[go: up one dir, main page]

KR100368241B1 - A method for manufacturing hot rolled trip steels with excellent flange formability - Google Patents

A method for manufacturing hot rolled trip steels with excellent flange formability Download PDF

Info

Publication number
KR100368241B1
KR100368241B1 KR10-1998-0058731A KR19980058731A KR100368241B1 KR 100368241 B1 KR100368241 B1 KR 100368241B1 KR 19980058731 A KR19980058731 A KR 19980058731A KR 100368241 B1 KR100368241 B1 KR 100368241B1
Authority
KR
South Korea
Prior art keywords
steel
hot rolled
water cooling
added
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
KR10-1998-0058731A
Other languages
Korean (ko)
Other versions
KR20000042511A (en
Inventor
박성호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1998-0058731A priority Critical patent/KR100368241B1/en
Publication of KR20000042511A publication Critical patent/KR20000042511A/en
Application granted granted Critical
Publication of KR100368241B1 publication Critical patent/KR100368241B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 플랜지 가공성이 우수한 열연 변태유기소성강 제조방법에 관한 것이며, 그 목적하는 바는 성분조성 및 열연조건을 적절히 제어함으로서, 기타의 열처리공정 없이 생산이 가능하며, 인장강도가 우수하면서 국부연성특성이 우수하여 플랜지 가공성이 향상된 변태유기소성강을 제조할 수 있는 방법을 제공하는데 있다.The present invention relates to a method for producing a hot rolled metamorphic organic plastic steel having excellent flange workability, and its purpose is to control the composition and hot rolling conditions appropriately, so that it can be produced without other heat treatment processes, and has excellent tensile strength and local ductility. The present invention provides a method for producing a transformed organic plastic steel having excellent flange workability.

상기 목적을 달성하기 위한 본 발명은 중량%로, 0.16-0.20%C, 1.5-1.9%Si, 1.4-1.6%Mn, 0.02-0.10%Al를 함유하고, 여기에 Cu를 0.5%이상을 첨가하고, Ni을 0.5%이상 첨가하는 동시에 0.17≤%C+%Cu/15≤0.21의 범위를 만족하고 나머지는 Fe 및 불가피한 불순원소로 구성되는 강재를, 780℃이상의 온도범위에서 열간압연을 마무리하고 공냉한 다음, 680-720℃에서 수냉을 개시한 다음, 420-500℃의 온도범위에서 수냉각을 정지한 후, 서냉하는 것을 특징으로 하는 플렌지 가공성이 우수한 열연 변태유기소성강 제조방법에 관한 것을 그 요지로 한다.The present invention for achieving the above object by weight, contains 0.16-0.20% C, 1.5-1.9% Si, 1.4-1.6% Mn, 0.02-0.10% Al, to which Cu is added at least 0.5% , Ni is added 0.5% or more, while satisfying the range of 0.17≤% C +% Cu / 15≤0.21, and the rest is made of Fe and unavoidable impurity elements. Next, the present invention relates to a method for producing a hot rolled metamorphic organic plastic steel having excellent flange workability, which is characterized by starting water cooling at 680-720 ° C., stopping water cooling at a temperature range of 420-500 ° C., and then performing slow cooling. Shall be.

Description

플랜지 가공성이 우수한 열연 변태유기소성강 제조방법{A METHOD FOR MANUFACTURING HOT ROLLED TRIP STEELS WITH EXCELLENT FLANGE FORMABILITY}Method for manufacturing hot rolled metamorphic organic plastic steel with excellent flange workability {A METHOD FOR MANUFACTURING HOT ROLLED TRIP STEELS WITH EXCELLENT FLANGE FORMABILITY}

본 발명은 자동차 부품 등 여러용도로 사용되는 변태유기소성강 제조방법에 관한 것으로, 보다 상세하게는 인장강도 80kg/mm 2 이상, 연신율 25%이상인 플렌지 가공성이 우수한 열연 변태유기소성강을 제조하는 방법에 관한 것이다.Method of this invention for producing relates to the transformation of organic plastic steel production method that is used for various purposes such as automobile parts, and more particularly, the tensile strength of 80kg / mm 2 or more, excellent in elongation of 25% or more flange formability hot rolled transformation organic plastic steel It is about.

변태유기소성강(이하, "TRIP강"이라고도 한다, TRansforamtion Induced Plasticity강의 약어임)은 기본적으로 Si-Mn형 강재로서 스크랩(scrap) 재활용중 미량잔류원소(tramp element)의 영향이 없으므로 환경친화적이며, 또한 일반적인 압연강재에비해 훨씬 높은 범위의 고강도와 더불어 고연성을 보이고 있으므로 가공용 고장력강의 용도로 많이 활용될 차세대 강재로 주목받고 있다. 특히 열연 TRIP강의 용도는 가공을 많이 받으면서도 고강도가 요구되는 부품을 위주로 활용이 크게 증가될 전망이며, 따라서 중요한 용도중의 하나로서 자동차의 휠디스크(wheel disk)를 들 수 있다. 이와 같은 부품을 제조하기 위해서는 플랜지(flange) 가공성이 좋아야 하는데, 플랜지 가공성은 연신율이 우수하다고 해서 반드시 좋아지는 재질특성이 아니기 때문에 소재의 플랜지 가공성을 좋게하는 것이 매우 필요하다. 이같은 플랜지 가공성이 우수한 강재는 실제 가공을 거쳐 부품으로 제조되는 경우 견뎌야 되는 국부 가공특성이 좋으므로, 여러 가지 가공용도로 실용화되기에 적합한 강재이다.Metamorphic organic plastic steel (hereinafter also referred to as "TRIP steel", abbreviation for TRansforamtion Induced Plasticity steel) is basically Si-Mn type steel, which is environmentally friendly because it has no influence of trace elements during scrap recycling. Also, since it shows much higher strength and high ductility than general rolled steel, it is attracting attention as a next-generation steel to be widely used as a high tensile steel for processing. In particular, the use of hot rolled TRIP steel is expected to increase significantly, especially for parts that require high strength while undergoing a lot of processing. Therefore, one of the important uses is a wheel disk of an automobile. In order to manufacture such a part, flange workability should be good, but since flange workability is not necessarily improved by good elongation, it is very necessary to improve flange workability of a material. Such a flange is excellent steel workability is good local processing characteristics to be tolerated when manufactured as a part through the actual machining, it is a steel suitable for practical use in various machining applications.

고강도 고연성 열연강판은 상당히 많은 종류의 제조방법이 개발되어 실제 제품화에 응융되어 왔다. 기존의 고강도 고연성강의 개발은 80년대에 듀얼페이스(dual phase)강 (ferrite와 martensite의 복합조직), 트리페이스(triphase)강 (ferrite, bainite 및 martensite의 복합조직), 페라이트-베이나이트(ferrite-bainite) 복합조직강 등에 대하여 주로 행해졌다. 이러한 강재는 인장강도가 약 60kg/㎟에 이르고 있으며, 연신율이 약 30%로 고강도와 더불어 고연성을 보이는 특성이 있다. 90년대에 들어 TRIP강이 개발되어 현재에는 상용화를 위해 노력하고 있는데, 본 강재의 특성은 인장강도가 약 80kg/㎟에 이르고 있으며, 연신율이 우수하여 고강도-고연성을 나타내는 것이다. 듀얼페이스강내 연질의 페라이트를 Ti를 이용한 석출강화에 의해 효과적으로 강화시킨 석출강화형 듀얼페이스 강판도 개발된 바 있다 (日本鐵鋼新聞, 93년 9월 4일자). 이러한 제품개발은 주로 일본을 중심으로 한 선진국에서 이루어져 왔는데, 이하에 개발된 공지의 제조기술에 대하여 요약하였다.High-strength, high-ductility hot-rolled steel sheet has been developed and manufactured in a substantial number of manufacturing methods have been incorporated into actual commercialization. The development of high strength high ductility steels in the 80's was due to the dual phase steel (composite structure of ferrite and martensite), triphase steel (composite structure of ferrite, bainite and martensite), and ferrite-bainite (ferrite). -bainite) mainly for composite tissue steels. These steels have a tensile strength of about 60 kg / mm 2, and have an elongation of about 30%, showing high ductility and high ductility. TRIP steel has been developed in the 90's and is currently working for commercialization. The characteristic of this steel is that its tensile strength is about 80kg / mm2, and its elongation is excellent, indicating high strength and high ductility. A precipitation-reinforced dual-faced steel sheet that effectively strengthens soft ferrite in dual-face steel by precipitation strengthening using Ti has also been developed (December 4, 1993). Such product development has been mainly performed in developed countries mainly in Japan, and summarizes the known manufacturing techniques developed below.

일본의 신일본제철(新日本製鐵)의 경우는 0.06-0.10%C, 0.25-1.3%Si, 1.1-1.5%Mn강을 약 300℃이하에서 권취함에 의해 듀얼페이스강으로 제조할 수 있음을 보고한 바 있으며(鐵と鋼, Vol. 68 (1982) No. 9, p.1306), 또한 고베제철(神戶製鋼)에서는 0.04-0.06%C, 0.5-1.0%Si, 1.5%Mn강에 0.5-1.5%Cr을 첨가하고 이 강을 약 850℃ 근방에서 압연을 종료하고 저온권취(약 250℃)를 행함에 의해 페라이트를 기지조직으로 하고 10-20%의 베이나이트(bainite)와 3-5%의 마르텐사이트(martensite)를 함유한 트리페이스(triphase)강을 제조할 수 있음을 발표한 바 있다(鐵と鋼, Vol. 68 (1982) No. 9, p.1185). 또한 고베제철에서는 0.05-0.07%C, Si≤0.5%, 1.1-1.5%Mn강에 Nb을 0.04%이하 첨가함에 의해 페라이트 기지조직에 10-20%의 베이나이트를 함유한 인장강도 60㎏/㎟급 페라이트-베이나이트 복합조직강을 제조할 수 있음을 발표하였으며(Trans, ISIJ, Vol. 23 (1983), p.303), 스미토모금속(住友金屬)에서는 이와 비슷한 기본성분계에 Nb과 Ti을 각각 0.04%, 0.06% 복합첨가함에 의해 인장강도를 70㎏/㎟로 향상시킨 페라이트-베이나이트계 복합조직강을 개발한 바 있다 (CAMP-ISIJ, Vol. 1 (1998, p.881).In the case of Japan Nippon Steel Co., Ltd., it can be manufactured as dual-face steel by winding 0.06-0.10% C, 0.25-1.3% Si, 1.1-1.5% Mn steel at about 300 ℃ or less. (鐵 と 鋼, Vol. 68 (1982) No. 9, p. 1306), and in Kobe Steel, 0.04-0.06% C, 0.5-1.0% Si, 1.5% Mn steel -1.5% Cr is added and the steel is finished at around 850 ℃ and cold winding (about 250 ℃) is used to form ferrite as a base structure and 10-20% of bainite and 3-5 It has been reported that triphase steels containing% martensite can be produced (鐵 と 鋼, Vol. 68 (1982) No. 9, p. 1185). In addition, in Kobe Steel, the tensile strength containing 10-20% of bainite in the ferritic matrix is increased by 60kg / mm2 by adding less than 0.04% of Nb to 0.05-0.07% C, Si≤0.5% and 1.1-1.5% Mn steel. A grade ferrite-bainite composite steel can be manufactured (Trans, ISIJ, Vol. 23 (1983), p.303), and Sumitomo Metal Co., Ltd. has similar Nb and Ti in similar basic components, respectively. A ferrite-bainite composite tissue steel with a tensile strength of 70 kg / mm 2 was added by adding 0.04% and 0.06% (CAMP-ISIJ, Vol. 1 (1998, p.881).

강중 잔류오스테나이트(retained austenite)를 함유시키면 소재의 가공중 잔류오스테나이트가 마르텐사이트(martensite)로 변태함에 따라 가공경화가 매우 커지므로균일연신율이 증가되는 경향이 관찰된다. 이러한 현상을 이용하여 고강도 고가공성강의 제조에 있어 잔류오스테나이트를 함유한 강을 이용하는 경우가 많이 있다. 이러한 잔류오스테나이트 함유강은 제조조건을 적정화하는 경우 대략 인장강도가 80㎏/㎟이상에서 고연성을 보이게 되어 많은 제조사에서 여러 가지의 제조조건에 대하여 특허를 제출한 바 있다.The presence of retained austenite in steel tends to increase the uniform elongation because the work hardening becomes very large as the residual austenite is transformed into martensite during processing of the material. By using this phenomenon, steel containing residual austenite is often used in the production of high strength, high workability steel. Such residual austenite-containing steel shows high ductility at about 80 kg / mm2 or more when the manufacturing conditions are optimized, and many manufacturers have filed patents for various manufacturing conditions.

신일본제철에서는 0.06-0.22%C, 0.05-1.0%Si, 0.5-2.0%Mn과 0.25-1.5%Al을 함유한 강에 필요에 따라 0.03-0.30%Mo을 첨가하여 잔류오스테나이트를 3-20% 함유시킴에 따라 50㎏/㎟이상의 고강도와 35%이상의 연신율을 보임에 의해 프레스(press)가공성과 심가공성 및 굽힘성이 우수한 강에 대한 특허를 제출하고 있다(일본특허공개공보, 평6-145892). 이 강종에서 Al양은 0.6%Si ≤ %Al ≤ 3-12.5 x %C의 범위에서 조정되며, 이 강종을 2상영역에서 열처리하는 방법 (650-900℃에서 10초 내지 3분간 유지후 350-600℃의 온도범위까지 4-200℃/sec로 냉각후 여기에서 5초 내지 10분간 유지한 다음 5℃/sec 이상의 냉각속도로 250℃이하의 온도로 냉각하는 방법)으로 가공성이 우수한 강재를 생산하는 제조법에 대해서도 특허를 제출하고 있다(일본 공개특허공보, 평6-145788).In Nippon Steel, 0.03-0.30% Mo is added to steel containing 0.06-0.22% C, 0.05-1.0% Si, 0.5-2.0% Mn and 0.25-1.5% Al as necessary to add residual austenite 3-20. It contains 50kg / mm2 or more of high strength and elongation of more than 35% with the addition of%, and has filed a patent for steel with excellent press workability, deep workability and bendability (Japanese Patent Laid-Open Publication No. 6-6). 145892). The amount of Al in this steel is adjusted in the range of 0.6% Si ≤% Al ≤ 3-12.5 x% C, and the steel is heat treated in a two-phase region (350-600 after holding for 10 seconds to 3 minutes at 650-900 ° C). After cooling to 4-200 ℃ / sec to the temperature range of ℃, it is maintained here for 5 seconds to 10 minutes and then cooled to a temperature below 250 ℃ at a cooling rate of 5 ℃ / sec or more). Patents are also submitted for the manufacturing method (Japanese Patent Laid-Open No. Hei 6-145788).

가와사끼제철(川崎製鐵)에서는 0.18%이하의 C, 0.5-2.5%Si, 0.5-2.5%Mn, 0.05%이하의 P, 0.02%이하의 S, 0.01-0.1%Al의 강에 0.02-0.5%Ti과 0.03-1.0%Nb를 단독 또는 복합적으로 첨가하며 (이때 C, Nb와 Ti의 첨가량은 %C > (%Ti/4) + (%Nb/8)의 범위내로 조정함), 이때 사상압연온도를 820℃이상에서 마친 다음 820-720℃의 온도구간에서 10초이상을 유지하고 이후 10℃/sec 이상의 냉각속도로 냉각하며 500℃이하의 온도에서 권취하는 경우에 대하여 특허를 제출한 바 있다. 본 강재는 0.18%이하의 C양에서 인장강도가 70㎏/㎟이상의 고강도가 유지되며, 또한 C양이 낮으므로 스폿(spot) 용접성과 피로특성 등이 우수한 장점을 보인다고 한다(일본 공개특허공보, 평5-179396). 또한, 이강은 저항복비를 보이므로 종래의 석출강화형강이 항복비가 높아 프레스 가공후 스프링 백(spring back)이 많이 생기는 문제를 해결할 수 있으며, 고강도와 더불어 고연성, 그리고 연신 플랜지성이 우수한 특성을 보인다고 한다.In Kawasaki Steel, 0.08% or less of C, 0.5-2.5% Si, 0.5-2.5% Mn, 0.05% or less P, 0.02% or less S, 0.01-0.1% Al steel, 0.02-0.5% Ti and 0.03-1.0% Nb are added alone or in combination (wherein C, Nb and Ti are added in the range of% C> (% Ti / 4) + (% Nb / 8)), at this time filament rolling After finishing the temperature above 820 ℃, the patent has been filed for the case of maintaining at least 10 seconds in the temperature range of 820-720 ℃, then cooling with the cooling rate of 10 ℃ / sec or higher and winding at the temperature below 500 ℃. . This steel has a high strength of 70kg / mm2 or more at a tensile strength of less than 0.18% C, and a low C content, which is excellent in spot weldability and fatigue properties (Japanese Laid-Open Patent Publication, 5-179396). In addition, because the steel shows a resistance yield ratio, the conventional precipitation-reinforced steel has a high yield ratio, which solves the problem of a large number of spring backs after pressing, and exhibits high strength, high ductility, and excellent stretch flangeability. do.

스미토모금속에서는 0.05-0.25%C, 0.05-1.0%Si, 0.8-2.5%Mn, 0.8-2.5%Al을 함유하는 강에 Nb, Ti 및 V 등의 석출강화 원소를 첨가한 강을 780-840℃의 온도범위에서 압연을 종료한 다음 10℃/sec 이상의 냉각속도로 600-700℃의 온도까지 냉각한 후 2-10초의 공냉을 거친후 220℃/sec 의 냉각속도로 300-450℃의 온도에서 가속냉각을 마침으로서 5%이상의 잔류오스테나이트를 함유시킨 강으로 제조하는 방법에 대한 특허도 제출하였다(일본 공개특허공보, 평5-112846). 본 강재는 Si양이 많은 경우 경질의 마르텐사이트의 양이 늘어나, 연신 플렌지성이 나빠지므로, 석출한 폴리고날 페라이트(polygonal ferrite)내 고용강화하는데 필요한 양인 1.0%이하로 Si을 제한한 것이다.In Sumitomo Metal, the steel containing 0.05-0.25% C, 0.05-1.0% Si, 0.8-2.5% Mn, 0.8-2.5% Al and the precipitation-reinforcing elements such as Nb, Ti and V were added to the steel containing 780-840 ℃. After rolling in the temperature range of and then cooled to a temperature of 600-700 ℃ at a cooling rate of 10 ℃ / sec or more, and then subjected to air cooling of 2-10 seconds and at a temperature of 300-450 ℃ at a cooling rate of 220 ℃ / sec A patent for a method for producing steel with 5% or more of retained austenite as a result of accelerated cooling was also submitted (Japanese Patent Laid-Open No. 5-112846). In the case of a large amount of Si, the amount of hard martensite increases and the stretch flange is deteriorated, so that Si is limited to 1.0% or less, which is the amount required for solid solution strengthening in precipitated polygonal ferrite.

상기에서 검토한 바와 같이, 많은 종류의 열연 가공성 고장력강은 대부분 강도와 연신율을 주요관점으로 하여 이를 향상시킬 수 있는 성분계 및 제조조건으로 정리되어 있다. 그러나, 실제 응용상의 관점에서 볼 때, 대부분의 실물의 부품가공 과정이 플랜지 가공을 포함하고 있고 또한 심가공시 주로 가공불량이 발생되는 부위는 이러한 플랜지가공부위에 놓이게 되는 경우가 많다. 따라서, 이러한 플랜지 가공성을 향상시키기 위해서는 소재의 국부연신특성이 우수할 것이 요구되고 있다.As discussed above, many types of hot rolled high tensile strength steels are summarized in terms of component systems and manufacturing conditions which can improve the strength and elongation as main points. However, from a practical application point of view, most of the real part machining processes include flange machining, and the parts where machining defects occur during deep machining are often placed on these flange machining sites. Therefore, in order to improve such a flange workability, it is calculated | required that the local stretching characteristic of a raw material is excellent.

이에 본 발명자는 상기 요구에 부응하기 위해 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 성분조성 및 열연조건을 적절히 제어함으로서, 기타의 열처리공정 없이 생산이 가능하며, 인장강도가 우수하면서 국부연성특성이 우수하여 플랜지 가공성이 향상된 변태유기소성강을 제조할 수 있는 방법을 제공하는데, 그 목적이 있다.In order to meet the above demands, the inventors have repeatedly conducted research and experiments and proposed the present invention based on the results. The present invention can be produced without any heat treatment process by appropriately controlling the composition and hot rolling conditions. The present invention also provides a method for producing a modified organic plastic steel with improved flange workability due to excellent tensile strength and excellent local ductility.

도 1은 목표재질을 확보하기 위한 %C+%Cu/15 양 및 수냉각정지온도의 제어범위를 보이는 그래프1 is a graph showing the control range of the% C +% Cu / 15 amount and the water cooling stop temperature to secure the target material

상기 목적을 달성하기 위한 본 발명은 중량%로, 0.16-0.20%C, 1.5-1.9%Si, 1.4-1.6%Mn, 0.02-0.10%Al를 함유하고, 여기에 Cu를 0.5%이상을 첨가하고, Ni을 0.5%이상 첨가하는 동시에 0.17≤%C+%Cu/15≤0.21의 범위를 만족하고 나머지는 Fe 및 불가피한 불순원소로 구성되는 강재를, 780℃이상의 온도범위에서 열간압연을 마무리하고 공냉한 다음, 680-720℃에서 수냉을 개시한 다음, 420-500℃의 온도범위에서수냉각을 정지한 후, 서냉하는 것을 특징으로 하는 플렌지 가공성이 우수한 열연 변태유기소성강 제조방법에 관한 것이다.The present invention for achieving the above object by weight, contains 0.16-0.20% C, 1.5-1.9% Si, 1.4-1.6% Mn, 0.02-0.10% Al, to which Cu is added at least 0.5% , Ni is added 0.5% or more, while satisfying the range of 0.17≤% C +% Cu / 15≤0.21, and the rest is made of Fe and unavoidable impurity elements. Next, after the start of water cooling at 680-720 ° C, after stopping the water cooling in the temperature range of 420-500 ° C, the present invention relates to a method for producing hot rolled metamorphic organic plastic steel excellent in flange workability.

이하, 본 발명을 상세히 설명하는데, 먼저 성분조성 및 이들의 한정이유에 대하여 설명한다.Hereinafter, the present invention will be described in detail. First, the composition of the composition and the reason for limitation thereof will be described.

상기 C는 강의 소입성을 증가시키는 원소로, 0.16% 미만에서는 목표로 하는 강도를 얻기가 어려우며, 미변태 오스테나이트로 충분한 C의 농축을 일으키지 못하므로 잔류오스테나이트를 상온에서 안정화시키지 못하게 된다. 또한 0.20%초과의 경우에는 강도는 상승되나 이에 대응하여 연성의 저하 및 플랜지가공성이 저하되므로 0.16-0.20%의 범위로 제한한다.The C is an element that increases the hardenability of the steel, it is difficult to obtain the target strength at less than 0.16%, and do not cause sufficient C concentration due to the unmodified austenite, thereby preventing the remaining austenite from stabilizing at room temperature. In addition, in the case of exceeding 0.20%, the strength is increased but correspondingly, the ductility decreases and the flange workability decreases, so it is limited to the range of 0.16-0.20%.

상기 Si는 탈산을 위하여 주로 사용되는 원소로 C의 활성도를 높이므로 고온에서 페라이트 형성을 용이하게 한다. 또한, 고온에서 페라이트의 형성시 남아 있는 오스테나이트로 C의 농축을 조장하므로 변태유기소성강에서는 Si의 첨가가 필수적이다. Si의 과도한 첨가는 표면에 붉은형스케일(scale)이 생성되므로 표면을 열화시킬 뿐만 아니라 용접중 산화물을 생성시키기 쉽게하므로 용접부의 결함이(penetration등) 발생되기 쉬워진다. 따라서 본 발명에서는 잔류오스테나이트를 충분히 형성시키기 위해 필요한 양인 1.5-1.9%로 제한하였다.The Si is an element mainly used for deoxidation to increase the activity of C, thereby facilitating the formation of ferrite at a high temperature. In addition, since the concentration of austenite remaining in the formation of ferrite at a high temperature promotes the concentration of C, the addition of Si is essential in the metamorphic organic steel. Excessive addition of Si produces a red scale on the surface, which not only deteriorates the surface but also easily forms oxides during welding, so that defects in the weld portion (penetration, etc.) are likely to occur. Therefore, in the present invention, it was limited to 1.5-1.9%, which is an amount necessary to sufficiently form residual austenite.

상기 Mn은 강의 강도 및 인성을 증가시키고 오스테나이트를 안정화시키므로 Ms온도를 낮추며 강의 소입성을 증가시키는 원소이다. Mn을 증량하는 경우 저온변태 생성물의 양을 증가시키므로 강도에는 유리하나 연성의 확보가 어렵다. 또한, 과도한 Mn의 첨가는 비금속개재물의 양을 증가시키고 편석도를 증가시켜 불리하다. 그러나 Mn양이 낮은 경우, 페라이트 변태후 남아 있는 미변태 오스테나이트가 유효하게 베이나이트를 형성하기가 어려우므로 잔류 오스테나이트를 형성하기 어렵고, 고온에서 펄라이트(pearlite)의 생성이 쉬워지므로 강도-연성이 저하되기 쉽다. 따라서, 본 발명에서는 잔류 오스테나이트를 효과적으로 형성시키기 위해 1.4-1.6%의 범위로 제한하였다.The Mn is an element that increases the strength and toughness of the steel and stabilizes austenite, thereby lowering the Ms temperature and increasing the hardenability of the steel. Increasing Mn increases the amount of low temperature transformation products, which is advantageous in strength but difficult to secure ductility. In addition, excessive addition of Mn is disadvantageous by increasing the amount of nonmetallic inclusions and increasing segregation degree. However, when the amount of Mn is low, the unmodified austenite remaining after ferrite transformation is difficult to form bainite effectively, and thus it is difficult to form residual austenite, and it is easy to form pearlite at high temperature, thus making it easy to form pearlite. It is easy to fall. Therefore, in the present invention, in order to effectively form the residual austenite, it was limited to the range of 1.4-1.6%.

상기 Al은 탈산을 위하여 주로 사용되는 원소로 페라이트의 형성을 도우므로 가공성 향상측면에서 유리하다. 이렇게 가공성을 개선하기 위해 Al을 첨가하는 경우 인장강도의 저하가 발생되므로 목표하고자 하는 재질을 얻기 위해서는 Al을 탈산을 위해 첨가하는 범위로 한정하는 것이 바람직하다. 즉 탈산을 위하여 최소 0.02%이상은 필요하며, 과다하게 함유되는 경우 강도를 낮추고 또한 구조재로 사용하기 위한 용접시 산화물을 형성시키기 쉬우므로 그 상한을 0.10%로 제한한다.Al is an element mainly used for deoxidation, and thus is advantageous in terms of processability improvement since it helps to form ferrite. When Al is added to improve workability, a decrease in tensile strength occurs. Therefore, in order to obtain a target material, it is preferable to limit Al to a range in which Al is added for deoxidation. In other words, at least 0.02% is required for deoxidation, and if excessively contained, the strength is lowered and the upper limit is limited to 0.10% because it is easy to form an oxide during welding for use as a structural material.

상기 Cu는 Cu단체인 ε-Cu석출물을 형성함에 의해 석출경화에 의한 고강도화를 이루는 잇점이 있으면서 강도의 증가에 따라 연신율의 저하나 플랜지 가공성의 저하는 그다지 크지 않다. 일반적인 내부식성 강재의 경우 Cu양을 약 0.3-0.4% 정도까지 첨가하는 경우가 일반적으로 활용되고 있는데, 본 발명에서는 내부식성의 향상외에 ε-Cu의 석출을 적극적으로 활용하기 위하여 0.5%이상의 첨가를 실시한다.The Cu has the advantage of achieving high strength due to precipitation hardening by forming the ε-Cu precipitate, which is Cu alone, and the decrease in elongation and the decrease in flange formability are not so large as the strength is increased. In the case of general corrosion resistant steels, the amount of Cu added up to about 0.3-0.4% is generally used. In the present invention, addition of 0.5% or more is used to actively utilize the precipitation of ε-Cu in addition to improving the corrosion resistance. Conduct.

일반적으로 Cu첨가강의 경우는 열간연성이 저하되어 열간가공중 크랙(crack) 발생등이 생길 수 있는데, 이를 방지하기 위해 Ni의 첨가가 효과적으로 알려져 있고,본 발명에서도 Cu에 의한 열간가공성의 저하를 방지하기 위해 0.5%이상의 Ni을 첨가하나, 0.17≤%C+%Cu≤0.21을 만족하는 Cu의 상한 이하로 첨가하는 것이 바람직하다. 이때, 상기 Cu와 Ni의 양은 비슷한 것이 보다 바람직하다.In general, in the case of Cu-added steel, hot ductility may be reduced, so that cracks may occur during hot working, and thus, Ni is effectively added to prevent this, and the present invention prevents deterioration of hot workability by Cu. In order to achieve this, 0.5% or more of Ni is added, but it is preferably added below the upper limit of Cu that satisfies 0.17 ≦% C +% Cu ≦ 0.21. At this time, the amount of Cu and Ni is more preferably similar.

한편, Nb는 메트릭스(matrix)내에 탄질화물을 형성함에 의해 석출강화를 일으킴으로서 고강도화에 유효한 원소이다. 또한 Nb은 고온에서 오스테나이트의 재결정을 유효하게 억제함에 의해 변태전 오스테나이트결정립을 미세화시켜 이후 변태중 페라이트의 형성에 따라 밀려나는 탄소가 쉽게 미변태 오스테나이트로 농축되어 오스테나이트의 안정도를 높이게 된다. 그러나 이러한 탄질화물의 석출에 의해 연신율의 저하가 크고 플랜지가공성도 크게 열화시키므로 본 발명에서는 탄화물(carbide)형성원소의 첨가는 없도록 제한한다.On the other hand, Nb is an element effective for high strength by causing precipitation strengthening by forming carbonitrides in a matrix. In addition, Nb effectively inhibits the recrystallization of austenite at high temperature, thereby miniaturizing the austenite grains before transformation, and the carbon pushed out by the formation of ferrite during transformation is easily concentrated into unmodified austenite, thereby increasing the austenite stability. . However, the precipitation of carbonitrides causes a large reduction in elongation and greatly deteriorates flange workability. Therefore, the present invention restricts the addition of carbide forming elements.

또한, P 및 S는 페라이트의 형성을 조장하는 원소로 강의 강도를 해치지 않고 연성을 증가시킬수 있으나 일반적으로 강재의 제조시 편석이 극심한 원소로서 중심편석의 형성등으로 재질을 열화시킨다. 또한, S는 MnS로 대표되는 비금속 개재물을 형성하여 강의 가공성을 크게 열화시킨다. 이 비금속 개재물은 압연중 길게 연신됨으로 가공중 크랙발생등의 치명적인 결함을 발생시키기 쉽다. 따라서 P,S는 가능한한 낮게 관리하는 것이 바람직하다. 이를 위해 Ca을 첨가하여 S를 낮게 관리하는 것도 가공성을 향상시키기 위하여 필요한데, 그 첨가량은 강중에서 50ppm이하의 함량이 되도록 하는 것이 바람직하다.In addition, P and S are elements that promote the formation of ferrite and can increase the ductility without harming the strength of the steel, but in general, when the steel is manufactured, the segregation is extremely severe and deteriorates the material due to the formation of the center segregation. In addition, S forms a nonmetallic inclusion represented by MnS, greatly degrading the workability of the steel. These nonmetallic inclusions are elongated during rolling, and are prone to fatal defects such as cracking during processing. Therefore, it is desirable to manage P and S as low as possible. For this purpose, it is also necessary to manage the low S by adding Ca, the addition amount is preferably 50ppm or less in the steel.

다음에서는 상기한 바와같은 성분조성으로 이루어진 강재를 이용하여 열간압연하는 방법에 대하여 상세히 설명한다.Next, a method of hot rolling using a steel material composed of the composition as described above will be described in detail.

본 발명에서는 열간압연재의 우수한 강도 및 연성을 확보하기 위해서는 미세조직의 제어가 필수적이며 따라서 압연 마무리온도, 수냉각개시 및 수냉각종료 온도를 제어할 필요가 있다.In the present invention, in order to secure excellent strength and ductility of the hot rolled material, it is necessary to control the microstructure, and therefore, it is necessary to control the rolling finish temperature, the water cooling start, and the water cooling end temperature.

상기 압연 마무리온도가 너무 높으면 압연후의 오스테나이트 결정립이 증대되어 소입성이 증가되어 압연 후 마르텐사이트나 베이나이트 등의 저온 변태조직의 양이 크게 증가되므로 압연후 강의 재질을 강화시키고 연성이 떨어지게 되며, 이 온도가 너무 낮은 경우에는 국부적으로 발생되는 열간압연중의 소재온도편차에 기인되어 미세조직 및 재질편차가 크게 발생된다. 본 발명에서는 이를 방지하기 위해 그 하한을 780℃로 설정하였다.If the rolling finish temperature is too high, the austenite grains after rolling are increased to increase the hardenability, so that the amount of low-temperature transformation structure such as martensite or bainite is greatly increased after rolling, thereby strengthening the material of the steel after rolling and decreasing ductility, If this temperature is too low, the microstructure and material deviation are greatly generated due to the locally generated material temperature deviation during hot rolling. In the present invention, the lower limit thereof is set to 780 ° C to prevent this.

상기 수냉각개시는 이전까지 공냉을 통하여 충분한 페라이트를 형성시킨 다음에 실시하는 것이 바람직한데, 수냉각개시 온도가 너무 높으면 충분한 페라이트가 형성되지 않아 냉각후 제 2상의 분율이 크게 증가되어 강도는 증가되나 연성이 저하되며, 이 온도가 너무 낮으면 펄라이트가 생성되게 되므로 본 발명에서는 실험상으로 확인된 범위인 680-720℃로 한정하였다. 또한 수냉각정지 온도는 재질을 결정하는데 가장 중요한 요소로 앞에서 거론한 바와 같이 이후 서냉에 의해서도 펄라이트가 생성되지 않고 강도가 크게 저하되지 않도록 그 상한을 500℃로 정하였으며, 그 하한은 연성의 큰 저하가 발생되지 않도록 420℃로 설정할 필요가 있다. 이러한 수냉각정지온도는 강재의 성분계가 변함에 따라 달라져야 하는데, 실제로 성분계중 잔류오스테나이트의 형성에 크게 영향을 주는 원소인 C양과 Cu양의 제어와 수냉각정지온도의 제어는 목표로 하는 재질을 얻는데 있어 매우 중요하다. 상기 C와 Cu의 양은 잔류오스테나이트 형성에 있어서 Cu의 영향이 C의 1/15이므로, %C+%Cu/15으로 제어하게 된다.The start of the water cooling is preferably carried out after forming sufficient ferrite through air cooling before, if the water starting temperature is too high enough ferrite is not formed, so the fraction of the second phase after cooling greatly increases the strength Ductility is lowered, and if this temperature is too low, pearlite is produced, so in the present invention, it was limited to 680-720 ° C. which is experimentally confirmed. In addition, the water cooling stop temperature is the most important factor in determining the material. As mentioned above, the upper limit is set to 500 ° C. so that pearlite is not produced by the slow cooling and the strength is not significantly lowered. It is necessary to set it to 420 degreeC so that it may not generate | occur | produce. The water cooling stop temperature should be changed as the component system of steel is changed. Actually, the control of the amount of C and Cu, which are elements that greatly affect the formation of residual austenite, and the control of the water cooling stop temperature are the target materials. It is very important to get. The amount of C and Cu is controlled by% C +% Cu / 15 since the influence of Cu on the formation of residual austenite is 1/15 of C.

도 1에서 보이는 바와 같이 목표로 하는 재질수준을 확보하기 위해서, 수냉각정지온도를 420-500℃내로 유지하더라도, 성분계로서 %C+%Cu/15를 0.17에서 0.21사이로 유지하는 것이 바람직하다. 상기 %C+%Cu/15의 값이 0.17미만 0.21초과인 경우, 하기 표 2와 도 1에서 알 수 있는 바와같이 본 발명의 목표재질을 얻을 수 없다.In order to secure the target material level as shown in Fig. 1, it is preferable to keep the% C +% Cu / 15 between 0.17 and 0.21 as the component system even if the water cooling stop temperature is maintained within 420-500 ° C. When the value of% C +% Cu / 15 is less than 0.11 and less than 0.21, the target material of the present invention cannot be obtained as shown in Table 2 and FIG. 1.

즉, 수냉각정지온도와 %C+%Cu/15를 동시에 제어하여 적절한 잔류오스테나이트를 확보함으로써, 본 발명의 목표재질을 얻을 수 있다.That is, the target material of the present invention can be obtained by controlling the water cooling stop temperature and% C +% Cu / 15 at the same time to secure appropriate residual austenite.

상기한 바와같은 본 발명의 강 성분조성 및 제조조건으로 열연강판을 제조하는 경우 인장강도가 80kg/mm2이상이 되며 연신율이 25%이상이 되면서 우수한 플랜지 가공성을 갖는 강재를 제조할 수 있어, 가공용의 용도로 사용될 수 있는 고강도 고연성 열연 변태유기소성강을 제조하는데 사용할 수 있다.When manufacturing a hot rolled steel sheet according to the composition and manufacturing conditions of the steel composition of the present invention as described above, the tensile strength is 80kg / mm 2 or more and the elongation is 25% or more can be produced a steel material having excellent flange workability, processing It can be used to manufacture high strength high ductility hot rolled transformation organic plastic steel which can be used for

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예 1Example 1

하기표 1과 같은 조성을 갖는 강을 용해하여 슬라브(slab)를 제조하였다. 이 슬라브는 1200℃에서 재가열한 후 열간압연을 행하여 최종두께가 3.0mm인 열연강판으로 제조되었다.To prepare a slab (slab) by dissolving a steel having a composition as shown in Table 1. The slab was reheated at 1200 ° C. and hot rolled to produce a hot rolled steel sheet having a final thickness of 3.0 mm.

이때, 열간압연 마무리온도(FRT), 열간압연후 냉각제어를 위해 실시한 수냉각 개시온도(CS) 및 수냉각 종료온도 (CF, 열간압연시의 권취온도에 해당됨)는 하기 표2와 같은 조건으로 행하였다. 즉, 열간압연 종료후 롤 퀀칭(roll quenching)에 의한 급냉후 일정시간 동안 공냉각시켜 수냉각개시온도를 변화시킨 다음 수냉각 시뮬레이터(simulator)로 이송시켜 수냉각에 의해 수냉각정지 온도까지 냉각한 후 이후 노냉을 실시함에 의해 열연권취 코일로 제조한 후 서냉되는 과정을 시뮬레이션(simulation)하였다.At this time, the hot rolling finish temperature (FRT), the water cooling start temperature (CS) and the water cooling end temperature (CF, winding temperature at the time of hot rolling) performed for cooling control after hot rolling are as shown in Table 2 below. It was done. That is, after the end of hot rolling, after quenching by roll quenching, air cooling is performed for a predetermined time to change the water cooling start temperature, and then transferred to a water cooling simulator to cool the water cooling stop temperature by water cooling. Later, by performing the furnace cooling, a process of manufacturing the hot rolled coil and then slowly cooling was simulated.

이렇게 제조된 열연강판은 열연상태로 인장시험을 실시하여 항복강도(YS), 인장강도(TS), 연신율(EI)등의 인장특성을 조사하였으며, 플랜지 가공성의 지표가 될 수 있는 NTE(Notch Tensile Elongation), HER(Hole Expansion Ratio) 및 굽힘특성등을 측정하였다. 측정된 결과는 하기 표2에 나타내었다.The hot rolled steel sheet thus manufactured was subjected to a tensile test in a hot rolled state to investigate tensile properties such as yield strength (YS), tensile strength (TS) and elongation (EI), and NTE (Notch Tensile), which may be an index of flange formability. Elongation, HER (Hole Expansion Ratio) and bending characteristics were measured. The measured results are shown in Table 2 below.

강종Steel grade CC SiSi MnMn PP SS AlAl NbNb CuCu NiNi 비교강AComparative Steel A 0.2010.201 1.941.94 1.511.51 0.0150.015 0.0040.004 0.0420.042 -- -- -- 비교강BComparative Steel B 0.1800.180 1.921.92 1.481.48 0.0150.015 0.0040.004 0.0340.034 -- -- -- 비교강CComparative Steel C 0.1510.151 1.961.96 1.521.52 0.0150.015 0.0040.004 0.0420.042 -- -- -- 비교강DComparative Steel D 0.1490.149 1.511.51 1.491.49 0.0160.016 0.0040.004 0.0430.043 -- -- -- 비교강EComparative Steel E 0.1790.179 1.761.76 1.501.50 0.0150.015 0.0040.004 0.0390.039 0.0310.031 -- -- 비교강FComparative Steel F 0.1600.160 1.521.52 1.501.50 0.0160.016 0.0040.004 0.0370.037 0.0310.031 -- -- 비교강GComparative Steel G 0.1820.182 1.681.68 1.491.49 0.0160.016 0.0050.005 0.0360.036 -- 0.5940.594 0.4950.495 발명강HInventive Steel H 0.1600.160 1.541.54 1.471.47 0.0150.015 0.0040.004 0.0370.037 -- 0.6170.617 0.5000.500

강종Steel grade 압연 및 냉각시온도Rolling and cooling temperature 인장특성Tensile Properties 가공성Machinability FRTFRT CSCS CFCF YSYS TSTS EIEI NTENTE HERHER 굽힘flex 비교예1Comparative Example 1 비교강AComparative Steel A 799799 701701 467467 58.658.6 87.387.3 26.626.6 5.95.9 35.035.0 100100 비교예2Comparative Example 2 비교강BComparative Steel B 801801 706706 455455 56.056.0 85.185.1 29.229.2 6.66.6 36.836.8 100100 비교예3Comparative Example 3 비교강CComparative Steel C 795795 700700 424424 55.555.5 85.885.8 24.824.8 5.95.9 33.333.3 100100 비교예4Comparative Example 4 비교강DComparative Steel D 792792 703703 460460 53.253.2 73.173.1 34.034.0 8.88.8 53.953.9 100100 비교예5Comparative Example 5 비교강EComparative Steel E 801801 700700 450450 69.969.9 87.987.9 19.719.7 5.35.3 36.536.5 00 비교예6Comparative Example 6 비교강FComparative Steel F 799799 696696 447447 70.070.0 83.983.9 23.223.2 6.56.5 39.039.0 8888 비교예7Comparative Example 7 비교강GComparative Steel G 804804 703703 466466 58.258.2 88.288.2 30.830.8 6.66.6 40.540.5 100100 발명예8Inventive Example 8 발명강HInventive Steel H 802802 705705 427427 60.860.8 82.182.1 27.927.9 7.47.4 52.652.6 100100

상기 표2는 열간압연 마무리온도와 수냉각시 개시 및 종료온도를 유사하게 유지한 경우에 각각의 강종에 대해서 인장특성과 플랜지가공성을 보인 것이다. 강종별 재질특성은 차이가 있는데, 인장강도는 70-90kg/mm2의 범위내에서 변하고 있으며, 연신율은 19-35%의 범위에서 변하고 있다. 플랜지 가공성은 NTE로는 7%이상, HER로는 50%이상, 그리고 굽힘특성은 180°2t굽힘의 경우 크랙이 발생되지 않는 경우(100%)를 기준으로 설정하였는데, 이 수치는 휠(wheel)용 열연강재에서 요구되는 성형성 수준이다.Table 2 shows tensile properties and flange workability for each steel type when the hot rolling finish temperature and the start and end temperature during water cooling were similarly maintained. The material properties of steels are different. Tensile strength is changing within the range of 70-90kg / mm 2 , and elongation is changing in the range of 19-35%. Flange machinability is set at 7% or more with NTE, 50% or more with HER, and bending characteristics are based on the case where no crack occurs (100%) for 180 ° 2t bending. The level of formability required for steels.

상기 표2에서 비교예 1은 C와 Si이 많이 포함된 강종으로 인장강도는 높으나, 플랜지 가공성이 떨어졌다. 이 보다 C 양이 낮은 비교예 2의 경우에는 강도 및 연성은 높은 수준이나, 플랜지 가공성이 충분하지 않았다. 이보다 더욱 C 양을 낮춘 경우(0.15%C, 비교예 3)에도 충분한 플랜지 가공성이 얻어지지 못하였다. C과 Si을 각각 0.15%, 1.5%로 낮춘 경우(비교예 4)에는 연성이 가장 우수하며, 플랜지 가공성도 기준치를 상회하고 있으나, 강도가 충분하지 못한 결과를 보이고 있으며, 석출경화의 효과를 더한 Nb첨가형은 두강종(비교예 5, 6)모두 연신율도, 플랜지 가공성도 떨어지는 결과를 보이고 있다. Cu 석출강화 효과를 부가한 경우 C양이 높은 비교예 7의 경우는 충분한 가공성이 확보되지 않으나, C 양이 낮은 경우(발명예 8)는 매우 우수한 강도, 연신율 및 플랜지 가공성을 보이고 있다.In Table 2, Comparative Example 1 is a steel type containing a lot of C and Si, but high tensile strength, but poor flange workability. In Comparative Example 2 having a lower C content than this, the strength and ductility were high, but the flange workability was not sufficient. Even when the amount of C was further lowered (0.15% C, Comparative Example 3), sufficient flange formability was not obtained. When C and Si were lowered to 0.15% and 1.5%, respectively (Comparative Example 4), the ductility was excellent and the flange workability was higher than the standard value, but the strength was not sufficient, and the effect of precipitation hardening was added. Both Nb-added steels (Comparative Examples 5 and 6) show poor elongation and flange workability. In the case of adding the Cu precipitation strengthening effect, in the case of Comparative Example 7 having a high amount of C, sufficient workability was not secured, but in the case of a low amount of C (Invention Example 8), very excellent strength, elongation, and flange workability were shown.

실시예 2Example 2

상기 실시예 1에서 발명강 H, 비교강 B, 비교강 C, 비교강 D 및 비교강 G 강종을 이용하여, 각 강종 마다 열간압연조건을 여러가지로 변화시켜서 열연강판을 제조하였다. 제조된 강판의 인장특성 및 가공성을 상기 실시예 1과 동일한 방법으로 측정하여 그 결과를 하기 표3에 나타내었다.In Example 1, using the invention steel H, comparative steel B, comparative steel C, comparative steel D and comparative steel G steel grades, hot-rolled steel sheet was prepared by varying the hot rolling conditions for each steel type. Tensile properties and workability of the prepared steel sheet were measured in the same manner as in Example 1, and the results are shown in Table 3 below.

압연 및 냉각시 온도Temperature during rolling and cooling 인장특성Tensile Properties 가공성Machinability 비고Remarks FRTFRT CSCS CFCF YSYS TSTS EIEI NTENTE HERHER 굽힘flex 비교강BComparative Steel B 1One 801801 690690 548548 65.065.0 78.778.7 24.624.6 7.47.4 59.359.3 100100 비교예Comparative example 22 804804 695695 518518 65.765.7 78.978.9 24.724.7 7.87.8 57.257.2 100100 비교예Comparative example 33 801801 706706 455455 56.056.0 85.185.1 29.229.2 6.66.6 36.836.8 100100 비교예Comparative example 44 797797 707707 411411 55.955.9 96.196.1 20.920.9 4.54.5 27.227.2 00 비교예Comparative example 비교강CComparative Steel C 1One 804804 682682 531531 63.663.6 77.577.5 25.225.2 7.77.7 57.557.5 100100 비교예Comparative example 22 805805 692692 519519 51.451.4 80.580.5 22.722.7 7.17.1 46.146.1 100100 비교예Comparative example 33 795795 700700 424424 55.555.5 85.885.8 24.824.8 5.95.9 33.333.3 100100 비교예Comparative example 44 806806 702702 384384 88.288.2 93.193.1 18.718.7 4.04.0 26.726.7 00 비교예Comparative example 비교강DComparative Steel D 1One 793793 685685 549549 59.659.6 71.971.9 27.527.5 8.88.8 76.476.4 8989 비교예Comparative example 22 803803 692692 498498 59.459.4 72.972.9 26.926.9 8.18.1 71.271.2 100100 비교예Comparative example 33 792792 703703 460460 53.253.2 73.173.1 34.034.0 8.88.8 53.953.9 100100 비교예Comparative example 44 783783 696696 384384 52.052.0 85.785.7 22.822.8 5.35.3 40.640.6 6767 비교예Comparative example 비교강GComparative Steel G 1One 795795 685685 554554 66.366.3 80.180.1 22.222.2 6.66.6 55.555.5 100100 비교예Comparative example 22 800800 696696 503503 53.953.9 95.595.5 23.123.1 5.05.0 32.732.7 5555 비교예Comparative example 33 804804 703703 466466 58.258.2 88.288.2 30.830.8 6.66.6 40.540.5 100100 비교예Comparative example 44 800800 703703 347347 59.959.9 96.296.2 26.026.0 4.64.6 3.23.2 1111 비교예Comparative example 발명강HInventive Steel H 1One 799799 682682 547547 62.062.0 74.174.1 27.527.5 7.97.9 66.266.2 100100 비교예Comparative example 22 798798 697697 527527 55.755.7 83.183.1 24.324.3 7.17.1 53.653.6 8989 비교예Comparative example 33 802802 705705 427427 60.860.8 82.182.1 27.927.9 7.47.4 52.652.6 100100 발명예Inventive Example 44 802802 697697 340340 62.062.0 96.196.1 19.319.3 4.54.5 43.343.3 100100 비교예Comparative example

상기 표3에서 알 수 있는 바와같이, 대부분의 강종에서 첨가되는 합금원소량이 많아지면 강도는 높아지나 연신율이나 플랜지 가공성이 열화되는 경향을 나타내고 있으며, 수냉각정지온도가 낮아지면 강도는 높아지나 연신율이 저하되며 또한 플랜지 가공성도 열화되는 경향을 관찰할 수 있었다. 이중에서도 발명강H강종을 이용한 경우 수냉각정지온도를 적정하게 유지함에 의해 인장특성 및 플랜지 가공성을 향상시킬수 있는 조건이 얻어지고 있다.As can be seen in Table 3, when the amount of alloying elements added in most steel grades increases, the strength increases, but the elongation and flange formability tend to deteriorate. When the water cooling stop temperature decreases, the strength increases but the elongation decreases. This tends to be lowered and the flange workability deteriorates. In particular, when the invention H steel grade is used, conditions for improving tensile properties and flange workability are obtained by maintaining the water cooling stop temperature appropriately.

수냉각정지온도를 너무 높게 하면 미세조직은 페라이트+펄라이트가 됨에 의해 강중 잔류오스테나이트가 없어지므로 강도 및 연신율이 같이 저하되는 경우가 많이 관찰되는데, 이때 플랜지 가공성은 가장 우수한 값을 나타내고 있다. 적정한 수냉각정지온도에서 잔류오스테나이트가 형성되고 따라서 강도-연신율이 우수하며 플랜지 가공성도 좋아지는 결과를 보였다. 수냉각정지온도가 너무 낮게 되면 강도는 크게상승되나 연신율과 가공성이 크게 저하되는 경향을 보이게 되므로, 성분계의 적정화와 더불어 적절한 수냉각정지온도의 설정이 매우 중요함을 알 수 있었다.If the water cooling stop temperature is too high, the microstructure becomes ferrite + pearlite, so that the residual austenite in the steel is lost, so that the strength and elongation are deteriorated in many cases, and the flange workability shows the best value. Residual austenite was formed at the appropriate water cooling stop temperature, resulting in good strength-elongation and good flange workability. When the water cooling stop temperature is too low, the strength is greatly increased, but the elongation and workability tend to be greatly decreased, so it was found that the proper water cooling stop temperature and the setting of the proper water cooling stop temperature are very important.

상술한 바와같은 본 발명에 의하면, 합금성분계 및 열간압연조건을 제어함으로서, 열간압연후의 인장강도가 80kg/mm2이상의 고강도를 가지면서 연신율이 25%이상의 고연성을 나타내며 동시에 플랜지 가공성이 우수한 열연강판을 얻을 수 있으며, 이는 가공용 소재로서 사용될 수 있는 강종이다.According to the present invention as described above, by controlling the alloy component system and hot rolling conditions, the hot rolled steel sheet exhibits a high ductility of 25% or more with a high tensile strength of at least 80kg / mm 2 and high elongation after hot rolling, and at the same time excellent flange workability It can be obtained, which is a steel grade that can be used as a material for processing.

Claims (2)

중량%로, 0.16-0.20%C, 1.5-1.9%Si, 1.4-1.6%Mn, 0.02-0.10%Al를 함유하고, 여기에 Cu를 0.5%이상에서 0.17≤%C+%Cu/15≤0.21 식으로부터 얻어지는 상한값을 상한으로 하여 첨가하고, Ni을 0.5%이상으로 하고 상기 Cu의 상한값 이하로 첨가하며, 나머지는 Fe 및 불가피한 불순원소로 구성되는 강재를, 780℃이상의 온도범위에서 열간압연을 마무리하고 공냉한 다음, 680-720℃에서 수냉을 개시한 다음, 420-500℃의 온도범위에서 수냉각을 정지한 후, 서냉하는 것을 특징으로 하는 플랜지 가공성이 우수한 열연 변태유기소성강 제조방법.By weight, 0.16-0.20% C, 1.5-1.9% Si, 1.4-1.6% Mn, 0.02-0.10% Al, wherein Cu is 0.17≤% C +% Cu / 15≤0.21 at 0.5% or more The upper limit obtained from the upper limit is added, the upper limit is added, Ni is 0.5% or more, the Cu is added below the upper limit, and the remainder is steel roll composed of Fe and unavoidable impurity elements, and hot rolled at a temperature range of 780 ° C or higher After cooling by air, starting water cooling at 680-720 ° C., stopping the water cooling in the temperature range of 420-500 ° C., and then performing slow cooling. 제 1 항에 있어서,The method of claim 1, 상기 강재는 개재물 구상화를 위해 Ca가 50ppm이하 첨가되어 있는 것을 특징으로 하는 플랜지 가공성이 우수한 열연 변태유기소성강 제조방법.The steel is a method for producing a hot rolled metamorphic organic plastic steel excellent in flange workability, characterized in that Ca is added below 50ppm for inclusion spheroidization.
KR10-1998-0058731A 1998-12-26 1998-12-26 A method for manufacturing hot rolled trip steels with excellent flange formability Expired - Lifetime KR100368241B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0058731A KR100368241B1 (en) 1998-12-26 1998-12-26 A method for manufacturing hot rolled trip steels with excellent flange formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0058731A KR100368241B1 (en) 1998-12-26 1998-12-26 A method for manufacturing hot rolled trip steels with excellent flange formability

Publications (2)

Publication Number Publication Date
KR20000042511A KR20000042511A (en) 2000-07-15
KR100368241B1 true KR100368241B1 (en) 2003-04-21

Family

ID=19565758

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0058731A Expired - Lifetime KR100368241B1 (en) 1998-12-26 1998-12-26 A method for manufacturing hot rolled trip steels with excellent flange formability

Country Status (1)

Country Link
KR (1) KR100368241B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481366B1 (en) * 2000-12-08 2005-04-07 주식회사 포스코 A hot rolled trip steel sheet with excellent ductility, and a method for manufacturing it
KR100613252B1 (en) * 2000-12-26 2006-08-18 주식회사 포스코 Manufacturing method of metamorphic organic plastic steel

Also Published As

Publication number Publication date
KR20000042511A (en) 2000-07-15

Similar Documents

Publication Publication Date Title
EP3653736B1 (en) Hot-rolled steel strip and manufacturing method
KR100340507B1 (en) Method for manufacturing high strength and high formability hot-rolled transformation induced plasticity steel containing copper
KR101344537B1 (en) High strength steel sheet and method of manufacturing the steel sheet
KR20230087773A (en) Steel sheet having excellent strength and ductility, and manufacturing method thereof
KR102200227B1 (en) Cord rolled steel sheet, hot-dip galvanized steel sheet having good workability, and manufacturing method thereof
KR102209555B1 (en) Hot rolled and annealed steel sheet having low strength-deviation, formed member, and manufacturing method of therefor
US20230265537A1 (en) Heat treated cold rolled steel sheet and a method of manufacturing thereof
JP3899680B2 (en) Paint bake-hardening type high-tensile steel sheet and manufacturing method thereof
KR100946066B1 (en) Manufacturing method of super high strength cold rolled steel sheet for automobile bumper reinforcement
KR102504097B1 (en) Plated steel sheet and method of manufacturing the same
KR102497567B1 (en) Steel sheet having high strength and high formability and method for manufacturing the same
KR102557845B1 (en) Cold-rolled steel sheet and method of manufacturing the same
KR20000043762A (en) Method of manufacturing super high-strength cold-rolled steel sheet improved in ductility
KR100368241B1 (en) A method for manufacturing hot rolled trip steels with excellent flange formability
KR20230094234A (en) High-strength steel sheet having excellent ductility and hole expandability, and method for manufacturing thereof
KR102209556B1 (en) Steel sheet having excellent hole-expandability, formed member, and manufacturing method of therefor
KR101153696B1 (en) Steel Sheet having Excellent Yield Strength and Stretch Flange Ability and Manufacturing Method Thereof
KR100573587B1 (en) Ultra high strength manufacturing method with excellent bending workability
KR20090103619A (en) High-strength steel sheet, and method for producing the same
KR100273948B1 (en) The manufacturing method of hot rolling transformation organicplasticity steel with excellent tensile strength
KR102811114B1 (en) Thick steel plate and method of manufacturing the same
KR100431848B1 (en) Method for manufacturing high carbon wire rod containing high silicon without low temperature structure
KR100481366B1 (en) A hot rolled trip steel sheet with excellent ductility, and a method for manufacturing it
KR102307927B1 (en) High strength dp steel sheet of which the durability and flexibility are outstanding and a production metfod therefor
KR101009839B1 (en) Manufacturing method of high strength steel sheet

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19981226

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20001010

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 19981226

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20020628

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20021211

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20030103

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20030106

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20060104

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20070104

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20080104

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20090106

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20091215

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20110104

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20120103

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20130104

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20130104

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20140106

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20140106

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20150106

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20150106

Start annual number: 13

End annual number: 13

FPAY Annual fee payment

Payment date: 20151210

Year of fee payment: 14

PR1001 Payment of annual fee

Payment date: 20151210

Start annual number: 14

End annual number: 14

FPAY Annual fee payment

Payment date: 20170103

Year of fee payment: 15

PR1001 Payment of annual fee

Payment date: 20170103

Start annual number: 15

End annual number: 15

FPAY Annual fee payment

Payment date: 20180104

Year of fee payment: 16

PR1001 Payment of annual fee

Payment date: 20180104

Start annual number: 16

End annual number: 16

EXPY Expiration of term
PC1801 Expiration of term

Termination date: 20190626

Termination category: Expiration of duration