[go: up one dir, main page]

KR100386159B1 - Method for providing a multi layer in a semiconductor device by using laser interferometer - Google Patents

Method for providing a multi layer in a semiconductor device by using laser interferometer Download PDF

Info

Publication number
KR100386159B1
KR100386159B1 KR10-2001-0007752A KR20010007752A KR100386159B1 KR 100386159 B1 KR100386159 B1 KR 100386159B1 KR 20010007752 A KR20010007752 A KR 20010007752A KR 100386159 B1 KR100386159 B1 KR 100386159B1
Authority
KR
South Korea
Prior art keywords
etching
depositing
laser interferometer
dielectric material
low dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR10-2001-0007752A
Other languages
Korean (ko)
Other versions
KR20020067259A (en
Inventor
김인수
Original Assignee
동부전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부전자 주식회사 filed Critical 동부전자 주식회사
Priority to KR10-2001-0007752A priority Critical patent/KR100386159B1/en
Publication of KR20020067259A publication Critical patent/KR20020067259A/en
Application granted granted Critical
Publication of KR100386159B1 publication Critical patent/KR100386159B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

본 발명은 레이저 간섭계(LASER interferometer)를 이용한 반도체 다층 배선 구조 형성 방법에 관한 것이다.The present invention relates to a method for forming a semiconductor multilayer wiring structure using a laser interferometer.

본 발명은 반도체 기판상에 확산 방지층을 증착하는 단계와; 확산 방지층상에 층간 절연막인 제 1 저유전 물질을 증착하는 단계와; 제 1 저유전 물질상에 식각 저지층을 증착하는 단계와; 식각 저지층상에 층간 절연막인 제 2 저유전 물질을 증착하는 단계와; 제 2 저유전 물질상에 트렌치용 마스크를 증착하여 포토레지스트 패턴을 형성하는 단계와; 레이저 간섭계를 이용하여 식각 저지층까지 트렌치를 식각하는 제 1 식각 단계와; 트렌치용 마스크를 제거하고 비아용 마스크를 증착하여 포토레지스트 패턴을 형성하는 단계와; 레이저 간섭계를 이용하여 확산 방지층까지 비아 홀을 식각하는 제 2 식각 단계와; 확산 방지층을 식각하는 제 3 식각 단계로 이루어진다. 따라서, 본 발명은 레이저 간섭계에 의한 정확한 식각 정지 시점 판단이 가능하므로, 식각 저지층의 두께를 최대한 얇게 구현할 수 있는 바, 전체 유전율의 상승을 방지하고 신호 지연 문제를 해결하여 제품 신뢰성을 향상시킬 수 있는 효과가 있다.The present invention comprises the steps of depositing a diffusion barrier layer on a semiconductor substrate; Depositing a first low dielectric material, which is an interlayer insulating film, on the diffusion barrier layer; Depositing an etch stop layer on the first low dielectric material; Depositing a second low dielectric material, an interlayer insulating film, on the etch stop layer; Depositing a trench mask on the second low dielectric material to form a photoresist pattern; Etching the trench to the etch stop layer using a laser interferometer; Removing the trench mask and depositing a via mask to form a photoresist pattern; A second etching step of etching the via hole to the diffusion barrier layer using a laser interferometer; And a third etching step of etching the diffusion barrier layer. Therefore, the present invention can accurately determine the etch stop time by the laser interferometer, it is possible to implement the thickness of the etch stop layer as thin as possible, it is possible to prevent the rise of the overall dielectric constant and solve the signal delay problem to improve product reliability It has an effect.

Description

레이저 간섭계를 이용한 반도체 다층 배선 구조 형성 방법{METHOD FOR PROVIDING A MULTI LAYER IN A SEMICONDUCTOR DEVICE BY USING LASER INTERFEROMETER}METHOD FOR PROVIDING A MULTI LAYER IN A SEMICONDUCTOR DEVICE BY USING LASER INTERFEROMETER}

본 발명은 반도체 다층 배선 구조 형성 방법에 관한 것으로, 특히, 레이저 간섭계(LASER interferometer)를 이용한 반도체 다층 배선 구조 형성 방법에 관한 것이다.The present invention relates to a method for forming a semiconductor multilayer wiring structure, and more particularly, to a method for forming a semiconductor multilayer wiring structure using a laser interferometer.

급격한 전자 기술 분야의 발달로 인해 반도체 제조 분야에는 다층 배선 구조가 도입되었으며, 소자의 미세화, 대용량화, 고집적화를 수용하기 위해 보다 정밀하고 복잡한 다층 배선 구조 형성 기술이 반도체 제조 분야에 적용되고 있다.Due to the rapid development of electronic technology, a multilayer wiring structure has been introduced into the semiconductor manufacturing field, and a more precise and complicated multilayer wiring structure forming technology is applied to the semiconductor manufacturing field to accommodate device miniaturization, large capacity, and high integration.

그런데, 이러한 다층 배선 구조는 배선간의 거리 감소로 인해 같은 층 배선간의 정전 용량을 증가시키고, 이로 인해 배선간의 신호 지연을 발생시킨다는 문제가 제기되었다. 이러한 신호 지연 문제는 소자의 동작 특성을 좌우하는 매우 첨예한 문제인 바, 층내 배선간의 정전 용량을 줄이기 위해서 배선 두께를 줄이고 층간 절연막의 두께를 증가시키는, 즉, 낮은 비저항을 갖는 배선 재료, 예컨대, 구리와, 낮은 비유전율을 갖는 다양한 층간 절연막이 요구되게 되었다.However, such a multilayer wiring structure has raised a problem that the capacitance between wirings of the same layer is increased due to the reduction of the distance between wirings, thereby causing signal delay between wirings. This signal delay problem is a very sharp problem that influences the operation characteristics of the device, which reduces wiring thickness and increases the thickness of the interlayer insulating film to reduce the capacitance between the interlayer wirings, that is, the wiring material having low resistivity, for example, copper. And various interlayer insulating films having low relative dielectric constants are required.

그런데, 구리의 경우, 식각 부산물의 증기압이 낮기 때문에 건식 식각에 많은 어려움이 따른다는 문제가 있었다.However, in the case of copper, there is a problem that a lot of difficulties in dry etching because the vapor pressure of the etching by-products is low.

다마신(Damascene) 공정은 이러한 건식 식각의 어려움을 해결하면서 구리 배선을 효율적으로 패터닝하기 위한 공정으로서, 반도체 다층 배선 구조를 위해 홀을 형성하고 채우는 일련의 과정들을 포함한다. 이러한 다마신 공정에서는 식각 저지층이 필수적으로 사용되며, 특히, 얇은 막의 저유전율을 갖는 물질, 예컨대, 실리콘 질화물이 대표적인 식각 저지층으로 사용되고 있다(얇은 막의 저유전 물질을 사용하는 이유는, 식각 저지층의 유전율이 커질 경우 층간 절연막의 유전율도 증가되기 때문임).The damascene process is a process for efficiently patterning copper interconnects while solving these dry etching difficulties, including a series of processes for forming and filling holes for semiconductor multilayer interconnection structures. In such a damascene process, an etch stop layer is essentially used, and a material having a low dielectric constant of a thin film, for example, silicon nitride, is used as a typical etch stop layer (the reason for using a thin film low dielectric material is because If the dielectric constant of the layer increases, the dielectric constant of the interlayer insulating film also increases).

이때, 이러한 식각 저지층을 식각하는 방법으로서, OES(Optical Emission Spectroscopy)를 이용한 EPD(End Point Detector) 기법이 사용되고 있다. 즉, 종래의 식각 저지층의 식각 방법은 플라즈마내의 반응 물질을 검출하여 반응 물질의 변화를 통해 식각 종말점을 결정하는 방식을 채용하고 있다.In this case, an end point detector (EPD) technique using optical emission spectroscopy (OES) is used as a method of etching the etch stop layer. That is, the conventional etching method of the etch stop layer employs a method of detecting the reactant in the plasma and determining the etch endpoint by changing the reactant.

그런데, 이러한 종래의 방식을 채용할 경우, 얇은 막의 저유전 물질인 식각 저지층이 과도하게 식각될 수 있다는 문제가 제기되었다.However, when the conventional method is employed, a problem arises in that the etch stop layer, which is a thin film low dielectric material, may be excessively etched.

즉, 일반적인 EPD 기법은 질화막의 노출을 감지하고 나서야 식각 공정을 중지하는 바, 부정확한 식각 종말점 판단으로 식각 저지층이 손실될 수 있다는 문제가 제기되었다. 이러한 문제는 반도체 제조 공정의 전체적인 유전율을 결정하는 식각 저지층의 두께를 두껍게 설정할 수밖에 없다는 결과를 초래하게 되었고, 따라서, 전체적인 유전율이 상승하게 되어 제품 수율이 감소되는 문제를 발생시켰다.In other words, the general EPD technique stops the etching process only after detecting the exposure of the nitride film, which raises a problem that the etch stop layer may be lost due to inaccurate etching endpoint determination. This problem has resulted in the fact that the thickness of the etch stop layer that determines the overall dielectric constant of the semiconductor manufacturing process has to be set thick, and thus the overall dielectric constant increases, resulting in a problem that the product yield is reduced.

따라서, 본 발명은 상술한 문제를 해결하기 위해 안출한 것으로, 반도체 다층 배선 구조 형성 공정의 식각 공정시에, 레이저 광원의 입사파와 반사파의 경로차에 따라 식각 종말점을 결정하여 식각 저지층이 노출되기 전에 식각 공정을 정지시켜, 보다 정확한 식각 정지 공정을 수행함으로써, 낮은 유전율과 신호 지연 문제를 해결할 수 있는 반도체 다층 배선 구조를 형성하도록 한 레이저 간섭계를 이용한 반도체 다층 배선 구조 형성 방법을 제공하는데 그 목적이 있다.Accordingly, the present invention has been made to solve the above-described problem, and during the etching process of the semiconductor multilayer wiring structure forming process, the etch stop layer is exposed by determining the etch end point according to the path difference between the incident wave and the reflected wave of the laser light source. The purpose of the present invention is to provide a method for forming a semiconductor multilayer interconnection structure using a laser interferometer that stops the etching process beforehand and performs a more accurate etching stop process to form a semiconductor multilayer interconnection structure that can solve a low dielectric constant and a signal delay problem. have.

이러한 목적을 달성하기 위하여 본 발명은, 반도체 기판상에 확산 방지층을 증착하는 단계와; 확산 방지층상에 층간 절연막인 제 1 저유전 물질을 증착하는 단계와; 제 1 저유전 물질상에 식각 저지층을 증착하는 단계와; 식각 저지층상에 층간 절연막인 제 2 저유전 물질을 증착하는 단계와; 제 2 저유전 물질상에 트렌치용마스크를 증착하여 포토레지스트 패턴을 형성하는 단계와; 레이저 간섭계를 이용하여 식각 저지층까지 트렌치를 식각하는 제 1 식각 단계와; 트렌치용 마스크를 제거하고 비아용 마스크를 증착하여 포토레지스트 패턴을 형성하는 단계와; 레이저 간섭계를 이용하여 확산 방지층까지 비아 홀을 식각하는 제 2 식각 단계와; 확산 방지층을 식각하는 제 3 식각 단계를 포함하는 것을 특징으로 하는 레이저 간섭계를 이용한 반도체 다층 배선 구조 형성 방법을 제공한다.In order to achieve this object, the present invention comprises the steps of depositing a diffusion barrier layer on a semiconductor substrate; Depositing a first low dielectric material, which is an interlayer insulating film, on the diffusion barrier layer; Depositing an etch stop layer on the first low dielectric material; Depositing a second low dielectric material, an interlayer insulating film, on the etch stop layer; Depositing a trench mask on the second low dielectric material to form a photoresist pattern; Etching the trench to the etch stop layer using a laser interferometer; Removing the trench mask and depositing a via mask to form a photoresist pattern; A second etching step of etching the via hole to the diffusion barrier layer using a laser interferometer; It provides a method for forming a semiconductor multilayer wiring structure using a laser interferometer comprising a third etching step of etching the diffusion barrier layer.

도 1a 내지 도 1j는 본 발명의 바람직한 실시예에 따른 레이저 간섭계(LASER interferometer)를 이용한 반도체 다층 배선 구조 형성 과정을 도시한 도면,1A to 1J illustrate a process of forming a semiconductor multilayer wiring structure using a laser interferometer according to a preferred embodiment of the present invention;

도 2는 본 발명에 따른 레이저 간섭계를 설명하기 위한 도면.2 is a view for explaining a laser interferometer according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

100 : 기판100: substrate

102 : 확산 방지층102: diffusion barrier layer

104, 108 : 저유전 물질104, 108: low dielectric material

106 : 식각 저지층106: etching stop layer

110 : 마스크110: mask

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대하여 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention.

도 1a 내지 도 1j는 본 발명의 바람직한 실시예에 따른 레이저 간섭계를 이용한 반도체 다층 배선 구조 형성 과정을 설명하기 위한 도면이다.1A to 1J are diagrams for describing a process of forming a semiconductor multilayer wiring structure using a laser interferometer according to a preferred embodiment of the present invention.

먼저, 반도체 기판(100)상에 확산 방지층(102)을 증착한다(도 1a). 이러한 확산 방지층(102)에는 실리콘 질화물(silicon nitride)이 사용될 수 있다.First, a diffusion barrier layer 102 is deposited on the semiconductor substrate 100 (FIG. 1A). Silicon nitride may be used for the diffusion barrier layer 102.

다음으로, 도 1a의 공정을 통해 형성된 확산 방지층(102)상에 층간 절연막인 제 1 저유전 물질(104)을 증착한다(도 1b). 이러한 저유전 물질(104)은 유기물 또는 무기물이며, 바람직하게는 SiOF, HSQ, MSQ, HOSP, 폴리머 등이 사용될 수 있다. 또한, 성막 방법에 따라 CVD 기법과 "Spin on deposition" 기법으로 구분될 수 있다.Next, a first low dielectric material 104 as an interlayer insulating film is deposited on the diffusion barrier layer 102 formed through the process of FIG. 1A (FIG. 1B). The low dielectric material 104 is an organic material or an inorganic material. Preferably, SiOF, HSQ, MSQ, HOSP, polymer, or the like may be used. In addition, depending on the deposition method, it can be divided into CVD technique and "Spin on deposition" technique.

도 1c에서는 도 1b에서 형성된 제 1 저유전 물질(104)상에 식각 저지층(106), 예컨대, 실리콘 질화물을 증착한다. 이때, 식각 저지층(106)은 SiN,WN, TaN 등이 사용될 수 있으며, 바람직하게는 Si3N4이 사용될 수 있다.In FIG. 1C, an etch stop layer 106, eg, silicon nitride, is deposited on the first low dielectric material 104 formed in FIG. 1B. In this case, the etch stop layer 106 may be SiN, WN, TaN, etc., preferably Si 3 N 4 may be used.

또한, 도 1d에서는 형성된 식각 저지층(106)상에 도 1b의 공정과 동일한 층간 절연막인 제 2 저유전 물질(108)을 증착한다(도 1d).In FIG. 1D, a second low dielectric material 108, which is an interlayer insulating film similar to the process of FIG. 1B, is deposited on the etch stop layer 106 formed (FIG. 1D).

이러한 제 2 저유전 물질(108)상에 트렌치용 마스크(110)를 증착하여 포토레지스트 패턴을 형성한다(도 1e, 도 1f).A trench mask 110 is deposited on the second low dielectric material 108 to form a photoresist pattern (FIGS. 1E and 1F).

이후, 도 1g에서는 식각 저지층(106)까지 트렌치를 식각, 예컨대, 플라즈마를 이용하여 건식 식각한다. 이때, 이러한 식각 공정은 본 발명에 따른 레이저 간섭계를 이용하여 구현될 수 있다.Then, in FIG. 1G, the trench is etched to the etch stop layer 106 by dry etching using, for example, plasma. In this case, such an etching process may be implemented using a laser interferometer according to the present invention.

레이저 간섭계라 함은, 레이저 광원을 입사시켜 입사파와 반사파의 경로차를 측정하고, 수신되는 레이저 신호의 위상차를 비교하여 광신호의 도래 방향 각도를 결정하는 수신 방식을 적용한 기술을 일컫는다.The laser interferometer refers to a technology in which a reception method of determining an angle of arrival of an optical signal by measuring a path difference between an incident wave and a reflected wave by entering a laser light source and comparing a phase difference of a received laser signal.

도 2는 이러한 레이저 간섭계를 설명하기 위한 도면이다.2 is a diagram for explaining such a laser interferometer.

식각 두께는 2dsinθ=nX에 의해서 결정된다. 여기서, X는 파장, θ는 입사각도, n은 굴절률이다. 위 식에 의해서 식각 두께를 알 수 있으므로 정확하게 두께는 예측할 수 있으며 실시간으로 식각 두께를 알 수 있다.The etching thickness is determined by 2dsin θ = nX. Where X is the wavelength, θ is the incident angle, and n is the refractive index. Since the etching thickness can be known by the above equation, the thickness can be accurately predicted and the etching thickness can be known in real time.

도 2에 도시한 바와 같이, 도 1g의 과정은 제 2 저유전 물질(108)로 입사되는 레이저 광원의 입사파와 반사파의 경로차(2dsinθ)에 따라 제 2 저유전 물질(108)의 식각율을 계산하고, 식각율에 따른 식각 종말점, 즉, 식각 저지층(106)이 노출되기 직전의 시점을 검출하여 트렌치 식각 공정을 정지시키는과정을 포함한다.As shown in FIG. 2, the process of FIG. 1G determines the etch rate of the second low dielectric material 108 according to the path difference 2dsinθ between the incident wave and the reflected wave of the laser light source incident on the second low dielectric material 108. The method may include calculating and stopping the trench etching process by detecting an etching end point according to the etching rate, that is, a time point just before the etching stop layer 106 is exposed.

이때, 이러한 도 1g의 식각 단계는, 트렌치 식각 공정 수행시에는 저선택비의 식각율을 적용한 식각 공정을 수행하고, 레이저 간섭계를 이용하여 식각 종말점을 검출한 후에는 고선택비 식각율을 적용한 식각 공정을 수행하는 것을 특징으로 한다.In the etching step of FIG. 1G, the etching process using the low selectivity etching rate is performed when the trench etching process is performed, and the etching step using the high selectivity etching rate is detected after detecting the etching end point using a laser interferometer. It is characterized by performing a process.

한편, 도 1h에서는 도 1e에서 형성된 트렌치용 마스크(110)를 제거하고 비아용 마스크(110)를 증착하여 포토레지스트 패턴을 형성한다.Meanwhile, in FIG. 1H, the trench mask 110 formed in FIG. 1E is removed and the via mask 110 is deposited to form a photoresist pattern.

이후, 도 1i에서는 상술한 레이저 간섭계를 이용하여 확산 방지층(102)까지 비아 홀을 식각하고, 도 1j에서는 확산 방지층(102)을 식각하여 본 발명에 따른 다층 배선 구조를 형성한다.Subsequently, in FIG. 1I, the via hole is etched up to the diffusion barrier layer 102 using the above-described laser interferometer, and in FIG. 1J, the diffusion barrier layer 102 is etched to form a multilayer wiring structure according to the present invention.

이상 설명한 바와 같이, 본 발명은 반도체 다층 배선 구조 형성시에 식각 정지 시점을 종래의 OES(Optical Emission Spectroscopy)가 아닌 레이저 간섭계를 이용하여 판단하도록 구현한 것이다.As described above, the present invention is implemented to determine the etch stop time when forming a semiconductor multilayer wiring structure using a laser interferometer rather than the conventional optical emission spectroscopy (OES).

따라서, 본 발명은 정확한 식각 정지 시점 판단이 가능하므로, 식각 저지층의 두께를 최대한 얇게 구현할 수 있는 바, 전체 유전율의 상승을 방지하고 신호 지연 문제를 해결하여 제품 신뢰성을 향상시킬 수 있는 효과가 있다.Therefore, the present invention can accurately determine the etch stop time, it is possible to implement the thickness of the etch stop layer as thin as possible, there is an effect that can improve the product reliability by preventing the increase in the overall dielectric constant and solve the signal delay problem. .

Claims (5)

반도체 기판상에 확산 방지층을 증착하는 단계와;Depositing a diffusion barrier layer on the semiconductor substrate; 상기 확산 방지층상에 층간 절연막인 제 1 저유전 물질을 증착하는 단계와;Depositing a first low dielectric material that is an interlayer insulating film on the diffusion barrier layer; 상기 제 1 저유전 물질상에 식각 저지층을 증착하는 단계와;Depositing an etch stop layer on the first low dielectric material; 상기 식각 저지층상에 층간 절연막인 제 2 저유전 물질을 증착하는 단계와;Depositing a second low dielectric material, an interlayer insulating film, on the etch stop layer; 상기 제 2 저유전 물질상에 트렌치용 마스크를 증착하여 포토레지스트 패턴을 형성하는 단계와;Depositing a trench mask on the second low dielectric material to form a photoresist pattern; 레이저 간섭계(LASER interferometer)를 이용하여 상기 식각 저지층까지 트렌치를 식각하는 제 1 식각 단계와;Etching the trench up to the etch stop layer using a laser interferometer; 상기 트렌치용 마스크를 제거하고 비아용 마스크를 증착하여 포토레지스트 패턴을 형성하는 단계와;Removing the trench mask and depositing a via mask to form a photoresist pattern; 상기 레이저 간섭계를 이용하여 상기 확산 방지층까지 비아 홀을 식각하는 제 2 식각 단계와;A second etching step of etching the via hole to the diffusion barrier layer using the laser interferometer; 상기 확산 방지층을 식각하는 제 3 식각 단계를 포함하는 것을 특징으로 하는 레이저 간섭계를 이용한 반도체 다층 배선 구조 형성 방법.And a third etching step of etching the diffusion barrier layer. 제 1 항에 있어서,The method of claim 1, 상기 제 1 식각 단계는,The first etching step, 레이저 광원의 입사파와 반사파의 경로차에 따라 상기 제 2 저유전 물질의식각율을 계산하고, 상기 식각율에 따른 식각 종말점을 검출하여 상기 트렌치 식각 공정을 정지시키는 단계인 것을 특징으로 하는 레이저 간섭계를 이용한 반도체 다층 배선 구조 형성 방법Calculating an etch rate of the second low dielectric material according to a path difference between an incident wave and a reflected wave of a laser light source, detecting an etch endpoint according to the etch rate, and stopping the trench etching process; Method of forming semiconductor multilayer wiring structure using 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 제 1 식각 단계는,The first etching step, 상기 트렌치 식각 공정 수행시에는 저선택비의 식각율을 적용한 식각 공정을 수행하고, 상기 레이저 간섭계를 이용하여 상기 식각 종말점을 검출한 후에는 고선택비 식각율을 적용한 식각 공정을 수행하는 것을 특징으로 하는 레이저 간섭계를 이용한 반도체 다층 배선 구조 형성 방법.When the trench etching process is performed, an etch process using a low selectivity etch rate is performed, and after detecting the etch endpoint using the laser interferometer, an etch process using a high selectivity etch rate is performed. A method for forming a semiconductor multilayer wiring structure using a laser interferometer. 제 3 항에 있어서,The method of claim 3, wherein 상기 식각 종말점은, 상기 식각 저지층이 노출되기 직전의 시점인 것을 특징으로 하는 레이저 간섭계를 이용한 반도체 다층 배선 구조 형성 방법.The etching end point is a time point immediately before the etching stop layer is exposed, characterized in that the method for forming a semiconductor multilayer wiring structure using a laser interferometer. 제 1 항에 있어서,The method of claim 1, 상기 식각 저지층은 SiN, WN, TaN, Si3N4중 하나인 것을 특징으로 하는 레이저 간섭계를 이용한 반도체 다층 배선 구조 형성 방법.The etch stop layer is a method for forming a semiconductor multilayer wiring structure using a laser interferometer, characterized in that one of SiN, WN, TaN, Si 3 N 4 .
KR10-2001-0007752A 2001-02-16 2001-02-16 Method for providing a multi layer in a semiconductor device by using laser interferometer Expired - Fee Related KR100386159B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0007752A KR100386159B1 (en) 2001-02-16 2001-02-16 Method for providing a multi layer in a semiconductor device by using laser interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0007752A KR100386159B1 (en) 2001-02-16 2001-02-16 Method for providing a multi layer in a semiconductor device by using laser interferometer

Publications (2)

Publication Number Publication Date
KR20020067259A KR20020067259A (en) 2002-08-22
KR100386159B1 true KR100386159B1 (en) 2003-06-02

Family

ID=27694580

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0007752A Expired - Fee Related KR100386159B1 (en) 2001-02-16 2001-02-16 Method for providing a multi layer in a semiconductor device by using laser interferometer

Country Status (1)

Country Link
KR (1) KR100386159B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101307247B1 (en) * 2012-09-26 2013-09-11 가톨릭대학교 산학협력단 Silicon wafer etching method using compensation structure and energy harvester manufacturing method using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239536A (en) * 1988-07-29 1990-02-08 Hitachi Ltd Wiring structure and its manufacture
JPH06267911A (en) * 1993-03-12 1994-09-22 Oki Electric Ind Co Ltd Formation of wiring pattern
US5612254A (en) * 1992-06-29 1997-03-18 Intel Corporation Methods of forming an interconnect on a semiconductor substrate
US6071813A (en) * 1997-10-20 2000-06-06 Advanced Micro Devices, Inc. Method and system for electrical coupling to copper interconnects
KR20000033546A (en) * 1998-11-24 2000-06-15 윤종용 A semiconductor device having conductive wiring formed by the damascene process, and a manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239536A (en) * 1988-07-29 1990-02-08 Hitachi Ltd Wiring structure and its manufacture
US5612254A (en) * 1992-06-29 1997-03-18 Intel Corporation Methods of forming an interconnect on a semiconductor substrate
JPH06267911A (en) * 1993-03-12 1994-09-22 Oki Electric Ind Co Ltd Formation of wiring pattern
US6071813A (en) * 1997-10-20 2000-06-06 Advanced Micro Devices, Inc. Method and system for electrical coupling to copper interconnects
KR20000033546A (en) * 1998-11-24 2000-06-15 윤종용 A semiconductor device having conductive wiring formed by the damascene process, and a manufacturing method therefor

Also Published As

Publication number Publication date
KR20020067259A (en) 2002-08-22

Similar Documents

Publication Publication Date Title
US7256136B2 (en) Self-patterning of photo-active dielectric materials for interconnect isolation
KR100787847B1 (en) How to etch double damascene structure of organic silicate glass
US6184128B1 (en) Method using a thin resist mask for dual damascene stop layer etch
US7563719B2 (en) Dual damascene process
US6605540B2 (en) Process for forming a dual damascene structure
US20070232048A1 (en) Damascene interconnection having a SiCOH low k layer
US7241682B2 (en) Method of forming a dual damascene structure
US8034722B2 (en) Method of forming dual damascene semiconductor device
KR20030020240A (en) Method of fabricating semiconductor device and wafer structure
KR100606532B1 (en) Manufacturing Method of Semiconductor Device
KR100386159B1 (en) Method for providing a multi layer in a semiconductor device by using laser interferometer
US7632689B2 (en) Methods for controlling the profile of a trench of a semiconductor structure
US20210375750A1 (en) Interconnection structure having increased conductive features and method of manufacturing the same
GB2336243A (en) Via hole formation
KR100571409B1 (en) Wiring Formation Method of Semiconductor Device
US20040043618A1 (en) Method for endpoint detection during etch
EP1264340B1 (en) Use of organic spin on materials as a stop-layer for local interconnect, contact and via layers
KR20050002953A (en) Method for metal interconnection of semiconductor device
KR100403351B1 (en) Method for forming etch monitoring box in dual damascene process
US20040248419A1 (en) Method of manufacturing semiconductor device
KR100703561B1 (en) Dual damascene pattern formation method of semiconductor device
KR100815948B1 (en) Semiconductor device manufacturing method using self-aligned dual damascene process
KR100277868B1 (en) Method for suppressinfg polymer from being generated from semiconductor device
KR20040056110A (en) Method of forming a dual damascene pattern
KR20020034352A (en) Method of forming interlayer dielectrics of semiconductor device and method of forming interconnection using the same

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20010216

PA0201 Request for examination
PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20030225

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20030521

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20030522

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20061031

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20070312

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20080401

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20090515

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20100422

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20110418

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20110418

Start annual number: 9

End annual number: 9

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee