~2시간 건조시켜 20~60분간 산소가 없는 상태에서 801~1000℃로 가열하여 T-3의 광촉매 활성탄을 조제하였다.ZnO졸은 용매인 99% 이상의 순도를 가진 에탄올 1ℓ에 질산아연(Zn(NO3)2) 156.2mg을 혼합하여 교반기를 사용하여 30rpm으로 12시간 교반시키고 진한질산을 2~3방울 넣으면서 48시간 교반하여 0.0005M의 ZnO졸을 만들고 그중 20㎖를 취하여 증류수 1ℓ로 깨끗이 세척하고, 105℃에서 2시간 건조시킨 활성탄 30g에 혼합하여 100~200℃에서 1~2시간 건조시켜 20~60분간 산소가 없는 상태에서 801~1000℃로 가열하여 Z-1의 광촉매 활성탄을 조제하였다.ZnO졸은 용매인 99% 이상의 순도를 가진 에탄올 1L에 질산아연(Zn(NO3)2) 15.65g을 혼합하여 교반기를 사용하여 30rpm으로 12시간 교반시키고 진한질산을 2~3방울 넣으면서 48시간 교반하여 0.05M의 ZnO졸을 만들고 그중 20㎖를 취하여 증류수 1ℓ로 깨끗이 세척하고, 105℃에서 2시간 건조시킨 활성탄 30g에 혼합하여 100~200℃에서 1~2시간 건조시키고 20~60분간 산소가 없는 상태에서 801~1000℃로 가열하여 Z-2의 광촉매 활성탄을 조제하였다.ZnO졸은 용매인 99% 이상의 순도를 가진 에탄올 1ℓ에 질산아연(Zn(NO3)2) 156.5g을 혼합하여 교반기를 사용하여 30rpm으로 12시간 교반시키고 진한질산을 2~3방울 넣으면서 48시간 교반하여 0.5M의 ZnO졸을 만들고 그중 20㎖를 취하여 증류수 1ℓ로 깨끗이 세척하고, 105℃에서 2시간 건조시킨 활성탄 30g에 혼합하여 100~200℃에서 1~2시간 건조시켜 20~60분간 산소가 없는 상태에서 801~1000℃로 가열하여 Z-3의 광촉매 활성탄을 조제하였다.0.0314M의 TiO2졸 4㎖와 0.05M의 ZnO졸을 26㎖를 섞어 30㎖ 되게 하여 활성탄 30g에 혼합하여 100~200℃에서 1~2시간 건조시키고 20~60분간 산소가 없는 상태에서 801~1000℃로 가열하여 TZ-1의 광촉매 활성탄을 조제하였다.0.314M의 TiO2졸 15㎖와 0.05M의 ZnO졸 15㎖를 섞어 30㎖ 되게 하여 활성탄 30g에 혼합하여 100~200℃에서 1~2시간 건조시키고 20~60분간 산소가 없는 상태에서 801~1000℃로 가열하여 TZ-2의 광촉매 활성탄을 조제하였다.0.0314M의 TiO2졸 26㎖와 0.05M의 ZnO졸 4㎖를 섞어 30㎖ 되게 하여 활성탄 30g에 혼합하여 100~200℃에서 1~2시간 건조시키고 20~60분간 산소가 없는 상태에서 801~1000℃로 가열하여 TZ-3의 광촉매 활성탄을 조제하였다.In order to achieve the above object, TiO 2 sol, a photocatalyst, is mixed with 1.5 l of ethanol having a purity of 99% or more and 1.66 ml of titanium isopropoxide (Ti (OCH (CH 3 ) 2 ) 4 ), using a stirrer of 30 rpm. Stir with 48 drops of concentrated nitric acid, add 2-3 drops of concentrated nitric acid, make 0.006M of TiO 2 sol, take 20 ml of it, wash it clean with 1 liter of distilled water, and mix it with 30 g of activated carbon dried at 105 ° C for 2 hours, then add 100 ~ 200 Photocatalytic activated carbon of T-1 was prepared by drying at 1-2 DEG C for 1 to 2 hours and heating at 801 to 1000 DEG C for 20 to 60 minutes in the absence of oxygen. Titanium isopropoxide (1.5 L in ethanol having a purity of 99% or more) 8.28 ml of Ti (OCH (CH 3 ) 2 ) 4 ) was mixed and stirred while adding 48 drops of concentrated nitric acid using a 30rpm stirrer for 48 hours to make 0.0314M of TiO 2 sol. Wash thoroughly with 1 liter of distilled water and clean at 2 T-2 photocatalytic activated carbon was prepared by mixing with 30 g of dried activated carbon and drying it at 100-200 ° C. for 1 to 2 hours and heating it at 801-1000 ° C. for 20 to 60 minutes in the absence of oxygen. 16.65 ml of titanium isopropoxide (Ti (OCH (CH 3 ) 2 ) 4 ) was mixed with 1.5 l of ethanol, and stirred for 48 hours using a 30 rpm stirrer, followed by stirring with 2-3 drops of concentrated nitric acid. 2 sols are taken, 20 ml of which are washed thoroughly with 1 L of distilled water, mixed with 30 g of activated carbon dried at 105 ° C. for 2 hours, dried at 100-200 ° C. for 1 to 2 hours, and 801 without oxygen for 20 to 60 minutes. The photocatalytic activated carbon of T-3 was prepared by heating to ˜1000 ° C. ZnO sol was mixed with 156.2 mg of zinc nitrate (Zn (NO 3 ) 2 ) in 1 liter of ethanol having a purity of 99% or higher, using a stirrer. Stir 12 hours and add 2 ~ 3 drops of concentrated nitric acid for 48 hours. On the other hand, make 0.0005M ZnO sol, take 20ml of it, wash it clean with 1ℓ of distilled water, mix it with 30g of activated carbon dried at 105 ℃ for 2 hours, and dry it at 100 ~ 200 ℃ for 1 ~ 2 hours, and have no oxygen for 20 ~ 60 minutes. Z-1 photocatalytic activated carbon was prepared by heating to 801 to 1000 ° C. ZnO sol was mixed with 15.65 g of zinc nitrate (Zn (NO 3 ) 2 ) in 1 L of ethanol having a purity of 99% or higher as a solvent. Stirred at 30 rpm for 12 hours, and stirred for 48 hours while adding 2-3 drops of concentrated nitric acid to make ZnO sol of 0.05 M, 20 ml of which was washed thoroughly with 1 L of distilled water and mixed with 30 g of activated carbon dried at 105 ° C. for 2 hours. Z-2 photocatalytic activated carbon was prepared by drying at 100-200 ° C. for 1 to 2 hours and heating at 801-1000 ° C. for 20 to 60 minutes in the absence of oxygen. ZnO sol is a ethanol having a purity of 99% or more as a solvent. 1ℓ of zinc nitrate in the (Zn (NO 3) 2) to 156.5g The mixture was stirred for 12 hours at 30 rpm using a stirrer and stirred for 48 hours while adding 2-3 drops of concentrated nitric acid to make 0.5 M ZnO sol, 20 ml of which was washed with 1 L of distilled water and dried at 105 ° C. for 2 hours. by mixing the 30g and 100 and was dried for 1 ~ 2 hours at 200 ℃ to prepare a photocatalyst activated carbon of Z-3 by heating in the absence of oxygen in 20-60 minutes 801 ~ 1000 ℃ .0.0314M of TiO 2 sol 4㎖ 0.05 M ZnO sol was mixed with 30 ml of 30 ml of activated carbon and dried in 30 g of activated carbon for 1 to 2 hours at 100 to 200 ° C. and heated to 801 to 1000 ° C. for 20 to 60 minutes in the absence of oxygen for TZ-1. A photocatalytic activated carbon was prepared. 15 ml of 0.314M TiO 2 sol and 15 ml of 0.05M ZnO sol were mixed to 30 ml, mixed with 30 g of activated carbon, dried at 100 to 200 ° C. for 1 to 2 hours, and oxygenated for 20 to 60 minutes. It heated to 801-1000 degreeC in the absence, and prepared the photocatalytic activated carbon of TZ-2. 0.03 Mix 26 ml of 14M TiO 2 sol and 4 ml of 0.05M ZnO sol to make 30 ml, mix with 30 g of activated carbon, dry for 1 ~ 2 hours at 100 ~ 200 ℃ and 801 ~ 1000 ℃ with no oxygen for 20 ~ 60 minutes. Heated to prepare a photocatalytic activated carbon of TZ-3.
광촉매 활성탄의 성분과 함침율은 ICP(Inductively coupled plasma Atomic Emission Spectrophotometer)로 측정하고, 비표면적은 전자동 흡착장치를 이용하여 측정하였다. 광촉매활성탄의 미생물 살균효과는 냉동 보관되어 있는 E. coli 균주 1㎖를 녹이고 이것을 9㎖ B 배지에 넣어 37℃에서 16시간을 배양하였다. 이것을 100배 희석하고, 여기서 0.5㎖를 취해 50㎖의 반응 용액에 접종하였다. 반응 용기에 들어 있는 반응 용액에 1.5g의 광촉매 활성탄을 넣어 0, 10, 20, 30, 40, 50, 60분 반응시켰다. 반응 실험 온도는 25℃를 유지하며 교반 속도는 130rpm으로 하였다.자외선에 의한 TiO2의 광화학적 반응 효과를 보기 위해 반응 용기 10㎝ 위에 20W, 40W의 300~400nm의 자외선을 최고 60분까지 조사하였다. 생균수 측정은 sample을 적당히 희석하여 desoxycholate 배지에서 36℃에서 2일간 배양한 후 colony수를 count하였다. 대장균만을 넣은 공실험 시료의 생균수는 사멸하는 것이 없이 60분까지 관찰했을 때 거의 일정하였다.UV 처리 했을 때는 조금 감소하였고, 활성탄을 처리하였을 때는 시간이 지남에 따라 일정하게 감소하는데 이것은 균이 사멸했다기 보다는 시간에 지남에 따라 활성탄 표면에 흡착한 것으로 사료된다. 60분 후 생존 백분율은 control이 90%, UV로 처리한 것이 74.6%, AC로 처리한 것이 50%, UV+AC로 처리한 것이 40%로 나타났다. 세 가지 농도의 TiO2를 사용하여 E.coℓi 실험을 하였을 때 생존율이 시간에 따라 감소하는 것을 볼 수 있었다.TiO2, ZnO, TiO2+ ZnO 와 UV를 이용한 살균 실험에서 광도는 중요한 변수이다. 본 실험에서는 Z-2와 TZ-2는 광도를 높여 줌에 따라 생존 백분율이 줄어드는 것을 볼 수 있었다. Z-2의 경우에 60분 후 빛이 없을 때는 생존율이 17.10%, 20W의 빛을 쬐어 주면 3.20%, 40W의 빛을 쬐어 주면 1.60%로 빛의 강도가 높아짐에 따라 사멸률이 높아짐을 알 수 있었다.TiO2+ZnO에서 60분 후 생존율은 빛이 없을 때는 13.60%, 20W의 빛일 때는 7.50%, 40W의 빛일 때는 2.80%로 마찬가지로 빛의 강도가 커지면 사멸률이 높아졌다. T-2의 경우는 60분 후 생존율이 빛이 없을 때는 29.30%, 20W의 빛을 쬐어 주었을 때는 3.0%, 40W일 때는 4.0%로 빛을 쬐어 주는 것과 쬐어 주지 않는 것의 차이는 뚜렷하고 빛의 광도에 따른 차이는 거의 보이지 않는다.The composition and impregnation rate of the photocatalytic activated carbon were measured by ICP (Inductively coupled plasma atomic emission spectrophotometer), and the specific surface area was measured by using an automatic adsorption device. Microbial sterilization effect of the photocatalytic activated carbon was dissolved 1ml E. coli strain stored in frozen and put it in 9ml B medium and incubated for 16 hours at 37 ℃. This was diluted 100-fold, where 0.5 ml was taken and inoculated into 50 ml of reaction solution. 1.5 g of photocatalytic activated carbon was added to the reaction solution contained in the reaction vessel and allowed to react for 0, 10, 20, 30, 40, 50 and 60 minutes. The reaction experiment temperature was maintained at 25 ° C. and the stirring speed was 130 rpm. In order to see the photochemical reaction effect of TiO 2 by ultraviolet rays, 300 W and 400 W UV of 20 W and 40 W were irradiated for up to 60 minutes on 10 cm of the reaction vessel. . For viable cell count, the sample was diluted appropriately, incubated in desoxycholate medium at 36 ° C for 2 days, and the colony count was counted. The number of viable cells of the experimental samples containing only E. coli was almost constant when observed for up to 60 minutes without killing, slightly decreased with UV treatment, and decreased with time when activated carbon was treated. It is believed that the adsorption on activated carbon surface over time. The survival percentage after 60 minutes was 90% for control, 74.6% for UV treatment, 50% for AC treatment and 40% for UV + AC treatment. It could be seen that the survival rate decreases with time when a E.coℓi experiments using three different concentrations of TiO 2 .TiO 2, ZnO, TiO 2 + ZnO in the sterilization experiment using the light intensity and the UV is an important variable. In this experiment, Z-2 and TZ-2 were found to decrease the percentage of survival as the brightness increased. In the case of Z-2, the survival rate is 17.10% when there is no light after 60 minutes, 3.20% when exposed to 20W of light, and 1.60% when exposed to 40W of light. Survival after 60 minutes with TiO 2 + ZnO was 13.60% in the absence of light, 7.50% in 20W light, and 2.80% in 40W light. In the case of the T-2, the survival rate after 60 minutes is 29.30% in the absence of light, 3.0% in 20W, 4.0% in 40W, and the difference between light and non-light is clear. The difference is almost invisible.
표 1. 첨착활성탄의 흡착능력Table 1. Adsorption capacity of impregnated activated carbon
표 2. 각 활성탄의 종류에 따른 미생물의 제거Table 2. Removal of Microorganisms by Type of Activated Carbon
각종 광촉매제로 첨착시킨 활성탄의 전자현미경(SEM)의 사진을 보면 규칙적인 세공이 잘 발달되어 있다.이하 실시예에 의하여 구체적으로 설명하면 다음과 같다.1. 첨착활성탄The photomicrographs of the electron microscope (SEM) of the activated carbon impregnated with various photocatalysts show that the fine pores are well developed. Impregnated activated carbon
실시예 1Example 1
광촉매제인 티타늄 이소프로폭사이드(Ti(OCH(CH3)2)4)를 각각 1.66㎖, 8.28㎖, 16.65㎖를 취하여 순도가 99% 이상인 에탄올 1.5ℓ의 에탄올 용매에 넣고 30rpm의 교반기를 사용하여 48시간 교반하면서 진한질산을 2~3방울 넣으면서 교반하여 각각 0.006, 0.0314, 0.314M의 TiO2졸을 조제하고, 그중 20㎖를 취하여 증류수 1ℓ로 깨끗이 세척하고, 105℃에서 2시간 건조시킨 활성탄 30g에 혼합하여 100~200℃에서 1~2시간 건조시키고 20~60분간 산소가 없는 상태에서 801~1000℃로 가열하여 각각 T-1, T-2, T-3의 광촉매 활성탄을 조제하였다.증류수로 세척한 광촉매 활성탄(T-1)의 수소이온농도(pH)는 9.27이었으며 이산화티타늄의 농도는 활성탄 1g당 1mg의 이산화티타늄(1mg/g)이었고 고정 탄소 백분율은 92.33%, 비표면적은 733㎡/g이었다.광촉매 활성탄(T-2)를 증류수로 세척한 광촉매 활성탄의 수소이온농도(pH)는 9.41이었으며 이산화티탄늄의 농도는 활성탄 1g당 5㎎의 이산화티탄늄(5㎎/g)이었고, 고정 탄소 백분율은 89.50%, 비표면적은 733㎡/g이었다.광촉매활성탄(T-3)를 증류수로 세척한 광촉매 활성탄의 수소이온농도(pH)는 9.27이었으며, 이산화티탄늄의 농도는 활성탄 1g당 50㎎의 이산화티탄늄(50㎎/g) 이었고, 고정 탄소 백분율은 90.96%, 비표면적은 746㎡/g 이었다.농도가 각각 0.006M, 0.0314M인 T-1, T-2일 때 60분 후의 생존율은 초기의 5% 이하이고, 농도가 증가하면 낮은 농도에 비해 사멸율은 낮아지는 경향을 보였다. 세 농도에 있어서 초기 접종 균수의 50%가 사멸하는 시간인 t1/2는 각각 24.6, 18.6, 36.8분으로 T-2에 의한 사멸 시간이 가장 적게 나타났다.60분 후의 생존 백분율(survival %)은 T-1(0.006M)는 4.9%, T-2(0.0314M)는 4%, T-3(0.314M)는 18.5%를 보여 T-2(0.0314M)에 의한 살균 능력이 제일 큰 것으로 나타났다.트리클로로에틸렌(TCE) 제거에 관한 흡착처리효율은 활성탄 단위질량당 흡착할 수 있는 흡착능력은 Freundlich의 등온흡착식으로 구하였다. 야자껍질활성탄의 k는 0.17, 1/n은 1.47이나 T-1의 k와 1/n은 각각 0.89과 1.03이고 T-2의 k와 1/n은 각각 0.13과 1.68이며 T-3의 k와 1/n은 각각 1.6과 1.28로 나타났다.Titanium isopropoxide (Ti (OCH (CH 3 ) 2 ) 4 ), a photocatalyst, was taken in 1.66 ml, 8.28 ml, and 16.65 ml, respectively, and placed in 1.5 l of ethanol solvent of 99% purity or higher using a 30 rpm agitator. Stir with 48 drops of concentrated nitric acid, add 2-3 drops of concentrated nitric acid, prepare 0.006, 0.0314, and 0.314 M TiO 2 sol, respectively, take 20 ml of the solution, clean it with 1 L of distilled water, and dry the dried carbon at 105 ° C for 2 hours. After mixing for 1 hour to 2 hours at 100-200 ℃ and heated to 801-1000 ℃ in the absence of oxygen for 20-60 minutes to prepare photocatalytic activated carbon of T-1, T-2, T-3, respectively. The pH of the photocatalytic activated carbon (T-1) washed with water was 9.27, and the concentration of titanium dioxide was 1mg of titanium dioxide (1mg / g) per 1g of activated carbon, the percentage of fixed carbon was 92.33%, and the specific surface area was 733㎡ photocatalytic activated carbon (T-2) was washed with distilled water. The hydrogen ion concentration (pH) was 9.41 and the concentration of titanium dioxide was 5 mg of titanium dioxide (5 mg / g) per 1 g of activated carbon, the fixed carbon percentage was 89.50%, and the specific surface area was 733 m 2 / g. The hydrogen ion concentration (pH) of the photocatalytic activated carbon obtained by washing (T-3) with distilled water was 9.27, and the concentration of titanium dioxide was 50 mg of titanium dioxide (50 mg / g) per 1 g of activated carbon, and the fixed carbon percentage was 90.96% and specific surface area was 746m2 / g. At concentrations of T-1 and T-2 at concentrations of 0.006M and 0.0314M, respectively, the survival rate after 60 minutes was less than 5% of the initial stage, and as the concentration increased, Mortality tended to be lower. At three concentrations, t 1/2 , the time at which 50% of the initial inoculation bacteria were killed, was 24.6, 18.6, and 36.8 minutes, respectively, with the lowest killing time by T-2. The percentage of survival after 60 minutes was T-1 (0.006M) was 4.9%, T-2 (0.0314M) was 4%, and T-3 (0.314M) was 18.5%, showing the highest sterilization ability by T-2 (0.0314M). Adsorption efficiency for trichloroethylene (TCE) removal was determined by Freundlich's isothermal adsorption capacity per unit mass of activated carbon. K of coconut shell activated carbon is 0.17, 1 / n is 1.47, but k and 1 / n of T-1 are 0.89 and 1.03, respectively, k and 1 / n of T-2 are 0.13 and 1.68, respectively. 1 / n was 1.6 and 1.28, respectively.
실시예 2Example 2
질산아연(Zn(NO3)26H2O)을 각각 156.2㎎, 15.65g, 156.5g을 순도가 99% 이상인 1.0ℓ의 에탄올에 넣고 상온에서 교반기를 사용하여 30rpm으로 12시간 교반시키면서 진한질산을 2~3방울 넣으면서 48시간 교반하여 각각 0.0005, 0.05, 0.5M의 ZnO졸을 조제하고 그중 20㎖를 취하여 증류수 1ℓ로 깨끗이 세척하고, 105℃에서 2시간 건조시킨 활성탄 30g에 혼합하여 100~200℃에서 1~2시간 건조시키고 20~60분간 산소가 없는 상태에서 801~1000℃로 가열하여 각각 Z-1, Z-2, Z-3의 광촉매 활성탄을 조제하였다.증류수로 세척한 Z-1 광촉매 활성탄의 수소이온농도(pH)는 9.37이었으며 산화아연의 농도는 활성탄 1g당 0.15mg의 산화아연이었고 고정 탄소 백분율은 92.08%, 비표면적은 681㎡/g 이었다.증류수로 세척한 Z-2 광촉매활성탄의 수소이온농도(pH)는 9.36이었으며 산화아연의 농도는 활성탄 1g당 15㎎의 이산화티탄늄이었고 고정탄소 백분율은 91.35%, 비표면적은 567㎡/g 이었다. 증류수로 세척한 Z-3 광촉매 활성탄의 수소이온농도(pH)는 9.36이었으며 산화아연의 농도는 활성탄 1g당 150㎎의 이산화티탄늄이었고 고정탄소 백분율은 99.45%, 비표면적은 643㎡/g 이었다.세 가지 농도의 ZnO를 사용하여 E.coli 실험을 하였을 때 생존율이 시간에 따라 감소하는 것을 볼 수 있었다. Z-1(0.005M), Z-2(0.05M)일 때 60분 후의 생존율은 각각 6%, 1%이었고 시간에 따라 비례하여 감소하였다.그러나 Z-3(0.5M)에서는 10분까지는 감소하고, 10분 후부터는 일정한 상태를 보였다. 초기 접종 균수의 50%가 사멸하는 시간인 반감기 t1/2는 Z-1, 2, 3에서 각각 23.7, 15.4, 26.6분으로 Z-2에 의한 살균 시간이 가장 짧게 나타났다.60분 후의 생존 백분율은 Z-1은 6%, Z-2는 1.6%, Z-3는 41.8%를 보여 Z-2의 살균 능력이 제일 큰 것으로 나타났다. 트리클로로에틸렌(TCE) 제거에 관한 흡착처리효율은 활성탄 단위질량당 흡착할 수 있는 흡착능력은 Freundlich의 등온흡착식으로 구하였다. Z-1의 k와 1/n은 각각 0.008과 2.7이고 Z-2의 k와 1/n은 각각 1.21과 1.26이며 Z-3의 k와 1/n은 각각 7.82와 0.69로 나타났다.156.2 mg, 15.65 g, and 156.5 g of zinc nitrate (Zn (NO 3 ) 2 6H 2 O), respectively, were added to 1.0 L of ethanol having a purity of 99% or higher, and concentrated nitric acid was stirred at 30 rpm for 12 hours using a stirrer at room temperature. Stir for 48 hours while adding 2 ~ 3 drops to prepare ZnO sol of 0.0005, 0.05 and 0.5M, respectively, take 20ml of them, wash them clean with 1L of distilled water, mix with 30g of activated carbon dried at 105 ℃ for 2 hours, and then 100 ~ 200 ℃. Z-1, Z-2, and Z-3 photocatalytic activated carbon were prepared by drying at 1-2 hours and heating at 801 to 1000 ° C. for 20 to 60 minutes in the absence of oxygen. Z-1 photocatalysts washed with distilled water The hydrogen ion concentration (pH) of activated carbon was 9.37, the zinc oxide concentration was 0.15 mg zinc oxide per gram of activated carbon, the fixed carbon percentage was 92.08%, and the specific surface area was 681㎡ / g. Z-2 photocatalytic activated carbon washed with distilled water Has a pH of 9.36 and a zinc oxide concentration of 15 per g of activated carbon. The percentage of titanium dioxide was hydronium fixed carbon is 91.35%, the specific surface area was 567㎡ / g. The hydrogen ion concentration (pH) of Z-3 photocatalytic activated carbon washed with distilled water was 9.36. The zinc oxide concentration was 150 mg of titanium dioxide per 1 g of activated carbon, the fixed carbon percentage was 99.45%, and the specific surface area was 643㎡ / g. When the E. coli experiments were performed using three concentrations of ZnO, the survival rate decreased with time. Survival after 60 minutes at Z-1 (0.005M) and Z-2 (0.05M) was 6% and 1%, respectively, and decreased proportionally with time, but decreased to 10 minutes at Z-3 (0.5M). After 10 minutes, a steady state was observed. The half-life t 1/2 , the time at which 50% of the initial inoculated cells were killed, was 23.7, 15.4, and 26.6 minutes at Z-1, 2, and 3, respectively, showing the shortest sterilization time with Z-2. Silver Z-1 was 6%, Z-2 was 1.6%, and Z-3 was 41.8%. Adsorption treatment efficiency for trichlorethylene (TCE) removal was determined by Freundlich's isothermal adsorption capacity per unit mass of activated carbon. K and 1 / n of Z-1 were 0.008 and 2.7, k and 1 / n of Z-2 were 1.21 and 1.26, respectively, and k and 1 / n of Z-3 were 7.82 and 0.69, respectively.
실시예 3Example 3
0.0314M의 TiO2졸 4㎖와 0.05M의 ZnO졸 26㎖를 골고루 섞어 30㎖로 되게 하여 활성탄 30g에 혼합하여 100-200℃에서 1-2시간 건조시키고 20-60분간 산소가 없는 상태에서 801-1000℃로 가열한 광촉매 활성탄(TZ-1)의 수소이온농도(pH)는 9.30이었으며 고정 탄소의 백분율은 각각 91.56%, 비표면적은 1137㎡/g 이었다.4 ml of 0.0314M TiO 2 sol and 26 ml of 0.05M ZnO sol are mixed to make 30 ml, mixed with 30 g of activated carbon, dried for 1-2 hours at 100-200 ° C and 801 without oxygen for 20-60 minutes. The hydrogen ion concentration (pH) of the photocatalytic activated carbon (TZ-1) heated to −1000 ° C. was 9.30, the percentage of fixed carbon was 91.56%, and the specific surface area was 1137 m 2 / g.
0.0314M의 TiO2졸 15㎖와 0.05M의 ZnO졸 15㎖를 골고루 섞어 30㎖로 되게 하여 활성탄 30g에 혼합하여 100-200℃에서 1-2시간 건조시키고 20-60분간 산소가 없는 상태에서 801-1000℃로 가열한 광촉매 활성탄(TZ-2)의 수소이온농도(pH)는 9.57이었으며 고정 탄소의 백분율은 각각 91.89%, 비표면적은 1124㎡/g이었다.Mix 15 ml of 0.0314M TiO 2 sol and 15ml of 0.05M ZnO sol to make 30ml, mix with 30g of activated carbon, dry for 1-2 hours at 100-200 ℃ and 801 without oxygen for 20-60 minutes The hydrogen ion concentration (pH) of the photocatalytic activated carbon (TZ-2) heated to −1000 ° C. was 9.57, the percentage of fixed carbon was 91.89%, and the specific surface area was 1124 m 2 / g.
0.0314M의 TiO2졸 26㎖와 0.05M의 ZnO졸 4㎖를 골고루 섞어 30㎖로 되게 하여 활성탄 30g에 혼합하여 100-200℃에서 1-2시간 건조시키고 20-60분간 산소가 없는 상태에서 801-1000℃로 가열한 광촉매 활성탄(TZ-3)의 수소이온농도(pH)는 9.35이었으며 고정 탄소의 백분율은 각각 93.25%, 비표면적은 1137㎡/g 이었다.Mix 26 ml of 0.0314 M TiO 2 sol and 4 ml of 0.05 M ZnO sol to make 30 ml, mix with 30 g of activated carbon, dry for 1-2 hours at 100-200 ° C and 801 without oxygen for 20-60 minutes. The hydrogen ion concentration (pH) of the photocatalytic activated carbon (TZ-3) heated to −1000 ° C. was 9.35, the percentage of fixed carbon was 93.25%, and the specific surface area was 1137 m 2 / g.
TZ-1, TZ-2, TZ-3를 사용하여 E.coli 실험을 하였을때 생존율이 시간에 따라 감소하는 것을 볼 수 있었다. TZ-1, TZ-2, TZ-3에 있어서 초기 접종 균수의 50%가 사멸하는 시간인 반감기 t1/2는 각각 13.3, 17.28, 21.9분으로 TZ-1에 의한 살균 시간이 가장 짧게 나타났다.In the E. coli experiments using TZ-1, TZ-2, and TZ-3, the survival rate decreased with time. In TZ-1, TZ-2, and TZ-3, the half-life t 1/2 , the time at which 50% of the initial inoculated bacteria were killed, was 13.3, 17.28, and 21.9 minutes, respectively, with the shortest sterilization time by TZ-1.
60분 후의 생존 백분율은 TZ-1, TZ-2와 TZ-3에서 각각 0.6%, 0.5%, 2.8%로 나타나 TZ-1과 TZ-2에서 거의 같은 효과가 나타나는 것을 알 수 있었다. TiO2, ZnO, TiO2+ZnO으로 처리한 활성탄으로 수중 대장균(E.coli) 살균 실험에서 자외선을 조사할 경우 시간이 지남에 따라 E.coli 생균수는 감소하였다.Survival percentage after 60 minutes was 0.6%, 0.5%, and 2.8% in TZ-1, TZ-2 and TZ-3, respectively, indicating almost the same effect in TZ-1 and TZ-2. In the E. coli sterilization experiment with activated carbon treated with TiO 2 , ZnO and TiO 2 + ZnO, the number of E. coli cells decreased with time.
트리클로로에틸렌(TCE) 제거에 관한 흡착처리효율은 활성탄 단위질량당 흡착할 수 있는 흡착능력은 Freundlich의 등온흡착식으로 구하였다. TZ-1의 k와 1/n은 각각 0.006과 1.97이고 TZ-2의 k와 1/n은 각각 0.48과 1.32이며 TZ-3의 k와 1/n은 각각 0.07과 1.52로 나타났다.Adsorption treatment efficiency for trichlorethylene (TCE) removal was determined by Freundlich's isothermal adsorption capacity per unit mass of activated carbon. K and 1 / n of TZ-1 were 0.006 and 1.97, k and 1 / n of TZ-2 were 0.48 and 1.32, respectively, and k and 1 / n of TZ-3 were 0.07 and 1.52, respectively.
본 발명은 미생물의 살균능력에서 보는 바와 같이 대조군이 야자껍질활성탄이나 톱밥활성탄보다 일반세균과 미생물의 살균능력과 트리할로메탄의 흡착제거능력이 우수하여 정수처리에 고가의 비용으로 사용하는 은 활성탄의 대체제로 사용할 수 있으며, 활성탄에 의해 발생하는 미생물의 번식을 방지할 수 있다. 또한 광촉매활성탄을 사용할 경우 미생물을 살균하기 위해 첨가하는 염소의 양이 줄어 발암물질인 트리할로메탄의 발생을 방지할 수 있는 효과를 가지고 있다.또한 종래의 기술은 무기계인 TiO2를 분말상태로 이용하거나 금속체나 메쉬체, 유리표면등에 직접 코팅을 하여 광촉매제에 의한 유기물질의 제거나 탈취제로 사용하였으나 광촉매제 졸을 단독으로 활성탄에 첨착하거나 또는 광촉매제 분말이나 광촉매제 졸을 글루코스, 제올라이트, 활성탄, 톱밥, 왕겨, 폐타이어, 제올라이트, 재료에 일정비율로 혼합하여 광촉매활성탄을 제조하여 공기 및 수처리시의 미생물을 살균하고 동시에 난분해휘발성물질(VOC)을 제거할 수 있다.In the present invention, as shown in the sterilization ability of microorganisms, silver activated carbon used at high cost for water purification treatment because the control group has better sterilization ability of bacteria and microorganisms and adsorption removal ability of trihalomethane than palm peel activated carbon or sawdust activated carbon. It can be used as a substitute for and can prevent the growth of microorganisms caused by activated carbon. It also has the effect of preventing the generation of methane to be a tree is reduced carcinogen amount of chlorine to be added in order to kill microorganisms when using a photocatalyst activated carbon Further conventional techniques with an inorganic phosphorus TiO 2 powder form It can be used to remove organic substances by the photocatalyst or to deodorize it by coating it directly on metal, mesh or glass surface. However, the photocatalyst sol is added to activated carbon alone, or the photocatalyst powder or photocatalyst sol is added to glucose, zeolite, Activated carbon, sawdust, rice hulls, waste tires, zeolites, and materials can be mixed in a proportion to produce photocatalytic activated carbon to sterilize microorganisms in air and water treatment and simultaneously remove VOCs.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0009382A KR100405375B1 (en) | 2000-02-25 | 2000-02-25 | Manufactural method of activated carbon as a bactericidal photo-catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0009382A KR100405375B1 (en) | 2000-02-25 | 2000-02-25 | Manufactural method of activated carbon as a bactericidal photo-catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000030368A KR20000030368A (en) | 2000-06-05 |
KR100405375B1 true KR100405375B1 (en) | 2003-11-12 |
Family
ID=19650032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2000-0009382A Expired - Fee Related KR100405375B1 (en) | 2000-02-25 | 2000-02-25 | Manufactural method of activated carbon as a bactericidal photo-catalyst |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100405375B1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030028325A (en) * | 2001-09-29 | 2003-04-08 | 엔바이로테크(주) | Process for Preparing Activated Carbon Having Nano-structure Photocatalyst |
KR20020054304A (en) * | 2002-06-18 | 2002-07-06 | 주식회사 홍익환경 | The composition and process that bio-filter'carrier maintain the moisture contents continuously for removing stink and volatile organic components |
KR100447818B1 (en) * | 2003-12-26 | 2004-09-08 | 엔비넷 주식회사 | Method for Preparing a Photocatalyst Activated by Visible Light |
US8703066B2 (en) | 2004-01-07 | 2014-04-22 | Noxilizer, Inc. | Sterilization system and method |
US8017074B2 (en) | 2004-01-07 | 2011-09-13 | Noxilizer, Inc. | Sterilization system and device |
WO2010096766A1 (en) | 2009-02-23 | 2010-08-26 | Noxilizer, Inc. | Device and method for gas sterilization |
KR100941443B1 (en) * | 2009-06-09 | 2010-02-11 | 주식회사 우일 이알에스 | Coconut shell carbon with photo-dissociation performance and manufacturing method thereof |
KR101125002B1 (en) * | 2009-09-28 | 2012-04-12 | 주식회사 우일 이알에스 | Method for manufacturing coconut shell carbon with photo-dissociation performance |
KR101008684B1 (en) * | 2010-01-08 | 2011-01-17 | 주식회사 우일 이알에스 | Method for producing spherical activated carbon |
CN102746846A (en) * | 2012-07-16 | 2012-10-24 | 西北工业大学 | Preparation method of zinc oxide-titanium oxide composite semiconductor film with adjustable luminescent intensity |
CN109865424A (en) * | 2017-12-01 | 2019-06-11 | 江苏瑞丰科技实业有限公司 | A kind of multifunctional air purifying cellular composite material |
CN109529953A (en) * | 2018-12-13 | 2019-03-29 | 四川农业大学 | A kind of collagen TiO2Composite catalyst and preparation method thereof |
CN110357198A (en) * | 2019-06-11 | 2019-10-22 | 武汉兴天宇环境股份有限公司 | A kind of adsorbent material and preparation method thereof for Low Concentration Ammonia Containing Wastewater processing |
KR102413737B1 (en) * | 2019-09-25 | 2022-06-30 | 주식회사 도시광부 | Manufacturing Method of Coffee Activated Carbon Deodorant |
CN114835194A (en) * | 2022-04-22 | 2022-08-02 | 广东为康环保科技有限公司 | Visible light catalysis water body disinfection method based on multi-element composite material |
CN115679473B (en) * | 2022-11-17 | 2024-11-15 | 新疆金大禹环境科技有限公司 | A method for preparing polyester filaments |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08252461A (en) * | 1995-03-17 | 1996-10-01 | Ebara Corp | Preparation of photocatalyst |
JPH1028875A (en) * | 1996-05-17 | 1998-02-03 | Sumitomo Metal Ind Ltd | Carbonaceous hollow body catalyst and method for producing and using same |
JPH10226509A (en) * | 1997-02-07 | 1998-08-25 | Mitsubishi Chem Corp | Activated carbon |
JPH10305230A (en) * | 1997-03-07 | 1998-11-17 | Sumitomo Metal Ind Ltd | Photocatalyst, method for producing the same, and method for decomposing and removing harmful substances |
KR20000008326A (en) * | 1998-07-13 | 2000-02-07 | 김명신 | Fixing method of titanium dioxide used as air cleaner on activated carbon |
-
2000
- 2000-02-25 KR KR10-2000-0009382A patent/KR100405375B1/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08252461A (en) * | 1995-03-17 | 1996-10-01 | Ebara Corp | Preparation of photocatalyst |
JPH1028875A (en) * | 1996-05-17 | 1998-02-03 | Sumitomo Metal Ind Ltd | Carbonaceous hollow body catalyst and method for producing and using same |
JPH10226509A (en) * | 1997-02-07 | 1998-08-25 | Mitsubishi Chem Corp | Activated carbon |
JPH10305230A (en) * | 1997-03-07 | 1998-11-17 | Sumitomo Metal Ind Ltd | Photocatalyst, method for producing the same, and method for decomposing and removing harmful substances |
KR20000008326A (en) * | 1998-07-13 | 2000-02-07 | 김명신 | Fixing method of titanium dioxide used as air cleaner on activated carbon |
Also Published As
Publication number | Publication date |
---|---|
KR20000030368A (en) | 2000-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100405375B1 (en) | Manufactural method of activated carbon as a bactericidal photo-catalyst | |
CN1326984C (en) | Detergents, antibacterial materials, environmental materials and functional adsorbents | |
EP0634363B1 (en) | Process for preparing a photocatalyst and process for purifying water | |
JP5507787B2 (en) | Aqueous composition containing metal composition, and deodorant, antibacterial agent and antifungal agent comprising the aqueous composition | |
WO2001005441A1 (en) | Process and apparatus for purification of oxygen-containing gas | |
Reddy et al. | A review of photocatalytic treatment for various air pollutants | |
CN109721148A (en) | A kind of catalytic ozonation water treatment technology and application method that ability is cut down with bromate of heterojunction boundary electron transmission induction | |
Zhang et al. | The intimate coupling of photocatalysis and biodegradation for the degradation and mineralization of atrazine in water | |
KR20000022991A (en) | Method for decomposing bromic acid by photocatalyst and apparatus therefor | |
JP4621859B2 (en) | Method for producing porous photocatalyst | |
CN103341356A (en) | Processing method of water purifying agent of ceramic tourmaline-loaded titanium dioxide film | |
CN106946312B (en) | Method for degrading drinking water disinfection by-product trichloroacetamide using photocatalytic cement-based materials | |
RU2213707C1 (en) | Water disinfecting method | |
CN116571072B (en) | Malodorous waste gas water-based composite absorbent and preparation method and application thereof | |
CN113426436A (en) | Preparation method of composite material and application of composite material in photocatalytic disinfection in water | |
CN101837300B (en) | Photocatalysis coupled catalyst based on ozone and preparation method thereof | |
JP3118558B2 (en) | Water treatment catalyst and water treatment method | |
KR100271032B1 (en) | Method of preparing the ceramic body for treating the waste water | |
JPH0255117B2 (en) | ||
JPH08132075A (en) | Treatment of aqueous solution containing ammonia and/or ammonium ion | |
KR100326897B1 (en) | Titanium Dioxide-anchored Titanosilicalite Photocatalyst and its Preparation | |
CN103386300A (en) | Processing method of ceramic honeycomb plate air purifying agent | |
JP3864223B2 (en) | Manufacturing method of environmental materials | |
JPS63258644A (en) | Deodorizer | |
JP5082034B2 (en) | Composite functional photocatalyst dispersion and porous composite functional photocatalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20000225 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20020320 Patent event code: PE09021S01D |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20030110 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20031010 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20031101 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20031103 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20061101 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20071031 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20081104 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20091103 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20101102 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20111101 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20111101 Start annual number: 9 End annual number: 9 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |