KR100373162B1 - Method of manufacturing a capacitor in a semiconductor device - Google Patents
Method of manufacturing a capacitor in a semiconductor device Download PDFInfo
- Publication number
- KR100373162B1 KR100373162B1 KR10-1999-0065048A KR19990065048A KR100373162B1 KR 100373162 B1 KR100373162 B1 KR 100373162B1 KR 19990065048 A KR19990065048 A KR 19990065048A KR 100373162 B1 KR100373162 B1 KR 100373162B1
- Authority
- KR
- South Korea
- Prior art keywords
- tantalum
- lower electrode
- rapid thermal
- dielectric film
- semiconductor device
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000004065 semiconductor Substances 0.000 title claims abstract description 16
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 22
- 230000003647 oxidation Effects 0.000 claims description 12
- 238000007254 oxidation reaction Methods 0.000 claims description 12
- 239000012298 atmosphere Substances 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000005121 nitriding Methods 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 7
- 238000009832 plasma treatment Methods 0.000 claims description 6
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 2
- 238000011065 in-situ storage Methods 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims 1
- 230000008020 evaporation Effects 0.000 claims 1
- 230000003071 parasitic effect Effects 0.000 abstract description 7
- 125000006850 spacer group Chemical group 0.000 abstract description 4
- 239000010408 film Substances 0.000 description 28
- 239000010410 layer Substances 0.000 description 14
- 239000003989 dielectric material Substances 0.000 description 11
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 8
- 229920005591 polysilicon Polymers 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- HBBATKAUXPHIQN-UHFFFAOYSA-N [Cl].[Ti] Chemical compound [Cl].[Ti] HBBATKAUXPHIQN-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- IVHJCRXBQPGLOV-UHFFFAOYSA-N azanylidynetungsten Chemical compound [W]#N IVHJCRXBQPGLOV-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001546 nitrifying effect Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/60—Capacitors
- H10D1/68—Capacitors having no potential barriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02183—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/0223—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
- H01L21/02244—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of a metallic layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/02247—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by nitridation, e.g. nitridation of the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/02252—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/60—Capacitors
- H10D1/68—Capacitors having no potential barriers
- H10D1/692—Electrodes
- H10D1/711—Electrodes having non-planar surfaces, e.g. formed by texturisation
- H10D1/716—Electrodes having non-planar surfaces, e.g. formed by texturisation having vertical extensions
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Abstract
본 발명은 반도체 소자의 캐패시터 제조방법에 관한 것으로, 탄탈륨(Ta)을 이용하여 실린더 구조의 하부전극을 형성하고, 하부전극 표면을 급속 열처리 및 플라즈마 처리하여, 하부전극 표면에 탄탈륨 계열의 유전체막을 형성하므로써, 하부전극과 유전체막 사이에 기생 캐패시턴스가 발생하는 것을 억제할 수 있어 우수한 캐패시턴스 특성을 유지할 수 있고, 이에 따라 하부전극의 표면적을 증가시킬 필요가 없어 캐패시터간 스페이서 마진을 안정적으로 확보할 수 있도록 한 반도체 소자의 캐패시터 제조방법이 개시된다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a capacitor of a semiconductor device, wherein a lower electrode having a cylindrical structure is formed by using tantalum (Ta), and a surface of the lower electrode is rapidly heat treated and plasma treated to form a tantalum-based dielectric film on the lower electrode surface. Thus, parasitic capacitance can be suppressed between the lower electrode and the dielectric film, so that excellent capacitance characteristics can be maintained, so that the spacer margin between capacitors can be stably secured without increasing the surface area of the lower electrode. Disclosed is a method of manufacturing a capacitor of a semiconductor device.
Description
본 발명은 반도체 소자의 캐패시터 제조방법에 관한 것으로, 특히 탄탈륨(Ta) 계열의 유전물질을 이용한 MIM(Metal-Insulator-Metal) 구조의 캐패시터에서 공정과정을 단순화하고 소자를 고집적화 하면서 캐패시터의 정전용량을 증대시킬 수 있는 반도체 소자의 캐패시터 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a capacitor of a semiconductor device, and in particular, in a capacitor of a metal-insulator-metal (MIM) structure using tantalum (Ta) -based dielectric materials, the process of the capacitor is simplified while the device is highly integrated. A method for manufacturing a capacitor of a semiconductor device that can be increased.
현재 128M SDRAM에 적용되고 있는 캐패시터는 하부전극/유전체막/상부전극이 각각 도프트 반구형(Hemispherical Shaped Grain; 이하, 'HSG'라 함) 실리콘층/옥시나이트라이드층/도프트 폴리실리콘층으로 이루어진 구조를 갖는다. 이와 같은 구조의 캐패시터에서 유전물질인 나이트라이드는 유전율(ε)이 약 7정도로 낮아 캐패시터의 유전특성이 열악한 문제점이 있다. 또한, 유전체막 형성 후의 열처리 공정에서 하부전극 및 상부 전극의 폴리실리콘이 소모되어 기생 캐패시턴스가 발생하며, 하부전극으로 사용되는 도프트 폴리실리콘층의 산화로 인하여 유전체막의 유효 두께가 증가하게 되어 256M 이상의 고집적 소자에 적용하기 어려운 문제점이 있다.The capacitor currently applied to 128M SDRAM has a lower electrode / dielectric film / upper electrode each formed of a hemispherical shaped grain (hereinafter, referred to as “HSG”) silicon layer, oxynitride layer, and doped polysilicon layer. Has a structure. Nitride, a dielectric material in the capacitor having such a structure, has a low dielectric constant (ε) of about 7 and thus has a poor dielectric property of the capacitor. In addition, during the heat treatment process after the dielectric film is formed, polysilicon of the lower electrode and the upper electrode is consumed to generate parasitic capacitance, and the effective thickness of the dielectric film is increased due to oxidation of the doped polysilicon layer used as the lower electrode. There is a problem that is difficult to apply to the highly integrated device.
이러한 문제점을 개선하기 위하여 캐패시터의 유전물질을 탄탈륨 옥사이드(Ta2O5) 또는 탄탈륨 옥시나이트라이드(TaON)와 같은 탄탈륨(Ta) 계열의 물질로 대체하는 연구가 진행되고 있다. 그런데 탄탈륨(Ta) 계열의 유전물질은 유전율(ε)이 약 25 정도로 매우 높은 장점이 있는 반면, 적용할 수 있는 전극물질을 선택하는 데 어려움이 있다. 현재는 Ta2O5유전물질의 하부전극으로서 도프트 폴리실리콘을 HSG 공정으로 형성한 것을 사용하고 있는데. HSG 공정은 다음과 같은 문제점이 있다. 첫째, 충분한 도핑처리가 어려워 상부전극과의 도핑 수준이 달라지게 되며, 이로 인해 인가된 전압에 따라 하부전극 쪽으로 공핍(Depletion) 현상이 발생하여 기생 캐패시턴스를 발생시키게 된다. 둘째, Ta2O5유전체막 형성시 O2분위기에서 고온 열처리를 진행하여야 하는데, 이때 하부 폴리실리콘층이 산화되어 전체 캐패시턴스 값을 크게 저하시키게 된다. 또한, 캐패시터의 표면적이 증가함에 따라 캐패시터간 스페이서 마진을 확보할 수 없어 캐패시터의 전기적 특성이 저하하게 된다.In order to improve this problem, research is being conducted to replace the dielectric material of the capacitor with a tantalum (Ta) -based material such as tantalum oxide (Ta 2 O 5 ) or tantalum oxynitride (TaON). However, tantalum (Ta) -based dielectric material has a very high dielectric constant (ε) of about 25, while there is a difficulty in selecting an applicable electrode material. Currently, doped polysilicon is formed by HSG process as a lower electrode of Ta 2 O 5 dielectric material. The HSG process has the following problems. First, sufficient doping treatment is difficult, so that the level of doping with the upper electrode is changed, and thus depletion occurs toward the lower electrode according to the applied voltage, thereby generating parasitic capacitance. Second, when the Ta 2 O 5 dielectric film is formed, a high temperature heat treatment should be performed in an O 2 atmosphere. At this time, the lower polysilicon layer is oxidized to greatly reduce the total capacitance value. In addition, as the surface area of the capacitor increases, the spacer margin between the capacitors cannot be secured, thereby deteriorating the electrical characteristics of the capacitor.
현재 Ta2O5유전체막을 사용하는 캐패시터의 상부전극 재료로는 전도체인 TiN을 이용하고 있는데, 하부전극 재료 또한 공핍현상이 발생하지 않는 금속 계열의 전도체를 사용하게 되면 캐패시터의 정전용량을 향상시킬 수 있게 된다. 이에 따라 하부전극을 텅스텐(W), 텅스텐 나이트라이드(WN), 티타늄 나이트라이드(TiN) 등의 금속을 이용하여 형성하고 있는데, 이와 같은 금속 하부전극은 Ta2O5유전체막 형성 후 Ta2O5유전체막 내의 불순물을 제거하기 위한 산화공정시 함께 산화되어 충분한 캐패시턴스를 확보할 수 없게 된다. 그 이유는 다음과 같다. 종래의 Ta2O5유전체막은 금속 유기화합물 증착법(Metal Organic Chemical Vapor Deposition; MOCVD)법에 의해 형성되는데, Ta2O5의 근원물질인 Ta((OC2H5)2)5에서 기인하는 수소 및 탄소 계열의 불순물이 유전체막 내에 함유되게 된다. 이런 불순물들은 Ta와 O또는 Ta와 N의 결합을 방해하여 캐패시턴스를 저하시키며 누설전류를 증가시키는 원인이 된다. 따라서 Ta2O5형성 후 고온 산화 공정을 실시하여야 한다. 그런데, 이 고온 산화 공정시 하부전극이 산화되어 유전체막의 유효두께가 증가하고 캐패시터의 정전용량이 저하되는 문제점이 있다.Currently, TiN, a conductor, is used as the upper electrode material of a capacitor using a Ta 2 O 5 dielectric film. The lower electrode material can also improve the capacitance of the capacitor by using a metal-based conductor that does not cause depletion. Will be. Accordingly, the lower electrode is formed using a metal such as tungsten (W), tungsten nitride (WN), titanium nitride (TiN), and the like. The lower electrode of the metal is formed of Ta 2 O 5 after forming the Ta 2 O 5 dielectric layer. 5 During the oxidation process for removing impurities in the dielectric film, they are oxidized together to fail to secure sufficient capacitance. The reason for this is as follows. Conventional Ta 2 O 5 dielectric film is formed by the Metal Organic Chemical Vapor Deposition (MOCVD) method, hydrogen derived from Ta ((OC 2 H 5 ) 2 ) 5 source of Ta 2 O 5 And carbon-based impurities are contained in the dielectric film. These impurities interfere with the bonding of Ta and O or Ta and N, causing a decrease in capacitance and an increase in leakage current. Therefore, high temperature oxidation process should be performed after Ta 2 O 5 formation. However, during the high temperature oxidation process, the lower electrode is oxidized, so that the effective thickness of the dielectric film is increased and the capacitance of the capacitor is lowered.
따라서, 본 발명은 탄탈륨 계열의 유전물질을 이용한 MIM 구조의 캐패시터에서 하부전극과 유전체막 사이에 기생 캐패시턴스가 발생하는 것을 억제하여 계면 안정성을 확보하고 캐패시터의 정전용량을 증대시킬 수 있는 반도체 소자의 캐패시터 제조방법을 제공하는데 그 목적이 있다.Accordingly, the present invention suppresses the occurrence of parasitic capacitance between the lower electrode and the dielectric film in the MIM structure capacitor using a tantalum-based dielectric material to ensure interfacial stability and increase the capacitance of the capacitor. The purpose is to provide a manufacturing method.
상술한 목적을 달성하기 위한 본 발명에 따른 반도체 소자의 캐패시터 제조방법은 하부구조가 형성된 기판 상에 탄탈륨을 이용하여 실린더 구조의 하부전극을 형성하는 단계; 상기 하부전극 표면을 급속 열처리 및 플라즈마 처리하여, 상기 하부전극 표면에 탄탈륨 계열의 유전체막을 형성하는 단계; 및 상기 유전체막을 포함하는 전체구조 상에 상부전극을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 한다.Capacitor manufacturing method of a semiconductor device according to the present invention for achieving the above object comprises the steps of forming a lower electrode of the cylinder structure using tantalum on a substrate on which the lower structure is formed; Forming a tantalum-based dielectric film on the lower electrode surface by rapid thermal treatment and plasma treatment on the lower electrode surface; And forming an upper electrode on the entire structure including the dielectric film.
도 1a 내지 1e는 본 발명의 제 1 실시 예에 따른 반도체 소자의 캐패시터 제조방법을 설명하기 위해 순차적으로 도시한 소자의 단면도.1A to 1E are cross-sectional views of devices sequentially shown to explain a method of manufacturing a capacitor of a semiconductor device according to a first embodiment of the present invention.
도 2a 및 2b는 본 발명의 제 2 실시 예에 따른 반도체 소자의 캐패시터 제조방법을 설명하기 위해 도시한 소자의 단면도.2A and 2B are cross-sectional views of a device for explaining a method of manufacturing a capacitor of a semiconductor device according to a second embodiment of the present invention.
<도면의 주요 부분에 대한 부호 설명><Description of the symbols for the main parts of the drawings>
101 : 기판 102 : 층간 절연막101 substrate 102 interlayer insulating film
103 : 콘택 플러그 104 : 하부전극103: contact plug 104: lower electrode
105A : 탄탈륨 나이트라이드 105B : 탄탈륨 옥시나이트라이드105A: tantalum nitride 105B: tantalum oxynitride
105 : 유전체막 106A : 티타늄 나이트라이드층105: dielectric film 106A: titanium nitride layer
106B : 도프트 폴리실리콘층 106 : 상부전극106B: doped polysilicon layer 106: upper electrode
107A : 탄탈륨 옥사이드 107 : 유전체막107A: tantalum oxide 107: dielectric film
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention;
도 1a 내지 1e는 본 발명의 제 1 실시 예에 따른 반도체 소자의 캐패시터 제조방법을 설명하기 위해 순차적으로 도시한 소자의 단면도이고, 도 2a 및 2b는 본 발명의 제 2 실시 예에 따른 반도체 소자의 캐패시터 제조방법을 설명하기 위해 도시한 소자의 단면도이다.1A to 1E are cross-sectional views of devices sequentially shown to explain a method of manufacturing a capacitor of a semiconductor device according to a first embodiment of the present invention, and FIGS. 2A and 2B are views of a semiconductor device according to a second embodiment of the present invention. It is sectional drawing of the element shown in order to demonstrate a capacitor manufacturing method.
도 1a에 도시된 바와 같이, 기판(101) 상에 층간 절연막(102) 및 콘택 플러그(103)를 형성한 후, 실린더 구조의 하부전극을 형성한다. 여기에서, 하부전극은 탄탈륨(Ta)을 이용하여 형성한다. 탄탈륨층은 탄탈륨 타겟을 이용한 스퍼터링 방식으로 형성하거나, 탄탈륨 인-갓 소오스(in-got source)를 가열하여 탄탈륨 원자를 증기화시켜 기판에 증착하는 증발 건조(Evaporation) 방법으로 형성한다.As shown in FIG. 1A, after forming the interlayer insulating film 102 and the contact plug 103 on the substrate 101, a lower electrode having a cylindrical structure is formed. Here, the lower electrode is formed using tantalum (Ta). The tantalum layer is formed by a sputtering method using a tantalum target or by an evaporation method in which a tantalum in-got source is heated to vaporize tantalum atoms and deposit them on a substrate.
이후, 하부전극(104) 표면을 급속 열처리 및 플라즈마 처리하여, 하부전극(104) 표면에 탄탈륨 계열의 유전물질을 형성시킨다.Thereafter, the surface of the lower electrode 104 is rapidly heat treated and plasma treated to form a tantalum-based dielectric material on the surface of the lower electrode 104.
예를 들어, 탄탈륨 옥시나이트라이드(TaON) 유전물질을 형성하는 경우에는 도 1b와 같이, NH3분위기에서 급속 열질화(Rapid Thermal Nitride; RTN)를 실시한다. 이때, 반응온도는 600 내지 1000℃로 한다. 이에 따라 하부전극(104) 표면에는 탄탈륨 나이트라이드(Ta-N; 105A)가 부착되게 된다. 이후, 도 1c에 도시된 바와 같이, 인-시튜(In-situ)로 O2분위기에서 급속 열산화(Rapid Thermal Oxide; RTO) 처리를 실시한다. 이때 반응온도는 600 내지 1000℃로 한다. 이에 따라하부전극(104) 표면에 탄탈륨 옥시나이트라이드(TaON; 105B)가 부착되게 된다. 박막 특성에 따라 RTN과 RTP 공정 순서를 바꾸어서 진행할 수 있다. 다음에, 도 1d에 도시된 것과 같이, 박막의 조밀화를 위하여 N2O, H2, N2분위기에서 저온 플라즈마처리를 실시하며, 이에 의해 결과적으로 형성되는 유전체막(105)의 두께는 80 내지 200Å 정도가 된다.For example, in the case of forming a tantalum oxynitride (TaON) dielectric material, Rapid Thermal Nitride (RTN) is performed in an NH 3 atmosphere as shown in FIG. 1B. At this time, the reaction temperature is set to 600 to 1000 ℃. Accordingly, tantalum nitride (Ta-N) 105A is attached to the lower electrode 104 surface. Thereafter, as shown in FIG. 1C, Rapid Thermal Oxide (RTO) treatment is performed in an O 2 atmosphere in an in-situ. At this time, the reaction temperature is set to 600 to 1000 ℃. Accordingly, tantalum oxynitride (TaON) 105B is attached to the lower electrode 104 surface. Depending on the thin film properties, the RTN and RTP processes can be reversed. Next, as shown in FIG. 1D, low-temperature plasma treatment is performed in an N 2 O, H 2 , or N 2 atmosphere for densification of the thin film, whereby the thickness of the dielectric film 105 formed as a result is 80-80. It is about 200Å.
한편, 탄탈륨 옥사이드(Ta2O5) 유전체막을 형성하는 경우에는 도 2a에 도시된 바와 같이, O2분위기에서 급속 열산화(Rapid Thermal Oxide; RTO) 처리를 실시한다. 이때, 반응온도는 600 내지 1000℃로 한다. 이에 따라 하부전극(104) 표면에 탄탈륨 옥사이드(Ta2O5; 107A)가 부착되게 된다. 다음에, 도 2b에 도시된 바와 같이, Ta2O5박막 내의 탄탈륨 원자와 산소 원자의 화학양론비를 조절하기 위하여, N2O 분위기에서 저온 플라즈마 처리를 실시한다. 이에 의해 결과적으로 형성되는 유전체막(107)의 두께는 80 내지 200Å 정도가 된다.In the case of forming a tantalum oxide (Ta 2 O 5 ) dielectric film, as shown in FIG. 2A, Rapid Thermal Oxide (RTO) treatment is performed in an O 2 atmosphere. At this time, the reaction temperature is set to 600 to 1000 ℃. Accordingly, tantalum oxide (Ta 2 O 5 ; 107A) is attached to the surface of the lower electrode 104. Next, as shown in FIG. 2B, a low temperature plasma treatment is performed in an N 2 O atmosphere in order to adjust the stoichiometric ratio of tantalum atoms and oxygen atoms in the Ta 2 O 5 thin film. As a result, the resultant dielectric film 107 has a thickness of about 80 to 200 kPa.
이와 같이, 본 발명은 탄탈륨 하부전극(104) 표면을 질산화 또는 산화시켜 TaON 또는 Ta2O5유전물질(105 또는 107)을 형성하되, 급속 열처리 방법과 플라즈마 처리를 이용하므로써 탄탈륨 속으로 주입되는 산소 및 질소의 확산 정도를 조절할 수 있고 유전체막을 조밀화시킬 수 있다. 따라서, 금속계열의 하부전극이 탄탈륨 계열의 유전물질 형성시 산화되어 기생 캐패시턴스로 작용하는 단점을 극복할 수 있다. 또한, 탄탈륨과 보다 높은 화학적 결합력을 가질 것으로 예측되는 확산을 통한 산화 및 질화 반응에 의해 탄탈륨 계열의 유전물질이 형성되므로써 유전체막 형성시 박막 내로 불순물이 유입되는 것을 차단할 수 있어, 안정된 전기적 특성을 갖는 유전체막 및 하부전극을 형성할 수 있다.As described above, the present invention forms TaON or Ta 2 O 5 dielectric material 105 or 107 by nitrifying or oxidizing the surface of the tantalum lower electrode 104, and oxygen is injected into tantalum by using a rapid heat treatment method and a plasma treatment. And the degree of diffusion of nitrogen can be controlled and the dielectric film can be densified. Therefore, the lower electrode of the metal series may be oxidized when the tantalum-based dielectric material is formed to overcome the disadvantage of acting as a parasitic capacitance. In addition, since tantalum-based dielectric materials are formed by oxidation and nitriding reactions through diffusion, which are expected to have a higher chemical bonding force with tantalum, impurities can be prevented from flowing into the thin film when the dielectric film is formed, thereby having stable electrical characteristics. A dielectric film and a lower electrode can be formed.
도 1e는 유전체막(105 또는 107)이 형성된 전체구조 상에 티타늄 나이트라이드층(106A) 및 도프트 폴리실리콘층(106B)으로 이루어지는 상부전극(106)을 형성하여 캐패시터 제조 공정을 완료한 상태를 나타낸다. 여기에서, 티타늄 나이트라이드층(106A)은 티타늄 클러린(TiCl4)과 암모니아(NH3)를 근원가스로 하여 600 내지 800℃ 사이의 온도에서 200 내지 300Å의 두께로 형성하고, 도프트 폴리실리콘층(106B)은 1000Å의 두께로 형성한다.FIG. 1E illustrates a state in which a capacitor manufacturing process is completed by forming an upper electrode 106 including a titanium nitride layer 106A and a doped polysilicon layer 106B on the entire structure in which the dielectric film 105 or 107 is formed. Indicates. Here, the titanium nitride layer 106A is formed with a thickness of 200 to 300 kPa at a temperature between 600 and 800 ° C using titanium chlorine (TiCl 4 ) and ammonia (NH 3 ) as the source gas, and doped polysilicon Layer 106B is formed to a thickness of 1000 mm 3.
이와 같은 방법으로 캐패시터를 형성하게 되면, 전극과 유전체막 계면에 기생 캐패시턴스가 발생되지 않으므로, 0.22㎛ 이하의 선폭기술을 갖는 메모리 소자에서 셀 내 캐패시터의 정전용량을 일정량 이상 유지하기 위한 HSG 방법을 적용하지 않게 되어 캐패시터간에 안정적인 스페이서 마진을 확보할 수 있게 된다.When the capacitor is formed in this manner, parasitic capacitance is not generated at the interface between the electrode and the dielectric film. Therefore, the HSG method is applied to maintain the capacitance of the capacitor in the cell in a memory device having a line width technology of 0.22 μm or less. This makes it possible to secure a stable spacer margin between the capacitors.
상술한 바와 같은 본 발명은 다음과 같은 효과가 있다. 첫째, 하부전극으로 전도성이 우수한 탄탈륨(Ta) 박막을 사용하는 경우, 상부전극인 티타늄 나이트라이드(TiN)층과 함께 MIM(Metal-Insulator-Metal) 구조를 형성하게 되므로써, 소자 동작시 입력 전압에 따른 캐패시턴스 변화를 배제할 수 있어 우수한 캐패시턴스 특정을 유지할 수 있다. 둘째, 산소 및 질소의 확산에 의한 산화 및 질화 반응에 의해 유전체막이 형성되므로써, 유전체막 내에 불순물이 거의 함유되지 않게 되고, 이에 따라 유전체 구성원소간 결합력이 큰 박막이 형성되어 캐패시턴스가 향상되게 된다. 셋째, 탄탈륨 하부전극의 표면을 산화 및 질화시켜 유전체막을 형성하기 때문에 하부전극과 유전체막 사이에 기생 캐패시턴스가 발생하는 것을 억제할 수 있어 보다 안정된 계면을 형성할 수 있다. 넷째, 캐패시터의 정전용량을 확보하기 위해 하부전극의 면적을 증가시킬 필요가 없으므로 캐패시터간 스페이서 마진을 보다 안정적으로 확보할 수 있다.The present invention as described above has the following effects. First, in the case of using a tantalum (Ta) thin film having excellent conductivity as the lower electrode, the metal-insulator-metal (MIM) structure is formed together with the titanium nitride (TiN) layer as the upper electrode, thereby reducing the input voltage when the device is operated. The resulting capacitance change can be eliminated to maintain good capacitance specification. Second, since the dielectric film is formed by the oxidation and nitriding reaction by the diffusion of oxygen and nitrogen, almost no impurities are contained in the dielectric film, thereby forming a thin film having a large bonding force between the dielectric elements, thereby improving capacitance. Third, since the dielectric film is formed by oxidizing and nitriding the surface of the tantalum lower electrode, parasitic capacitance can be suppressed between the lower electrode and the dielectric film, thereby forming a more stable interface. Fourth, since it is not necessary to increase the area of the lower electrode in order to secure the capacitance of the capacitor, it is possible to more secure the spacer margin between the capacitor.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1999-0065048A KR100373162B1 (en) | 1999-12-29 | 1999-12-29 | Method of manufacturing a capacitor in a semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1999-0065048A KR100373162B1 (en) | 1999-12-29 | 1999-12-29 | Method of manufacturing a capacitor in a semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010065179A KR20010065179A (en) | 2001-07-11 |
KR100373162B1 true KR100373162B1 (en) | 2003-02-25 |
Family
ID=19632254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-1999-0065048A KR100373162B1 (en) | 1999-12-29 | 1999-12-29 | Method of manufacturing a capacitor in a semiconductor device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100373162B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101047713B1 (en) | 2003-12-29 | 2011-07-08 | 엘지이노텍 주식회사 | LTC capacitor |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100772075B1 (en) * | 2001-12-20 | 2007-11-01 | 매그나칩 반도체 유한회사 | MM capacitor formation method |
KR100763506B1 (en) * | 2005-06-27 | 2007-10-05 | 삼성전자주식회사 | Capacitor manufacturing method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59215764A (en) * | 1983-05-24 | 1984-12-05 | Nec Corp | Manufacture of capacitor for semiconductor device |
JPS605555A (en) * | 1983-06-23 | 1985-01-12 | Fujitsu Ltd | Semiconductor device |
JPH0563157A (en) * | 1991-09-05 | 1993-03-12 | Mitsubishi Electric Corp | Semiconductor device |
JPH0714992A (en) * | 1993-06-15 | 1995-01-17 | Hitachi Ltd | Semiconductor device, method of manufacturing the same, and application system using the same |
KR970054073A (en) * | 1995-12-27 | 1997-07-31 | 김광호 | Method of manufacturing capacitors in semiconductor devices |
JPH11233723A (en) * | 1998-02-13 | 1999-08-27 | Sony Corp | Electronic element and its manufacture, and dielectric capacitor and its manufacture, and optical element and its manufacture |
US5985730A (en) * | 1997-06-11 | 1999-11-16 | Hyundai Electronics Industries Co., Ltd. | Method of forming a capacitor of a semiconductor device |
-
1999
- 1999-12-29 KR KR10-1999-0065048A patent/KR100373162B1/en not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59215764A (en) * | 1983-05-24 | 1984-12-05 | Nec Corp | Manufacture of capacitor for semiconductor device |
JPS605555A (en) * | 1983-06-23 | 1985-01-12 | Fujitsu Ltd | Semiconductor device |
JPH0563157A (en) * | 1991-09-05 | 1993-03-12 | Mitsubishi Electric Corp | Semiconductor device |
JPH0714992A (en) * | 1993-06-15 | 1995-01-17 | Hitachi Ltd | Semiconductor device, method of manufacturing the same, and application system using the same |
KR970054073A (en) * | 1995-12-27 | 1997-07-31 | 김광호 | Method of manufacturing capacitors in semiconductor devices |
US5985730A (en) * | 1997-06-11 | 1999-11-16 | Hyundai Electronics Industries Co., Ltd. | Method of forming a capacitor of a semiconductor device |
JPH11233723A (en) * | 1998-02-13 | 1999-08-27 | Sony Corp | Electronic element and its manufacture, and dielectric capacitor and its manufacture, and optical element and its manufacture |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101047713B1 (en) | 2003-12-29 | 2011-07-08 | 엘지이노텍 주식회사 | LTC capacitor |
Also Published As
Publication number | Publication date |
---|---|
KR20010065179A (en) | 2001-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100207444B1 (en) | High dielectric film / electrode of semiconductor device and manufacturing method thereof | |
WO2002017337A2 (en) | LOWER THERMAL BUDGET SiON BARRIER FOR MIS TANOX STACK CAPACITOR | |
KR100507860B1 (en) | Capacitor having oxidation barrier and method for fabricating the same | |
KR100417855B1 (en) | capacitor of semiconductor device and method for fabricating the same | |
KR100252055B1 (en) | Semiconductor device including capacitor and manufacturing method thereof | |
KR100373162B1 (en) | Method of manufacturing a capacitor in a semiconductor device | |
US6337291B1 (en) | Method of forming capacitor for semiconductor memory device | |
KR100772531B1 (en) | Manufacturing method of capacitor | |
US6635524B2 (en) | Method for fabricating capacitor of semiconductor memory device | |
JP4088913B2 (en) | Capacitor manufacturing method for semiconductor device | |
KR20060001048A (en) | Capacitor Formation Method of Semiconductor Device | |
US6306666B1 (en) | Method for fabricating ferroelectric memory device | |
KR100422596B1 (en) | Method for fabricating capacitor | |
KR100414868B1 (en) | Method for fabricating capacitor | |
KR100507865B1 (en) | Method for manufacturing capacitor in semiconductor device | |
KR100361205B1 (en) | Method of manufacturing a capacitor in a semiconductor device | |
KR100761406B1 (en) | Method for manufacturing a capacitor having a tantalum oxide film as a dielectric film | |
KR20010001595A (en) | Method for forming capacitor | |
KR100504434B1 (en) | Method of forming capacitor | |
KR100395903B1 (en) | Method for forming the capacitor line bottom plug of semiconductor device | |
KR100646921B1 (en) | Capacitor manufacturing method | |
KR100482752B1 (en) | Method of manufacturing of non-volatile memory device | |
KR20040059536A (en) | Method for fabricating capacitor in semiconductor device | |
KR100265339B1 (en) | Method for forming high dielectric capacitor of semiconductor device | |
US6716717B2 (en) | Method for fabricating capacitor of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19991229 |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20000718 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 19991229 Comment text: Patent Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20020322 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20021128 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20030210 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20030210 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20060118 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20061211 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20080102 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20090121 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20100126 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20110126 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20110126 Start annual number: 9 End annual number: 9 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |