[go: up one dir, main page]

KR100504434B1 - Method of forming capacitor - Google Patents

Method of forming capacitor Download PDF

Info

Publication number
KR100504434B1
KR100504434B1 KR10-1999-0026510A KR19990026510A KR100504434B1 KR 100504434 B1 KR100504434 B1 KR 100504434B1 KR 19990026510 A KR19990026510 A KR 19990026510A KR 100504434 B1 KR100504434 B1 KR 100504434B1
Authority
KR
South Korea
Prior art keywords
film
lower electrode
nitriding
capacitor
forming
Prior art date
Application number
KR10-1999-0026510A
Other languages
Korean (ko)
Other versions
KR20010008593A (en
Inventor
주광철
이기정
한일근
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR10-1999-0026510A priority Critical patent/KR100504434B1/en
Priority to GB0015991A priority patent/GB2358284B/en
Priority to US09/608,098 priority patent/US6376299B1/en
Priority to TW089113014A priority patent/TW449912B/en
Priority to JP2000199264A priority patent/JP2001053253A/en
Priority to CNB001240285A priority patent/CN100383971C/en
Priority to DE10032213A priority patent/DE10032213B8/en
Publication of KR20010008593A publication Critical patent/KR20010008593A/en
Priority to US10/086,551 priority patent/US20020100959A1/en
Application granted granted Critical
Publication of KR100504434B1 publication Critical patent/KR100504434B1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/68Capacitors having no potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02247Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by nitridation, e.g. nitridation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/68Capacitors having no potential barriers
    • H10D1/692Electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Memories (AREA)

Abstract

본 발명은 반도체장치의 커패시터 제조방법에 관한 것으로서, 특히 이 방법은 반도체기판 상부에 소자간 절연을 위한 층간 절연막의 콘택홀을 통해서 반도체 소자와 접하며 도전층으로 이루어진 하부전극을 형성하며, 하부전극 상부면에 비정질의 Ta2O5막을 형성하며, 인시튜 공정에서 플라즈마 질화처리 또는 전기로/급속 열공정을 이용한 질화처리공정을 실시하여 Ta2O5막 표면에 질화박막을 형성한 후에 질화박막 상부에 도전층으로 이루어진 상부전극을 형성하는 제조 공정을 포함한다. 따라서, 본 발명은 Ta2O5막 표면을 플라즈마 질화처리하거나 급속열 질화처리함으로써 비정질 Ta2O5막의 결정화 및 부족한 산소 주입을 위한 고온의 어닐링 공정시 발생하는 하부 전극의 산화를 방지하여 높은 정전용량과 커패시터의 신뢰성을 향상시킬 수 있다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a capacitor of a semiconductor device, and in particular, the method forms a lower electrode formed of a conductive layer in contact with a semiconductor device through a contact hole of an interlayer insulating film for inter-device insulation on a semiconductor substrate. An amorphous Ta 2 O 5 film is formed on the surface, and a nitride film is formed on the surface of the Ta 2 O 5 film by performing a nitriding process using a plasma nitriding process or an electric furnace / rapid heat process in an in situ process. And a manufacturing process for forming an upper electrode made of a conductive layer. Accordingly, the present invention prevents the oxidation of the lower electrode generated during the high temperature annealing process for crystallization of the amorphous Ta 2 O 5 film and insufficient oxygen injection by plasma-nitriding or rapid thermal nitriding the Ta 2 O 5 film surface. Capacities and capacitors can be improved.

Description

반도체장치의 커패시터 제조방법{Method of forming capacitor} Method of manufacturing capacitor of semiconductor device {Method of forming capacitor}

본 발명은 반도체 장치의 커패시터 제조방법에 관한 것으로서, 특히 커패시터의 유전막을 고유전물질인 Ta2O5로 형성할 경우 이 막에 대한 상부 전극과의 계면 안정성을 도모할 수 있도록 한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a capacitor of a semiconductor device. In particular, when the dielectric film of the capacitor is formed of Ta 2 O 5 , which is a high dielectric material, the interfacial stability with the upper electrode of the film can be achieved.

현재 반도체 소자의 고집적화를 달성하기 위하여 셀 면적의 감소 및 동작 전압의 저전압화에 관한 연구/개발이 활발하게 진행되고 있다. 더구나 반도체 소자의 고집적화가 이루어질수록 커패시터의 면적이 급격하게 감소되지만 기억소자의 동작에 필요한 전하 즉, 단위 면적에 확보되는 정전용량는 증가되어야만 한다. In order to achieve high integration of semiconductor devices, research / development has been actively conducted on reduction of cell area and reduction of operating voltage. In addition, as the integration of semiconductor devices increases, the area of the capacitor decreases drastically, but the charge required for the operation of the memory device, that is, the capacitance secured in the unit area must be increased.

커패시터의 충분한 유전 용량을 확보하기 위해서는 유전막의 박막화, 유효 표면적의 증대 등의 구조적인 연구와 기존 실리콘 산화막으로 사용하던 유전막을 NO(Nitride-Oxide) 구조 또는 ONO(Oxide-Nitride-Oxide)구조라든지 Ta2O5 또는 BST(BaSrTiO3) 등으로 대체하려는 재료적인 연구가 진행되고 있다. 더욱이 최근에는 향후 256MD 이상의 디바이스에 적용할 수 있도록 정전용량 확보에 어려움이 있는 NO, ONO의 저유전막보다는 높은 정전용량(유전상수=20∼25)을 확보할 수 있는 Ta2O5의 고유전막을 더 많이 사용하고 있다.In order to secure a sufficient dielectric capacity of the capacitor, structural studies such as thinning of the dielectric film and increasing the effective surface area, and the dielectric film used as a conventional silicon oxide film, such as NO (Nitride-Oxide) structure or ONO (Oxide-Nitride-Oxide) structure or Ta Material studies are attempting to replace 2 O 5 or BST (BaSrTiO 3 ). Moreover, in recent years, Ta 2 O 5 high-k dielectric film that can secure higher capacitance (dielectric constant = 20-25) than low dielectric film of NO and ONO, which has difficulty in securing capacitance, can be applied to devices with more than 256MD in the future. I'm using more.

도 1은 종래 기술에 의한 고 정전용량성 Ta2O5막을 갖는 스택 타입 구조의 커패시터를 나타낸 수직 단면도이다.1 is a vertical cross-sectional view showing a capacitor of a stack type structure having a high capacitance Ta 2 O 5 film according to the prior art.

이를 참조하면, 종래 커패시터 제조 공정은 반도체기판(10) 상부에 게이트 전극 및 소스 드레인접합층을 갖는 소자(도시하지 않음) 공정을 실시한 후에 층간절연층(20)을 형성한다. 그 다음에, 콘택마스크를 이용한 식각공정으로 상기 반도체기판의 예정된 부분, 즉 불순물 확산영역을 노출시키는 콘택홀(도시하지 않음)을 형성하고, 도프트 폴리실리콘을 소정 두께로 형성한 후에 사진 및 식각 공정을 이용하여 이를 패터닝하여 하부 전극(30)을 형성한다.Referring to this, in the conventional capacitor manufacturing process, the interlayer insulating layer 20 is formed after performing an element (not shown) process having a gate electrode and a source drain junction layer on the semiconductor substrate 10. Next, a contact hole (not shown) for exposing a predetermined portion of the semiconductor substrate, that is, an impurity diffusion region, is formed by an etching process using a contact mask, and after the doped polysilicon is formed to a predetermined thickness, photographs and etching are performed. The lower electrode 30 is formed by patterning it using a process.

그리고, 후속 고온 어닐링 처리에 따른 하부 전극의 산화를 억제하기 위하여 하부 전극(30) 표면에 질화 처리 공정을 실시하여 상기 하부 전극(30)의 표면에 실리콘질화박막(Si3N4)(32)을 형성한다. 이때, 질화 처리 공정은 플라즈마 질화처리, 또는 전기로(furnace) 및 급속 열처리(rapid thermal process)를 이용한다.In order to suppress oxidation of the lower electrode due to the subsequent high temperature annealing treatment, a nitride treatment process is performed on the surface of the lower electrode 30 so as to form a silicon nitride thin film (Si 3 N 4 ) 32 on the surface of the lower electrode 30. To form. In this case, the nitriding treatment process uses a plasma nitriding treatment or an electric furnace and a rapid thermal process.

그 다음에, 상기 실리콘질화박막(32) 상부에 고유전체막으로서 비정질의 Ta2O5 박막(34)을 증착한다. 이때, Ta2O5 박막(34)은 박막의 질이 우수한 PECVD(Plasma Enhanced Chemical Vapor Deposition) 방식, 또는 상대적으로 박막의 질은 떨어지지만 스텝 커버리지(step coverage)가 우수한 LPCVD(Low Pressure Chemical Vapor Deposition) 방식을 이용한다.Next, an amorphous Ta 2 O 5 thin film 34 is deposited on the silicon nitride thin film 32 as a high dielectric film. At this time, the Ta 2 O 5 thin film 34 has a Plasma Enhanced Chemical Vapor Deposition (PECVD) method having excellent thin film quality, or a Low Pressure Chemical Vapor Deposition having relatively low step coverage but low step quality. ) Method.

그리고, Ta2O5 박막(34) 상부에 도전체 장벽(conduction barrier)으로서 TiN 박막(36)을 LPCVD나 스퍼터링 방법으로 증착한 후에 그 위에 도프트 폴리실리콘막(38)을 적층해서 상부 전극(T)을 형성한다.After the TiN thin film 36 is deposited on the Ta 2 O 5 thin film 34 as a conductive barrier by LPCVD or sputtering, a doped polysilicon film 38 is laminated thereon to form an upper electrode ( Form T).

그러나, 상기와 같은 커패시터 제조 공정시 687K(414℃)이상의 온도에서는 5TiN+2Ta2O5→5TiO2+4TaN+N2로 반응하여 TiO2의 발생을 야기시켜 Ta2O5의 열화가 일어날 수 있다. 즉, 이러한 반응으로 인해 유전체막과 상부전극 계면에 TiO2라는 유전물질이 생성되어 Ta2O5와 직렬 커패시터를 형성함으로써 전체 정전용량을 감소시키며 또한 TiO2가 자체적으로 갖고 있는 높은 누설 특성에 의해 전체 유전체의 누설 전류의 증가를 초래한다.However, 5TiN + 2Ta 2 O 5 → 5TiO 2 + 4TaN + at a temperature above 687K (414 ° C) in the capacitor manufacturing process as described above. Reaction with N 2 may lead to generation of TiO 2 and deterioration of Ta 2 O 5 may occur. That is, due to this reaction, a dielectric material called TiO 2 is formed at the interface between the dielectric film and the upper electrode to form a series capacitor with Ta 2 O 5 , thereby reducing the total capacitance. Also, due to the high leakage characteristic of TiO 2 itself This results in an increase in the leakage current of the entire dielectric.

그리고, LPCVD 방법을 이용해서 증착한 TiN 박막(36) 형성방법은 대개 TiCl4와 NH3 소스를 사용하기 때문에 TiCl4의 분해를 위해서는 600℃ 이상의 고온이 필요하며 실제 증착공정은 박막내의 Cl(chlorine) 농도를 조절하기 위해서 이보다 더 높은 온도에서 이루어지고 있다. 이와 같은 고온 공정은 Ta2O5막과 하부전극 사이에서 원자들의 상호 확산을 야기시킬 수 있고, 또 반응성이 큰 NH3 가스를 사용함으로써 챔버내 기체상에서 반응이 활성화되어 파티클이 다량 발생하여 막의 균일도가 약해져서 결국 커패시터의 신뢰성이 저하된다.In addition, since the TiN thin film 36 formed by the LPCVD method generally uses TiCl 4 and NH 3 sources, a high temperature of 600 ° C. or higher is required for the decomposition of TiCl 4 , and the actual deposition process requires Cl (chlorine) in the thin film. This is done at higher temperatures to control the concentration. This high temperature process can cause mutual diffusion of atoms between the Ta 2 O 5 film and the lower electrode, and by using a highly reactive NH 3 gas, the reaction is activated in the gas phase in the chamber to generate a large amount of particles, resulting in uniformity of the film. Becomes weak, which in turn degrades the reliability of the capacitor.

도 2는 종래 기술에 의한 고 정전용량성 Ta2O5막과 HSG의 하부전극을 갖는 실린더 타입 구조의 커패시터를 나타낸 수직 단면도이다.2 is a vertical cross-sectional view showing a capacitor of a cylinder type structure having a high capacitance Ta 2 O 5 film according to the prior art and a lower electrode of an HSG.

이러한 실린더 타입 구조의 커패시터는 하부전극의 단면적을 증가시키기 위한 방법으로 HSG(Hemi Spherical Grain) 방식을 이용할 경우 도프트 폴리실리콘막(30')에 HSG 공정을 실시하여 그 표면을 반구형 요철막(31')으로 성장시켜서 하부 전극(B)을 형성한다. 이후 공정은 위에서 설명한 바와 동일하다. Such a cylinder-type capacitor is a method for increasing the cross-sectional area of the lower electrode, when the HSG (Hemi Spherical Grain) method is used to perform the HSG process on the doped polysilicon film 30 'and the surface of the hemispherical uneven film 31 ') To form a lower electrode (B). The process is the same as described above.

한편, 상기 TiN 박막(36)이 상부의 도프트 폴리실리콘(38)으로부터 장벽 역할을 하기 위해서는 그 두께가 200∼400Å가 되어야 하지만, 스퍼터링 방법을 이용해서 증착할 경우에는 TiN 박막(36)의 스텝 커버리지가 불량해진다. 이에 따라, 상기와 같은 3차원의 복잡한 커패시터 구조 또는 HSG 방식을 적용한 하부 전극을 갖는 커패시터에서는 그레인과 그레인사이에 공극(void)이 발생하게 되어 결국, 커패시터의 특성이 저하된다. On the other hand, in order for the TiN thin film 36 to act as a barrier from the upper doped polysilicon 38, the thickness of the TiN thin film 36 should be 200 to 400 kPa. The coverage is poor. As a result, voids are generated between the grains and the grains in the capacitor having the three-dimensional complex capacitor structure or the lower electrode to which the HSG method is applied. As a result, the characteristics of the capacitor are deteriorated.

본 발명의 목적은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 커패시터 제조 공정시 유전물질을 Ta2O5로 사용할 경우 그 Ta2O5막 표면을 플라즈마 질화처리하거나 급속열 질화처리함으로써 비정질 Ta2O5막의 결정화 및 부족한 산소 주입을 위한 고온의 어닐링 공정시 발생하는 하부 전극의 산화를 방지하여 높은 정전용량을 확보하면서 커패시터의 신뢰성을 향상시킬 수 있는 반도체장치의 커패시터 제조방법을 제공하는데 있다.An object of the present invention is to solve the problems of the prior art as described above, when using Ta 2 O 5 dielectric material in the capacitor manufacturing process, the surface of the Ta 2 O 5 film by plasma nitridation or rapid thermal nitriding to amorphous Ta 2 The present invention provides a method of manufacturing a capacitor of a semiconductor device capable of improving the reliability of a capacitor while ensuring high capacitance by preventing oxidation of a lower electrode generated during a high temperature annealing process for crystallization of an O 5 film and insufficient oxygen injection.

상기 목적을 달성하기 위하여 본 발명은 하부 전극과 그 위의 상부전극 및 상기 전극들에 내재된 고유전체 Ta2O5막으로 이루어진 커패시터의 제조 공정에 있어서, 반도체기판 상부에 소자간 절연을 위한 층간 절연막의 콘택홀을 통해서 반도체 소자와 접하며 도전층으로 이루어진 하부전극을 형성하는 단계와, 하부전극 상부면에 비정질의 Ta2O5막을 형성하는 단계와, 인시튜 공정에서 플라즈마 질화처리 또는 전기로/급속 열공정을 이용한 질화처리공정을 실시하여 Ta2O5막 표면에 질화박막을 형성하는 단계와, 질화박막 상부에 도전층으로 이루어진 상부전극을 형성하는 단계를 포함하는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a method of manufacturing a capacitor including a lower electrode, an upper electrode thereon, and a high dielectric Ta 2 O 5 film inherent in the electrodes. Forming a lower electrode made of a conductive layer in contact with the semiconductor element through a contact hole of the insulating film, forming an amorphous Ta 2 O 5 film on the upper surface of the lower electrode, and plasma nitriding or electric furnace / Forming a nitride film on the surface of the Ta 2 O 5 film by performing a nitriding treatment process using a rapid thermal process, and forming an upper electrode formed of a conductive layer on the nitride film.

본 발명에 따른 질화박막의 형성을 위한 플라즈마 질화처리 공정은 200∼400℃의 온도 조건과 질소가 함유된 가스 분위기인 NH3, N2/O2 또는 N2O 분위기에서 실시하고, 전기로 및 급속열 질화처리 공정을 이용할 경우에는 750∼950℃의 온도 조건과 질소가 함유된 가스 분위기인 NH3, N2/O2 또는 N2O 분위기에서 어닐링하는 것을 특징으로 한다.Plasma nitridation process for the formation of the thin nitride film according to the present invention is carried out in the NH 3 , N 2 / O 2 or N 2 O atmosphere which is a gas atmosphere containing nitrogen and a temperature condition of 200 ~ 400 ℃, an electric furnace and In the case of using the rapid thermal nitriding process, the annealing is performed in an NH 3 , N 2 / O 2, or N 2 O atmosphere, which is a gas atmosphere containing 750 to 950 ° C. and a nitrogen atmosphere.

이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세하게 설명하고자 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 3a 내지 도 3d는 본 발명의 일실시예에 따른 스택 타입 구조의 커패시터 제조공정을 순서적으로 나타낸 수직 단면도들로서, 이를 참조하면 본 발명의 커패시터 제조방법은 다음과 같다.3A to 3D are vertical cross-sectional views sequentially showing a capacitor manufacturing process of a stack type structure according to an embodiment of the present invention. Referring to this, the capacitor manufacturing method of the present invention is as follows.

우선, 도 3a에 도시된 바와 같이 반도체기판으로서 실리콘기판(10)의 활성 영역 상부면에 게이트 전극, 소스/드레인을 갖는 반도체소자(도시하지 않음)를 형성하고, 그 기판(10) 전면에 USG(Undoped Silicate Glass), BPSG(Boro Phospho Silicate Glass) 및 SiON 중에서 선택한 물질을 증착하고 화학적기계적연마(Chemical Mechanical Polishing) 공정을 실시하여 층간 절연막(20)을 형성한다. 그 다음, 기판(10)의 활성영역 즉, 드레인 영역과 접촉하는 커패시터의 단면적을 확보하기 위하여 사진 및 식각 공정으로 상기 층간 절연막(20)을 선택 식각하여 콘택홀(도시하지 않음)을 형성하고, 콘택홀 내에 스택 구조의 하부 전극의 제조공정을 실시한다. 이때, 하부전극의 평면적을 늘리기 위하여 HSG 공정을 이용하는데, 우선 층간절연막(20)의 콘택홀에 비정질의 도프트 실리콘을 매립하도록 증착하한 후에 식각 공정을 이용하여 실리콘층을 실린더 구조 형태로 패터닝하고, 결정화 온도 이하 상태에서 표면에 비정질 상태의 시드(seed)를 반구형 요철형태로 성장시켜서 HSG 구조의 하부전극(40)을 형성한다. 추가적으로, 상기 하부전극(40)에 충분한 P(phosphorus)를 공급하기 위하여 PH3처리를 실시해준다.First, as shown in FIG. 3A, a semiconductor device (not shown) having a gate electrode and a source / drain is formed on the upper surface of the active region of the silicon substrate 10 as a semiconductor substrate, and USG is formed on the entire surface of the substrate 10. (Undoped Silicate Glass), a material selected from Boro Phospho Silicate Glass (BPSG), and SiON is deposited and a chemical mechanical polishing process is performed to form an interlayer insulating film 20. Then, in order to secure the cross-sectional area of the capacitor in contact with the active region of the substrate 10, that is, the drain region, the interlayer insulating layer 20 is selectively etched by photolithography and etching to form a contact hole (not shown). The manufacturing process of the lower electrode of a stack structure is performed in a contact hole. In this case, an HSG process is used to increase the planar area of the lower electrode. First, an amorphous doped silicon is deposited in the contact hole of the interlayer insulating film 20, and then the silicon layer is patterned into a cylindrical structure using an etching process. In the state below the crystallization temperature, an amorphous seed is grown on the surface in a hemispherical irregular shape to form the lower electrode 40 of the HSG structure. In addition, PH 3 treatment is performed to supply sufficient P (phosphorus) to the lower electrode 40.

그 다음, Ta2O5막 증착과 후속 열처리시 하부전극의 산화를 방지하기 위해 인시튜(in-situ) 공정으로 200∼400℃ 온도 범위에서 플라즈마를 이용한 NH3분위기(또는 N2/H2, N2O) 조건에서 상기 하부 전극(40) 표면을 질화처리함으로써 얇은 실리콘질화막(32)을 형성한다. 상기 공정에서 플라즈마 대신에 750∼950℃에서 1분∼30분 동안 급속 열 질화처리(Rapid Thermal Nitridation) 공정을 실시할 수도 있다.Then, NH 3 atmosphere (or N 2 / H 2) using plasma in the temperature range of 200-400 ° C. in an in-situ process to prevent oxidation of the lower electrode during Ta 2 O 5 film deposition and subsequent heat treatment. , N 2 O) to form a thin silicon nitride film 32 by nitriding the surface of the lower electrode 40. In the above process, a rapid thermal nitriding process may be performed at 750 ° C. to 950 ° C. for 1 minute to 30 minutes.

그 다음 도 3b에 나타난 바와 같이 고유전물질인 TaCl5 내지 Ta(OC2H5) 5와 O2가스를 이용한 LPCVD법을 실시하여 실리콘질화막(42)위에 비정질의 Ta2O5막(44)을 형성한다.Next, as shown in FIG. 3B, an amorphous Ta 2 O 5 film 44 is formed on the silicon nitride film 42 by LPCVD using TaCl 5 to Ta (OC 2 H 5 ) 5 and O 2 gas. To form.

그 다음 도 3c에 도시된 바와 같이, 후처리된 Ta2O5막(44)위에 질화박막(46)을 10∼20Å의 두께로 형성하는데, 그 이유는 이후 형성될 상부전극의 산화 및 전하 전도성을 방지하도록 하기 위함이다.Then, as shown in FIG. 3C, a thin nitride film 46 is formed on the post-processed Ta 2 O 5 film 44 to a thickness of 10 to 20 kPa, because the oxidation and charge conductivity of the upper electrode to be formed thereafter. This is to prevent the problem.

이때, 질화박막(46)은 인시튜 공정에서 플라즈마 질화처리 내지 전기로 및 급속 열공정을 이용한 질화처리공정에 의해 형성되며, 플라즈마 질화처리 공정은 200∼400℃의 온도 조건과 질소가 함유된 가스 분위기인 NH3, N2/O2 또는 N2O 분위기에서 실시하고, 전기로 및 급속 열 질화처리 공정은 750∼950℃의 온도 조건과 질소가 함유된 가스 분위기인 NH3, N2/O2 또는 N2O 분위기에서 어닐링하는 것이다.In this case, the thin nitride film 46 is formed by a plasma nitridation process through an in-situ process or a nitriding process using an electric furnace and a rapid thermal process, and the plasma nitridation process is a gas containing nitrogen and a temperature condition of 200 to 400 ° C. In an atmosphere of NH 3 , N 2 / O 2 or N 2 O, the electric furnace and the rapid thermal nitriding process are carried out at a temperature of 750 to 950 ° C. and a nitrogen atmosphere of NH 3 , N 2 / O. Annealing in a 2 or N 2 O atmosphere.

한편, 질화처리 공정시 비정질의 Ta2O5막(44)을 결정화시키거나 인시튜 및 클러스터 타입으로 O2 또는 N2O 분위기에서 건식(dry) 산화 또는 라이트(light) 산화 공정을 실시하여 이를 결정화시킨다.On the other hand, during the nitriding process, the amorphous Ta 2 O 5 film 44 is crystallized or subjected to dry oxidation or light oxidation in an in situ and cluster type in an O 2 or N 2 O atmosphere. Crystallize.

이어서, 도 3d에 나타난 바와 같이, 상기 질화박막(46) 상부면에 도전층으로서 불순물이 도핑된 폴리실리콘을 증착하고 식각공정으로 이를 패터닝하여 상부전극(48)을 형성한다. 이때, 상부전극(48)의 두께는 1000∼1500Å으로 한다.Subsequently, as shown in FIG. 3D, polysilicon doped with impurities as a conductive layer is deposited on the upper surface of the nitride film 46 and patterned by an etching process to form an upper electrode 48. At this time, the thickness of the upper electrode 48 is set to 1000 to 1500 mW.

상기한 바와 같이 본 발명은 스텝 커버리지 및 Cl 오염의 문제가 없는 플라즈마 및 급속 열 질화 처리 공정을 이용하기 때문에 상부 전극의 증착과정에서 하부 전극인 폴리실리콘의 산화를 방지할 수 있으며 30Å이하의 유효 산화막 두께를 얻을 수 있어서 커패시터의 정전용량을 높일 수 있다. As described above, since the present invention uses a plasma and rapid thermal nitriding process without the problem of step coverage and Cl contamination, it is possible to prevent oxidation of polysilicon, which is the lower electrode, during the deposition of the upper electrode, and an effective oxide film of 30 kPa or less. The thickness can be obtained to increase the capacitance of the capacitor.

이는 종래 기술에서 유전체 Ta2O5막을 증착한 후 비정질막을 결정화하기 위하여 고온의 어닐링 처리를 실시함에 따라 하부 전극의 산화 공정이 일어나 유효 산화막 두께가 증가하게 되어 결국 커패시터의 정전용량이 감소하게 되는 문제점을 개선한 것이다.This is because in the prior art, after depositing the dielectric Ta 2 O 5 film, a high temperature annealing treatment is performed to crystallize the amorphous film. Will be improved.

그리고, 본 발명은 급속 열 질화 공정을 이용할 경우 Ta2O5막의 표면에 균일한 질화막을 형성할 뿐만 아니라 고온 어닐링에 의한 Ta2O5막의 결정화 효과 또한 동시에 얻을 수 있다.Incidentally, the present invention is used when a rapid thermal nitridation process Ta 2 O 5 film as well as to form a uniform nitride film on the surface of Ta 2 O 5 film is crystallized by a high temperature annealing effect can be obtained at the same time.

또한, 본 발명을 간단한 스택 구조의 커패시터에서 적용할 경우 256DRAM급 이상에서 요구하는 25fF/cell 이상의 정전용량을 얻을 수 있을 뿐만 아니라, Ta2O5막의 고온 어닐링 처리를 인시튜 및 클러스터 타입으로 진행할 수 있기 때문에 엑스-시튜(ex-situ)로 진행시에 필요한 세정 공정을 생략할 수 있어 제조 공정을 단축할 수 있는 효과가 있다.In addition, when the present invention is applied to a capacitor having a simple stack structure, not only can a capacitance of 25 fF / cell or more required in a 256-DRAM class or more can be obtained, but also high temperature annealing treatment of Ta 2 O 5 film can be performed in situ and cluster type. As a result, the cleaning process required at the time of ex-situ can be omitted, thereby shortening the manufacturing process.

도 1은 종래 기술에 의한 고 정전용량성 Ta2O5막을 갖는 스택 타입 구조의 커패시터를 나타낸 수직 단면도,1 is a vertical cross-sectional view showing a capacitor of a stack type structure having a high capacitance Ta 2 O 5 film according to the prior art,

도 2는 종래 기술에 의한 고 정전용량성 Ta2O5막과 HSG의 하부전극을 갖는 실린더 타입 구조의 커패시터를 나타낸 수직 단면도,2 is a vertical cross-sectional view showing a capacitor of a cylinder type structure having a high capacitance Ta 2 O 5 film according to the prior art and a lower electrode of an HSG;

도 3a 내지 도 3d는 본 발명의 일실시예에 따른 스택 타입 구조의 커패시터 제조공정을 순서적으로 나타낸 수직 단면도들. 3A to 3D are vertical cross-sectional views sequentially illustrating a capacitor manufacturing process of a stack type structure according to an embodiment of the present invention.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10: 실리콘기판 20: 층간 절연막10: silicon substrate 20: interlayer insulating film

40: 하부전극 42: 실리콘질화막40: lower electrode 42: silicon nitride film

44: Ta2O5막 46: 질화박막44: Ta 2 O 5 Membrane 46: Nitride Thin Film

48: 상부전극48: upper electrode

Claims (4)

하부 전극과 그 위의 상부전극 및 상기 전극들에 내재된 고유전체 Ta2O5막으로 이루어진 커패시터의 제조 공정에 있어서,In the manufacturing process of a capacitor consisting of a lower electrode, an upper electrode thereon and a high dielectric Ta 2 O 5 film inherent to the electrodes, 반도체기판 상부에 소자간 절연을 위한 층간 절연막의 콘택홀을 통해서 반도체 소자와 접하며 도전층으로 이루어진 하부전극을 형성하는 단계;Forming a lower electrode formed of a conductive layer on and in contact with the semiconductor device through a contact hole of an interlayer insulating film for insulating between devices; 상기 하부전극 상부면에 Ta2O5막을 형성하는 단계;Forming a Ta 2 O 5 film on an upper surface of the lower electrode; 인시튜 공정에서 질소가 함유된 가스 분위기인 NH3 또는 N2/O2 또는 N2O 분위기에서 플라즈마 질화처리 또는 질소가 함유된 가스 분위기인 NH3 또는 N2/O2 또는 N2O 분위기에서 전기로/급속 열공정을 이용한 질화처리공정을 실시하여 상기 Ta2O5막 표면에 질화박막을 형성하는 단계; 및In an in situ process, in a nitrogen atmosphere of NH 3 or N 2 / O 2 or N 2 O, plasma nitriding or in a nitrogen atmosphere of NH 3 or N 2 / O 2 or N 2 O Forming a nitride film on the surface of the Ta 2 O 5 film by performing a nitriding treatment process using an electric furnace / quick thermal process; And 상기 질화박막 상부에 도전층으로 이루어진 상부전극을 형성하는 단계를 포함하여 이루어진 것을 특징으로 하는 반도체장치의 커패시터 제조방법.And forming an upper electrode formed of a conductive layer on the thin nitride film. 제 1 항에 있어서,The method of claim 1, 상기 질화박막의 형성을 위한 플라즈마 질화처리 공정은 200∼400℃의 온도 조건에서 실시하는 것을 특징으로 하는 반도체장치의 커패시터 제조방법.The plasma nitridation process for forming the thin nitride film is carried out at a temperature of 200 ~ 400 ℃ a capacitor manufacturing method of a semiconductor device. 제 1항에 있어서,The method of claim 1, 상기 질화박막의 두께는 10∼20Å으로 하는 것을 특징으로 하는 반도체장치의 커패시터 제조방법.And a thickness of the thin nitride film is 10 to 20 kW. 제 1항에 있어서,The method of claim 1, 상기 질화박막의 형성을 위한 전기로 및 급속 열 질화처리 공정은 750∼950℃의 온도 조건에서 어닐링하는 것을 특징으로 하는 반도체장치의 커패시터 제조방법.An electric furnace and a rapid thermal nitriding process for forming the thin nitride film are annealed at a temperature condition of 750 ~ 950 ℃.
KR10-1999-0026510A 1999-07-02 1999-07-02 Method of forming capacitor KR100504434B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR10-1999-0026510A KR100504434B1 (en) 1999-07-02 1999-07-02 Method of forming capacitor
GB0015991A GB2358284B (en) 1999-07-02 2000-06-29 Method of manufacturing capacitor for semiconductor memory device
US09/608,098 US6376299B1 (en) 1999-07-02 2000-06-30 Capacitor for semiconductor memory device and method of manufacturing the same
TW089113014A TW449912B (en) 1999-07-02 2000-06-30 Capacitor for semiconductor memory device and method of manufacturing the same
JP2000199264A JP2001053253A (en) 1999-07-02 2000-06-30 Capacitor for semiconductor memory device and method of manufacturing the same
CNB001240285A CN100383971C (en) 1999-07-02 2000-07-02 Capacitor for semiconductor memory element and manufacturing method thereof
DE10032213A DE10032213B8 (en) 1999-07-02 2000-07-03 A method of manufacturing a capacitor for a semiconductor memory device
US10/086,551 US20020100959A1 (en) 1999-07-02 2002-03-04 Capacitor for semiconductor memory device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0026510A KR100504434B1 (en) 1999-07-02 1999-07-02 Method of forming capacitor

Publications (2)

Publication Number Publication Date
KR20010008593A KR20010008593A (en) 2001-02-05
KR100504434B1 true KR100504434B1 (en) 2005-07-29

Family

ID=19598844

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0026510A KR100504434B1 (en) 1999-07-02 1999-07-02 Method of forming capacitor

Country Status (1)

Country Link
KR (1) KR100504434B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101153978B1 (en) * 2002-03-26 2012-06-14 카부시키카이샤 시.브이.리서어치 Method of manufacturing amorphous metal oxide film and methods of manufacturing capacitance element having amorphous metal oxide film and semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243524A (en) * 1992-02-28 1993-09-21 Nec Corp Manufacture of semiconductor device
JPH0766369A (en) * 1993-08-26 1995-03-10 Nec Corp Method for manufacturing semiconductor device
JPH0955478A (en) * 1995-08-14 1997-02-25 Hitachi Ltd Method for manufacturing semiconductor integrated circuit
JPH10200074A (en) * 1996-04-10 1998-07-31 United Microelectron Corp Method for forming low pressure chemical vapor deposited tantalum oxide coatings with low leakage current
KR19990001005A (en) * 1997-06-11 1999-01-15 김영환 Capacitor Formation Method of Semiconductor Device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243524A (en) * 1992-02-28 1993-09-21 Nec Corp Manufacture of semiconductor device
JPH0766369A (en) * 1993-08-26 1995-03-10 Nec Corp Method for manufacturing semiconductor device
JPH0955478A (en) * 1995-08-14 1997-02-25 Hitachi Ltd Method for manufacturing semiconductor integrated circuit
JPH10200074A (en) * 1996-04-10 1998-07-31 United Microelectron Corp Method for forming low pressure chemical vapor deposited tantalum oxide coatings with low leakage current
KR19990001005A (en) * 1997-06-11 1999-01-15 김영환 Capacitor Formation Method of Semiconductor Device

Also Published As

Publication number Publication date
KR20010008593A (en) 2001-02-05

Similar Documents

Publication Publication Date Title
US6218260B1 (en) Methods of forming integrated circuit capacitors having improved electrode and dielectric layer characteristics and capacitors formed thereby
JPH06244364A (en) Method for manufacturing semiconductor device
KR100417855B1 (en) capacitor of semiconductor device and method for fabricating the same
KR100321178B1 (en) Method of forming capacitor with TaON dielectic layer
KR100327584B1 (en) Method of forming high efficiency capacitor in semiconductor device
JP2000195956A (en) Method of forming lower electrode of capacitor
KR100519514B1 (en) Method of forming capacitor provied with TaON dielectric layer
JP3112073B2 (en) Method for manufacturing semiconductor device
KR100504434B1 (en) Method of forming capacitor
KR100342873B1 (en) Method for forming capacitor of semiconductor device
KR20010017212A (en) Method of manufacturing a capacitor in a semiconductor device
KR100882090B1 (en) Capacitor Manufacturing Method of Semiconductor Device
KR100327587B1 (en) Method of forming capacitor provided with TaON dielectric layer
KR100414868B1 (en) Method for fabricating capacitor
KR20010008502A (en) Method for forming capacitor of semiconductor device
JPH11163282A (en) Method for manufacturing semiconductor device
KR100395903B1 (en) Method for forming the capacitor line bottom plug of semiconductor device
KR20010008503A (en) Method of forming capacitor provied with TaON dielectric layer
KR100574473B1 (en) Capacitor Manufacturing Method of Semiconductor Device_
KR100327574B1 (en) Capacitor Manufacturing Method of Semiconductor Device
KR100437618B1 (en) METHOD FOR FORMING SEMICONDUCTOR CAPACITOR USING (Ta-Ti)ON DIELECTRIC THIN FILM
KR20020018355A (en) Method of fabricating a capacitor in a semiconductor device
KR100865545B1 (en) Capacitor Formation Method of Semiconductor Device
KR100636661B1 (en) High reliability capacitor manufacturing method
KR100380269B1 (en) Method for manufacturing capacitor in semiconductor device

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19990702

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20030204

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 19990702

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20041220

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20050613

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20050721

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20050722

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20080619

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20090624

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20100624

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20110627

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20120625

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20120625

Start annual number: 8

End annual number: 8

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee