KR101153696B1 - Steel Sheet having Excellent Yield Strength and Stretch Flange Ability and Manufacturing Method Thereof - Google Patents
Steel Sheet having Excellent Yield Strength and Stretch Flange Ability and Manufacturing Method Thereof Download PDFInfo
- Publication number
- KR101153696B1 KR101153696B1 KR1020090129864A KR20090129864A KR101153696B1 KR 101153696 B1 KR101153696 B1 KR 101153696B1 KR 1020090129864 A KR1020090129864 A KR 1020090129864A KR 20090129864 A KR20090129864 A KR 20090129864A KR 101153696 B1 KR101153696 B1 KR 101153696B1
- Authority
- KR
- South Korea
- Prior art keywords
- steel sheet
- less
- yield strength
- content
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 78
- 239000010959 steel Substances 0.000 claims abstract description 78
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000011572 manganese Substances 0.000 claims abstract description 20
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 18
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 17
- 239000010955 niobium Substances 0.000 claims abstract description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 14
- 239000011651 chromium Substances 0.000 claims abstract description 14
- 239000010936 titanium Substances 0.000 claims abstract description 14
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 13
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000010703 silicon Substances 0.000 claims abstract description 12
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 12
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 11
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 11
- 239000012535 impurity Substances 0.000 claims abstract description 11
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 11
- 239000011574 phosphorus Substances 0.000 claims abstract description 11
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 11
- 239000011593 sulfur Substances 0.000 claims abstract description 11
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 8
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 8
- 238000001816 cooling Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 238000004804 winding Methods 0.000 claims description 13
- 230000009466 transformation Effects 0.000 claims description 12
- 229910052787 antimony Inorganic materials 0.000 claims description 7
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000005554 pickling Methods 0.000 claims description 5
- 238000005098 hot rolling Methods 0.000 claims description 4
- 230000000052 comparative effect Effects 0.000 description 15
- 230000000694 effects Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005261 decarburization Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000003811 curling process Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
본 발명은 중량%로, 탄소(C): 0.02~0.1%, 실리콘(Si): 0.1~2.5%, 망간(Mn): 0.1~2.3%, 크롬(Cr): 0.01~1.5%, 알루미늄(Al): 0.02~0.1%, 니오븀(Nb): 0.01~0.08%, 티타늄(Ti): 0.5*48/14*[질소함량]% ~ 0.1%, 인(P): 0.05% 이하, 황(S): 0.015% 이하, 질소(N): 0.015% 이하, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하고, 미세조직은 베이나이트 30~95%, 도상 마르텐사이트 10% 이하 및 잔부 페라이트를 포함하는 항복강도 및 신장 플랜지성이 우수한 강판에 관한 것이다.The present invention is in weight percent, carbon (C): 0.02 to 0.1%, silicon (Si): 0.1 to 2.5%, manganese (Mn): 0.1 to 2.3%, chromium (Cr): 0.01 to 1.5%, aluminum (Al) ): 0.02 to 0.1%, niobium (Nb): 0.01 to 0.08%, titanium (Ti): 0.5 * 48/14 * [nitrogen content]% to 0.1%, phosphorus (P): 0.05% or less, sulfur (S) : 0.015% or less, nitrogen (N): 0.015% or less, containing residual iron (Fe) and other unavoidable impurities, and the microstructure yields 30-95% of bainite, 10% or less of phase martensite, and residual ferrite The present invention relates to a steel sheet excellent in strength and elongation flangeability.
Description
본 발명은 프레스 가공이나 롤 포밍등 다양한 성형방법에 의하여 성형되는 자동차부품 등에 적용될 수 있는 강판 및 그 제조방법에 관한 것으로서, 보다 상세하게는 우수한 신장 플랜지성 및 고항복강도를 갖는 강판 및 이를 제조하는 방법에 관한 것이다.The present invention relates to a steel sheet and a method for manufacturing the same, which can be applied to automobile parts molded by various molding methods such as press forming or roll forming, and more particularly, to a steel sheet having excellent elongation flangeability and high yield strength It is about a method.
최근들어 자동차 산업은 보다 엄격해진 환경규제 및 안전성 평가에 따라, 부품의 두께 감소가 요구되고 있으며, 이를 뒷받침하기 위한 강판의 고강도화는 필수적이다. In recent years, the automobile industry has been required to reduce the thickness of components according to stricter environmental regulations and safety evaluations, and it is essential to increase the strength of the steel sheet to support this.
일반적으로 강도를 높이기 위하여 페라이트기지의 석출강화강 혹은 페라이트/펄라이트강이 사용되어 왔는데, 이러한 강은 강도가 증가함에 따라서 연성 및 신장 플랜지성이 저하되는 문제가 있었다. 따라서, 이를 해결하기 위하여 등축 페라 이트 혹은 침상형 페라이트와 베이나이트로 구성된 혼합조직을 형성시킴으로서 신장 플랜지성과 연성을 확보하는 기술이 제시되었다. In general, precipitation-reinforced steel or ferrite / pearlite steel of ferrite base has been used in order to increase the strength, and such steel has a problem in that ductility and elongation flangeability decrease as strength increases. Therefore, in order to solve this problem, a technique for securing stretch flangeability and ductility has been proposed by forming a mixed structure composed of equiaxed ferrite or acicular ferrite and bainite.
이러한 기술로는 일본 공개특허공보 제1996-269538호를 들 수 있는데, 이 기술은 권취시 잔류 오스테나이트양을 가능한 억제하면서 저온 권취를 실시하여 P의 편석을 억제함으로서, 신장 플랜지성을 향상시키는 방안을 제시하고 있으며, 또한, 한국 공개특허공보 2003-55339호를 들 수 있는데 이 기술은 690MPa 이상의 강도를 가지며 연신율과 신장플랜지성이 동시에 우수한 열연강판에 관한 것으로서, 페라이트-베이나이트 조직을 주체로하며 이때 페라이트 비율은 80% 이상으로 하고, 결정입자의 짧은 직경(ds)과 긴직경(dl)의 비(ds/dl)가 0.1이상인 결정입자가 80% 이상되도록 제어하는 방안을 제시하고 있으나, 이와 같은 제조방법은 신장플랜지성의 향상에는 매우 효과적이나, 자동차 부품 적용시 용접성의 중요함이 간과되고 있으며, 열연공정상 발생 가능한 표면 탈탄에 의해 신장플랜지성이 열화되는 문제점이 있다.This technique includes Japanese Patent Application Laid-Open No. 1996-269538, which is a method for improving elongation flangeability by suppressing segregation of P by winding at low temperature while suppressing the amount of retained austenite during winding. In addition, Korean Laid-Open Patent Publication No. 2003-55339, which relates to a hot-rolled steel sheet having strength of 690 MPa or more and excellent elongation and elongation flange, mainly based on ferrite-bainite structure. At this time, the ferrite ratio is 80% or more, and the ratio of the short diameter (ds) and the long diameter (dl) of the crystal grains (ds / dl) of 0.1 or more suggests a method of controlling so that more than 80% of the crystal grains, but The same manufacturing method is very effective for improving the extension flange, but the importance of weldability in the application of automotive parts has been overlooked. There is a problem in that the extension flange is deteriorated by decarburization.
다른 기술로서는 일본 공개특허공보 제2008-001984호를 들 수 있는데, 이 기술은 신장 플랜지성이 양호하고 성형가공성이 우수한 고강도 열연강판을 제조하기 위하여, 400℃미만의 온도에서 권취를 실시하는 것을 주요기술로 하고 있으나, 400℃ 미만에서 열전달계수가 급변하여 권취작업시 온도적중율이 저하되어 미세조직의 제어가 어렵다.Another technique is Japanese Laid-Open Patent Publication No. 2008-001984, which is mainly wound up at a temperature of less than 400 ° C. in order to produce a high strength hot rolled steel sheet having good elongation flangeability and excellent molding processability. Although it is a technology, the heat transfer coefficient suddenly changes below 400 ° C., and thus the temperature hit ratio decreases during the winding operation, making it difficult to control the microstructure.
또 다른 기술로서는 일본 공개특허공보 제2008-069425호를 들 수 있는데, 신장플랜지성을 향상시키기 위하여 베이나이트의 분율을 90%이상으로 제어하고 있으나, 이 경우 연성이 하락하여 구멍확장성을 제외한 기타 성형성이 열화되는 단점이 있다.Another technique is Japanese Laid-Open Patent Publication No. 2008-069425. Although the fraction of bainite is controlled to 90% or more in order to improve the extension flange, in this case, the ductility decreases, so that other than hole expansion There is a disadvantage that the moldability deteriorates.
본 발명은 상기 공지기술의 문제점을 해결하기 위한 것으로, 보다 경제적으로 제조할 수 있고 우수한 신장플랜지성 및 고 항복강도를 갖는 고강도 강판 및 이를 제조하는 방법을 제공하고자 한다.The present invention is to solve the problems of the known technology, to provide a high-strength steel sheet and a method for manufacturing the same that can be manufactured more economically and excellent stretch flangeability and high yield strength.
본 발명은 일 구현례로서, 중량%로, 탄소(C): 0.02~0.1%, 실리콘(Si): 0.1~2.5%, 망간(Mn): 0.1~2.3%, 크롬(Cr): 0.01~1.5%, 알루미늄(Al): 0.02~0.1%, 니오븀(Nb): 0.01~0.08%, 티타늄(Ti): 0.5*48/14*[질소함량]% ~ 0.1%, 인(P): 0.05% 이하, 황(S): 0.015% 이하, 질소(N): 0.015% 이하, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하고, 미세조직은 베이나이트 30~95%, 도상 마르텐사이트 10% 이하 및 잔부 페라이트를 포함하는 항복강도 및 신장 플랜지성이 우수한 강판을 제공한다.In one embodiment, the present invention provides, in weight percent, carbon (C): 0.02 to 0.1%, silicon (Si): 0.1 to 2.5%, manganese (Mn): 0.1 to 2.3%, chromium (Cr): 0.01 to 1.5 %, Aluminum (Al): 0.02 to 0.1%, niobium (Nb): 0.01 to 0.08%, titanium (Ti): 0.5 * 48/14 * [nitrogen content]% to 0.1%, phosphorus (P): 0.05% or less , Sulfur (S): 0.015% or less, nitrogen (N): 0.015% or less, balance iron (Fe) and other unavoidable impurities, the microstructure of bainite 30-95%, phase martensite 10% and residual Provided is a steel sheet having excellent yield strength and stretch flangeability including ferrite.
상기 강판은 안티몬(Sb): 0.005~0.05중량%를 추가적으로 포함할 수 있다.The steel sheet may additionally include 0.005 to 0.05% by weight of antimony (Sb).
상기 강판의 항복강도는 600MPa 이상, 인장강도는 780MPa 이상인 것이 바람직하다.The yield strength of the steel sheet is preferably 600 MPa or more, and the tensile strength is 780 MPa or more.
상기 강판은 열연강판 또는 산세강판일 수 있다.The steel sheet may be a hot rolled steel sheet or a pickling steel sheet.
본 발명은 다른 구현례로서, 중량%로, 탄소(C): 0.02~0.1%, 실리콘(Si): 0.1~2.5%, 망간(Mn): 0.1~2.3%, 크롬(Cr): 0.01~1.5%, 알루미늄(Al): 0.02~0.1%, 니오븀(Nb): 0.01~0.08%, 티타늄(Ti): 0.5*48/14*[질소함량]% ~ 0.1%, 인(P): 0.05% 이하, 황(S): 0.015% 이하, 질소(N): 0.015% 이하, 잔부 철(Fe) 및 기타 불가피한 불순물을 포함하는 슬라브를 가열 후 Ar3 변태점 이상에서 열간압연하는 단계; 상기 열간압연된 강판을 20℃/s 이상의 냉각속도로 냉각하는 단계 및 상기 냉각된 강판을 Ms(마르텐사이트 변태 개시온도) 이상 하기 식(1)의 값 이하의 온도에서 권취하는 항복강도 및 신장 플랜지성이 우수한 강판의 제조방법을 제공한다.As another embodiment of the present invention, in weight%, carbon (C): 0.02 to 0.1%, silicon (Si): 0.1 to 2.5%, manganese (Mn): 0.1 to 2.3%, chromium (Cr): 0.01 to 1.5 %, Aluminum (Al): 0.02 to 0.1%, niobium (Nb): 0.01 to 0.08%, titanium (Ti): 0.5 * 48/14 * [nitrogen content]% to 0.1%, phosphorus (P): 0.05% or less Hot rolling at an Ar3 transformation point after heating the slab containing sulfur (S): 0.015% or less, nitrogen (N): 0.015% or less, residual iron (Fe) and other unavoidable impurities; Cooling the hot rolled steel sheet at a cooling rate of 20 ° C./s or more, and yield strength and stretching plan for winding the cooled steel sheet at a temperature of Ms (martensite transformation start temperature) or more below a value of the following formula (1): Provided is a method for producing a steel sheet having excellent oil resistance.
식(1): 791.3-3454.3(탄소함량)-27.2(실리콘함량)+4.3(망간함량)Equation (1): 791.3-3454.3 (carbon content) -27.2 (silicon content) +4.3 (manganese content)
상기 강판은 안티몬(Sb): 0.005~0.05중량%를 추가적으로 포함할 수 있다.The steel sheet may additionally include 0.005 to 0.05% by weight of antimony (Sb).
상기 제조방법은 상기 권취단계 후 산세하는 단계를 추가적으로 포함할 수 있다.The manufacturing method may further include a step of pickling after the winding step.
본 발명은 용접성이 우수하고, 항복강도가 높아서 구조부재에의 적용이 용이한 신장 플랜지성이 우수한 강판을 제공한다.The present invention provides a steel sheet that is excellent in weldability and high in yield strength, and which is easy to be applied to structural members.
본 발명은 강판의 성분계 및 권취온도를 적절히 제어하여, 베이나이트를 주상으로 하고, 도상 마르텐사이트 분율을 10%이하로 형성하여, 신장 플랜지성 및 항복강도를 향상시킬 수 있으며, 탄소, 크롬, 망간 등 소입성이 우수한 성분을 적절 히 제어하여 용접성을 향상시킬 수 있다.According to the present invention, the component system and the coiling temperature of the steel sheet are properly controlled, and bainite is used as the main phase, and the island martensite fraction is formed to 10% or less, thereby improving the elongation flangeability and the yield strength. Weldability can be improved by appropriately controlling components having excellent hardenability.
이하, 본 발명 강판의 성분계에 대하여 설명한다.Hereinafter, the component system of the steel sheet of the present invention will be described.
탄소(C): 0.02~0.1중량%Carbon (C): 0.02 to 0.1% by weight
탄소는 탄화물 형성원소와 결합하여 탄화물로 석출되거나 페라이트에 고용되어 강도를 향상시키는 유용한 원소이다. 탄소의 함량이 0.02중량% 미만인 경우에는 자동차 부품용 소재로써 강도를 확보하기 어렵다. 반면에, 0.1중량%를 초과하는 경우에는 용접 후 급냉시 형성되는 마르텐사이트에 의하여 강도가 지나치게 증가하여 용접성이 저하된다.Carbon is a useful element that combines with a carbide forming element to precipitate as a carbide or is dissolved in ferrite to improve strength. If the carbon content is less than 0.02% by weight, it is difficult to secure strength as a material for automobile parts. On the other hand, when it exceeds 0.1% by weight, the strength is excessively increased due to martensite formed during quenching after welding, thereby degrading weldability.
실리콘(Si): 0.1~2.5중량%Silicon (Si): 0.1-2.5 wt%
실리콘은 고용강화에 의하여 페라이트의 강도를 향상시키고, 탄화물 석출을 억제하여 펄라이트의 군집 형성을 방지한다. 실리콘의 함량이 0.1중량% 미만인 경우에는 상기와 같은 효과가 미미하다. 반면에, 2.5중량%를 초과하는 경우에는 압연성이 매우 저하된다.Silicon improves the strength of ferrite by solid solution strengthening and inhibits carbide precipitation to prevent cluster formation of pearlite. When the content of silicon is less than 0.1% by weight, the above effects are insignificant. On the other hand, when it exceeds 2.5 weight%, rolling property falls very much.
망간(Mn): 0.1~2.3중량%Manganese (Mn): 0.1-2.3 wt%
망간은 강의 제조공정 중에 불가피하게 함유되는 황과 철이 결합한 FeS 형성에 의한 적열취성을 방지하고, 고용강화에 의하여 강의 강도를 향상시킨다. 망간의 함량이 0.1중량% 미만인 경우에는 상기와 같은 효과가 미미하다. 반면에, 2.3중량%를 초과하는 경우에는 베이나이트 변태가 매우 지연되어 최종적으로 도상 마르텐사이트의 분율이 증가하는 문제가 있다.Manganese prevents redness brittleness due to FeS formation in which sulfur and iron are inevitably contained in the steel manufacturing process, and improves the strength of the steel by solid solution strengthening. When the content of manganese is less than 0.1% by weight, the above effects are insignificant. On the other hand, if the content exceeds 2.3% by weight, the bainite transformation is very delayed, resulting in a problem that the fraction of the martensite phase is finally increased.
크롬(Cr): 0.01~1.5중량%Chromium (Cr): 0.01-1.5 wt%
크롬은 강재의 표면 탈탄을 방지하고, 냉각시 저온변태 조직을 확보하는데 기여하는 소입성 향상 원소이다. 그리고, 티타늄, 니오븀 등의 석출물 형성원소에 의한 석출물은 용접시 고온 급속가열 및 급속냉각에 의하여 용해 후 재석출이 쉽지 않아 용접 열영향부의 경도가 열화되는데, 저온변태 조직을 확보하여 이를 보상해 줄 수 있다. 크롬의 함량이 0.01중량% 미만인 경우에는 상기와 같은 효과가 미미하다. 반면에, 1.5중량%를 초과하는 경우에는 연성이 저하되고 제조원가가 상승한다.Chromium is a hardenability-improving element that prevents surface decarburization of steels and contributes to securing low temperature transformation structure during cooling. In addition, precipitates formed by precipitate forming elements such as titanium and niobium are not easily re-precipitated after melting due to high temperature rapid heating and rapid cooling during welding, so that the hardness of the weld heat affected zone deteriorates. Can be. When the content of chromium is less than 0.01% by weight, the above effects are insignificant. On the other hand, when it exceeds 1.5 weight%, ductility falls and manufacturing cost rises.
알루미늄(Al): 0.02~0.1중량%Aluminum (Al): 0.02 to 0.1 wt%
알루미늄은 탈산제의 역할을 하고, 응고시 비금속 개재물이 형성되는 것을 방지하는 역할을 한다. 알루미늄의 함량이 0.02중량% 미만인 경우에는 상기와 같은 효과가 미미하다. 반면에, 0.1중량%를 초과하는 경우에는 제조원가가 상승한다.Aluminum serves as a deoxidizer and prevents the formation of non-metallic inclusions upon solidification. When the aluminum content is less than 0.02% by weight, the above effects are insignificant. On the other hand, when it exceeds 0.1 weight%, manufacturing cost rises.
니오븀(Nb): 0.01~0.08중량%Niobium (Nb): 0.01 to 0.08 wt%
니오븀은 탄소와 결합하여 미세탄화물로 석출되고, 이를 통하여 강의 강도를 향상시키는 역할을 한다. 니오븀의 함량이 0.01중량% 미만인 경우에는 상기와 같은 효과가 미미하다. 반면에, 0.08중량%를 초과하는 경우에는 연성이 저하되고 제조원가가 상승한다.Niobium bonds with carbon to precipitate as fine carbide, thereby improving the strength of the steel. When the content of niobium is less than 0.01% by weight, the above effects are insignificant. On the other hand, when it exceeds 0.08 weight%, ductility falls and manufacturing cost rises.
티타늄(Ti): 0.5*48/14*[질소함량]중량%~0.1중량%Titanium (Ti): 0.5 * 48/14 * [nitrogen content] weight%-0.1 weight%
티타늄은 질소와 결합하여 TiN을 석출시켜 강도를 향상시키는 역할을 한다. 이러한 효과를 나타내기 위하여는 화학양론 기대값인 48/14*[질소함량]중량%의 50% 이상은 첨가되는 것이 바람직하다. 그러나. 0.1중량%를 초과하는 경우에는 TiC가 다량 형성되어 오히려 연성이 저하되고 제조원가가 상승한다.Titanium combines with nitrogen to precipitate TiN to improve strength. In order to exhibit such an effect, 50% or more of 48/14 * [nitrogen content] weight% which is a stoichiometric expectation value is added preferably. But. If it exceeds 0.1% by weight, a large amount of TiC is formed, rather the ductility is lowered and the manufacturing cost is increased.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 철강제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 철강제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remaining component of the present invention is iron (Fe). However, in the usual steel manufacturing process, impurities which are not intended from raw materials or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art of ordinary steel manufacturing, not all of them are specifically mentioned herein.
다만, 그 중 질소, 인 및 황은 일반적으로 많이 언급되는 불순물이기 때문에 이에 대하여 간략히 설명하면 다음과 같다.However, since nitrogen, phosphorus, and sulfur are generally mentioned impurities, they will be briefly described as follows.
질소(P): 0.015중량% 이하Nitrogen (P): 0.015% by weight or less
질소는 불가피하게 함유되는 불순물로써, 가능한 한 낮게 제어하는 것이 바 람직하다. 이론상 질소의 함량은 0%로 제한하는 것이 유리하나, 제조공정상 필연적으로 함유될 수 밖에 없다. 따라서, 상한을 관리하는 것이 중요하며, 본 발명에서는 상기 질소 함량의 상한은 0.015중량%로 한정하는 것이 바람직하다.Nitrogen is an inevitable impurity, and it is desirable to control it as low as possible. In theory, the nitrogen content is advantageously limited to 0%, but inevitably contained in the manufacturing process. Therefore, it is important to manage the upper limit, and in the present invention, the upper limit of the nitrogen content is preferably limited to 0.015% by weight.
인(P): 0.05중량% 이하Phosphorus (P): 0.05 wt% or less
인은 불가피하게 함유되는 불순물로써, 강 중에 포함되어 용접성 저하시키므로, 가능한 한 낮게 제어하는 것이 바람직하다. 이론상 인의 함량은 0%로 제한하는 것이 유리하나, 제조공정상 필연적으로 함유될 수 밖에 없다. 따라서, 상한을 관리하는 것이 중요하며, 본 발명에서는 상기 인 함량의 상한은 0.05중량%로 한정하는 것이 바람직하다.Phosphorus is an impurity contained inevitably, and is contained in steel to reduce weldability. Therefore, it is preferable to control phosphorus as low as possible. In theory, the phosphorus content is advantageously limited to 0%, but inevitably contained in the manufacturing process. Therefore, it is important to manage the upper limit, and in the present invention, the upper limit of the phosphorus content is preferably limited to 0.05% by weight.
황(S): 0.015중량% 이하 Sulfur (S): 0.015 wt% or less
황은 불가피하게 함유되는 불순물로써, 망간과 반응하여 MnS를 형성하여 석출물의 함량을 증가시키므로 그 함량을 최대한 억제하는 것이 바람직하다. 이론상 황의 함량은 0%로 제한하는 것이 유리하나, 제조공정상 필연적으로 함유될 수 밖에 없다. 따라서, 상한을 관리하는 것이 중요하며, 본 발명에서 상기 황 함량의 상한은 0.015중량%로 한정하는 것이 바람직하다.Sulfur is an inevitable impurity, and reacts with manganese to form MnS to increase the content of precipitates, so it is desirable to suppress the content as much as possible. In theory, the sulfur content is advantageously limited to 0%, but inevitably contained in the manufacturing process. Therefore, it is important to manage the upper limit, the upper limit of the sulfur content in the present invention is preferably limited to 0.015% by weight.
더불어, 본 발명의 강재는 하기 설명하는 안티몬(Sb)을 추가적으로 첨가하는 경우 본 발명의 효과를 더욱 향상시킬 수 있다.In addition, the steel of the present invention may further improve the effect of the present invention when additionally adding antimony (Sb) described below.
안티몬(Sb): 0.005~0.05중량%Antimony (Sb): 0.005 to 0.05 wt%
안티몬은 탈탄을 억제하고 스케일 박리성을 향상시키는 등 표면 품질을 향상시키는데 유용한 원소이다. 0.005중량% 미만인 경우에는 상기 효과가 미미하다. 반면에, 0.05중량%를 초과하는 경우에는 제조원가가 상승하는데 비하여 그 효과상승은 크지 않다. Antimony is an element useful for improving surface quality, such as suppressing decarburization and improving scale peelability. If it is less than 0.005% by weight, the above effect is insignificant. On the other hand, in the case of exceeding 0.05% by weight, the effect increase is not large compared to the increase in manufacturing cost.
상술한 성분계를 가지는 강판으로서, 항복강도, 신장 플랜지성이 우수한 강판이 되기 위한 바람직한 조건으로 강판의 미세조직에 대하여 한정할 필요가 있다. As the steel sheet having the above-described component system, it is necessary to limit the microstructure of the steel sheet to preferable conditions for becoming a steel sheet excellent in yield strength and stretch flangeability.
본 발명 강판의 미세조직의 주상은 베이나이트이며, 면적분율로 30~95% 범위로 포함된다. 상기 범위의 베이나이트 조직에 의하여, 강판의 강도, 연성 등을 향상시킬 수 있다. 베이나이트가 30% 미만인 경우에는 강도가 하락한다. 또한, 도상 마르텐사이트는 면적분율로 10%이하로 포함된다. 10%를 초과하여 포함되는 경우에는 항복강도가 저하되고, 연신율은 향상되지만 구멍확장성이 저하된다. 하기 설명하는 권취공정의 적절한 실시로 마르텐사이트 및 잔류 오스테나이트의 분율은 10%이하로 한정할 수 있다. 더불어 상기 조직 이외의 잔부는 페라이트로 이루어진다.The columnar phase of the microstructure of the steel sheet of the present invention is bainite, and is contained in an area fraction of 30 to 95%. By the bainite structure of the said range, the strength, ductility, etc. of a steel plate can be improved. If bainite is less than 30%, the strength drops. In addition, island martensite is contained in less than 10% by area fraction. When it contains more than 10%, yield strength falls and elongation improves, but hole expandability falls. By appropriate implementation of the winding process described below, the fraction of martensite and retained austenite can be limited to 10% or less. In addition, the balance other than the above structure is made of ferrite.
상기 성분계를 만족하는 강판은 인장강도가 780MPa 이상이고, 항복강도는 600MPa 이상이다.The steel sheet satisfying the above component system has a tensile strength of 780 MPa or more, and a yield strength of 600 MPa or more.
상술한 바와 같은 본 발명의 목적을 충족하는 강판을 제조하기 위하여 본 발명자들에 의해 도출된 가장 바람직한 방법에 대하여 아래에서 설명한다.The most preferred method derived by the present inventors for producing the steel sheet which satisfies the object of the present invention as described above will be described below.
본 발명의 제조방법은 개략적으로는 본 발명의 강 조성을 갖는 슬라브를 가열한 후, 상기 가열된 슬라브를 Ar3 변태점 이상에서 열간 압연한 후, 냉각 및 권취한다. 이 때, 슬라브를 가열하는 단계는 통상적인 가열공정에 해당한다.In the manufacturing method of the present invention, after heating the slab having the steel composition of the present invention, the heated slab is hot rolled above the Ar3 transformation point, and then cooled and wound up. At this time, the step of heating the slab corresponds to a conventional heating process.
이하, 각 단계별 상세한 조건에 대하여 설명한다.Hereinafter, detailed conditions of each step will be described.
열간압연: Ar3 이상의 온도에서 사상압연 종료Hot Rolling: Finish finishing at temperatures above Ar3
본 발명에서 2상역 압연이 실시될 경우 혼립조직이 형성되어 미세조직이 균일하지 못하여 가공성이 저하될 수 있으므로, Ar3 이상의 온도에서 사상압연을 종료하는 것이 바람직하다.When the two-phase reverse rolling is carried out in the present invention, since the mixed structure is formed and the microstructure is not uniform, workability may be reduced, it is preferable to finish the finishing rolling at a temperature of Ar3 or higher.
냉각: 20℃/s 이상의 냉각속도Cooling: Cooling rate above 20 ℃ / s
사상압연된 강판을 20℃/s 이상의 냉각속도로 냉각을 개시하여 하기 설명하는 권취온도에서 냉각을 종료한다. 20℃/s 미만의 속도로 냉각을 실시하는 경우 페라이트 변태가 크게 일어나 페라이트의 분율이 증가하여 강도를 하락시키는 문제가 있다. Cooling is started at the cooling rate of 20 degree-C / s or more, and finishing cooling is carried out at the coiling temperature demonstrated below. When cooling is carried out at a rate of less than 20 ° C / s ferrite transformation occurs largely there is a problem that the fraction of the ferrite increases to decrease the strength.
권취: Ms(마르텐사이트 변태개시 온도)~식(1)Winding: Ms (Martensitic transformation start temperature) ~ formula (1)
식(1): 791.3-3454.3(탄소함량)-27.2(실리콘함량)+4.3(망간함량)Equation (1): 791.3-3454.3 (carbon content) -27.2 (silicon content) +4.3 (manganese content)
본 발명에서 권취온도는 강판의 미세조직을 제어하는 중요한 요소이다. 만약 마르텐사이트 변태개시 온도 미만에서 권취를 실시하는 경우에는 귄취초기부터 마르텐사이트가 형성되어 강의 연성을 하락시킬 수 있다. 상기 권취온도의 상한은 탄소, 실리콘, 망간의 조성변화에 따른 무확산 변태온도를 써모캘크(THERMOCALC® TCFE5) 데이터를 활용하여 도출하였다. In the present invention, the coiling temperature is an important factor for controlling the microstructure of the steel sheet. If the winding is carried out below the start temperature of martensite transformation, martensite is formed at the beginning of the curling process, thereby reducing the ductility of the steel. The upper limit of the coiling temperature was derived using a thermocalk (THERMOCALC® TCFE5) data to determine the diffusion-free transformation temperature according to the composition change of carbon, silicon, manganese.
이후 추가적으로, 상기 열연강판을 산세공정을 통하여 산세강판으로 제조할 수 있다. Thereafter, the hot rolled steel sheet may be manufactured as a pickling steel sheet through a pickling process.
이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.
(실시예)(Example)
진공 유도 용해에 의해 표1에 나타낸 조성을 만족하는 강슬라브를 두께 30mm, 폭 175mm로 제조하고 1200℃에서 1시간 재가열한 후 열연 두께 2.5mm가 되도록 열간압연을 한다. 여기서, 열간압연 마무리 온도는 Ar3 변태점 이상이다. 상기 압연 후 하기 표2에 기재되어 있는 냉각속도로 냉각하고, 권취온도에서 권취한다. 권취 후 항복강도(YS), 인장강도(TS), 연신율(EL) 및 구멍확장율(HER: hole expanding ratio)를 측정하여 하기 표2에 함께 나타내었다. Steel slabs satisfying the compositions shown in Table 1 were prepared by vacuum induction melting to a thickness of 30 mm and a width of 175 mm, and re-heated at 1200 ° C. for 1 hour, followed by hot rolling to obtain a hot rolled thickness of 2.5 mm. Here, hot rolling finish temperature is more than Ar3 transformation point. After the rolling, it is cooled at the cooling rate shown in Table 2 below, and wound at a winding temperature. After winding, yield strength (YS), tensile strength (TS), elongation (EL) and hole expansion ratio (HER: hole expansion ratio) were measured together and shown in Table 2 below.
신장 플랜지성을 평가하는 지수인 구멍확장성은 시편에 원형의 구멍을 타발한 후 이를 원추형 펀치를 이용하여 확장시킬 때, 구멍의 가장자리에 발생한 균열이 적어도 한 곳에서 두께방향으로 관통할 때까지 구멍확대량을 초기 구멍의 크기에 대한 비율로서 나타낼 수 있으며, 구체적으로 구멍확장율은 하기 식2에 의하여 도출할 수 있다.Hole extensibility, an index for evaluating elongation flangeability, when a circular hole is punched into a specimen and then expanded using a conical punch, the hole expands until at least one crack in the edge of the hole penetrates in the thickness direction. The amount may be expressed as a ratio with respect to the size of the initial hole, and specifically, the hole expansion rate may be derived by the following Equation 2.
(식2) λ= (Dh-Do)/Do*100 Λ = (Dh-Do) / Do * 100
(λ는 구멍확장율(%), Do는 초기 구멍직경(mm), Dh는 파단 후 구멍직경(mm))(λ is the hole expansion rate (%), Do is the initial hole diameter (mm), Dh is the hole diameter after fracture (mm))
초기 구멍을 펀칭할때의 클리어런스(clearance)의 정의도 구멍확장성을 평가하기 위하여 필요하며, 이는 다이와 펀치의 간격을 시험편의 두께에 대한 비율로 표시한 것으로써, 아래의 (식3)에 의하여 정의되며, 본 발명의 실시예에서는 10%의 클리어런스를 이용하였다.The definition of clearance at the time of punching the initial hole is also necessary to evaluate the hole expandability, which is expressed as the ratio of die and punch to the thickness of the test piece. In the embodiment of the present invention, a clearance of 10% was used.
(식3) C = 0.5*(dd-dp)/t * 100 (%) (Equation 3) C = 0.5 * (d d -d p ) / t * 100 (%)
(C는 클리어런스(clearance)(%), dd는 타발 다이의 내경(mm), dp는 타발 펀치의 직경 (dp=10mm), t는 시험편의 두께(mm)) (C is clearance (%), d d is inner diameter of punching die (mm), d p is diameter of punching punch (d p = 10mm), t is thickness of test piece (mm))
또한, 발명예2의 미세조직 사진을 도1에 나타내었고, 비교예1의 미세조직 사진을 도2에 나타내었다.In addition, the microstructure picture of Inventive Example 2 is shown in Figure 1, the microstructure picture of Comparative Example 1 is shown in Figure 2.
번호Psalter
number
(℃)Cooling rate
(℃)
(℃)Winding temperature upper limit
(℃)
(MPa)YS
(MPa)
(MPa)TS
(MPa)
(%)Hand
(%)
(%)HER
(%)
상기 표2에 나타낸 바와 같이, 비교예1은 냉각속도가 너무 낮아 항복강도 및 인장강도가 저하되었다. 비교예2는 권취온도가 본 발명의 권취온도 상한을 넘어 도상 마르텐사이트 분율이 10%를 초과하여 항복강도가 저하되었고, 연신율은 증가하였으나, 구멍 확장율이 저하되었다. 도2에 나타난 바와 같이, 도상 마르텐사이트가 10%이상 포함되었음을 확인할 수 있다. 비교예3은 마르텐사이트가 형성되어 강도는 증가하였으나, 연신율은 저하되었다. 비교예4 및 5는 탄소의 함량이 높아 구멍 확장율이 저하되었다.As shown in Table 2, in Comparative Example 1, the cooling rate was too low to lower the yield strength and tensile strength. In Comparative Example 2, the yield strength was lowered because the coiling temperature exceeded the upper limit of the coiling temperature of the present invention and the martensite fraction exceeded 10%, the elongation was increased, but the hole expansion ratio was lowered. As shown in Figure 2, it can be confirmed that more than 10% of the martensite phase. In Comparative Example 3, martensite was formed to increase strength, but elongation was decreased. In Comparative Examples 4 and 5, the content of carbon was high and the hole expansion ratio was lowered.
이에 반하여, 발명예1 내지 7은 항복강도 600MPa 이상, 인장강도 780MPa 이상, 연신율 10% 이상, 구멍확장율 50%이상을 만족하여 비교예 보다 강도 및 신장 플랜지성이 향상되었음을 확인할 수 있다. 또한, 도1을 통하여 발명예2의 경우 도상 마르텐사이트가 10% 이하로 형성되었음을 확인할 수 있다.On the contrary, Inventive Examples 1 to 7 satisfy the yield strength of 600 MPa or more, the tensile strength of 780 MPa or more, the elongation of 10% or more, and the hole expansion rate of 50% or more. In addition, it can be seen from FIG. 1 that in the case of the invention example 2, the island martensite was formed to 10% or less.
도1은 발명예2의 미세조직 사진이다.1 is a microstructure photograph of Inventive Example 2. FIG.
도2는 비교예2의 미세조직 사진이다.Figure 2 is a microstructure photograph of Comparative Example 2.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090129864A KR101153696B1 (en) | 2009-12-23 | 2009-12-23 | Steel Sheet having Excellent Yield Strength and Stretch Flange Ability and Manufacturing Method Thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090129864A KR101153696B1 (en) | 2009-12-23 | 2009-12-23 | Steel Sheet having Excellent Yield Strength and Stretch Flange Ability and Manufacturing Method Thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110072787A KR20110072787A (en) | 2011-06-29 |
KR101153696B1 true KR101153696B1 (en) | 2012-06-20 |
Family
ID=44403666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090129864A Active KR101153696B1 (en) | 2009-12-23 | 2009-12-23 | Steel Sheet having Excellent Yield Strength and Stretch Flange Ability and Manufacturing Method Thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101153696B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102173920B1 (en) * | 2018-11-16 | 2020-11-04 | 고려대학교 산학협력단 | 700MPa CLASS STEEL BAR HAVING EXCELLENT YIELD RATIO AND UNIFORM ELONGATION PROPERTY, AND METHOD FOR MANUFACTURING THE SAME |
KR102178677B1 (en) | 2019-05-20 | 2020-11-13 | 주식회사 포스코 | High strength steel sheet with excellent hole expansion and methof for manufacturing the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090072114A (en) * | 2007-12-28 | 2009-07-02 | 주식회사 포스코 | High strength hot rolled steel sheet with excellent flange flange and weldability, hot leaded steel sheet and manufacturing method thereof |
-
2009
- 2009-12-23 KR KR1020090129864A patent/KR101153696B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090072114A (en) * | 2007-12-28 | 2009-07-02 | 주식회사 포스코 | High strength hot rolled steel sheet with excellent flange flange and weldability, hot leaded steel sheet and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20110072787A (en) | 2011-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101482258B1 (en) | High-strength hot-rolled steel sheet excellent in hot-forming workability, molded article using the same, and manufacturing method thereof | |
CN108431280B (en) | High yield ratio type high strength cold rolled steel sheet and method for manufacturing same | |
KR101714930B1 (en) | Ultra high strength steel sheet having excellent hole expansion ratio, and method for manufacturing the same | |
KR101899674B1 (en) | High strength steel sheet having excellent burring property in low-temperature region and manufacturing method for same | |
KR101482342B1 (en) | High-strength hot-rolled steel plate having execellent weldability and bending workbility and method for manufacturing tereof | |
KR20150075306A (en) | Ultra-high strength hot-rolled steel sheet with excellent in bending workability, and method for producing the same | |
KR100957944B1 (en) | High strength hot rolled steel sheet with excellent flange flange and weldability, hot leaded steel sheet and manufacturing method thereof | |
KR20180034773A (en) | High strength steel having hydrogen embrittlement resistance and method for manufacturing the same | |
KR101543918B1 (en) | Ultra high strength cold rolled steel sheet having excellent shape property and method for manufacturing the same | |
KR101988760B1 (en) | Ultra-high strength steel sheet having excellent formability, and method for manufacturing thereof | |
KR101153696B1 (en) | Steel Sheet having Excellent Yield Strength and Stretch Flange Ability and Manufacturing Method Thereof | |
KR101977491B1 (en) | Ultra-high strength and high-ductility steel sheet having excellent cold formability, and method for manufacturing thereof | |
KR102557845B1 (en) | Cold-rolled steel sheet and method of manufacturing the same | |
KR20100047015A (en) | Hot-rolled steel sheet having ultra-high strength, and method for producing the same | |
KR102478807B1 (en) | Steel sheet having high strength and high formability and method for manufacturing the same | |
KR101449137B1 (en) | High strength hot-rolled steel having excellent weldability and hydroforming workability and method for manufacturing thereof | |
KR101412262B1 (en) | High strength cold-rolled steel sheet for automobile with excellent bendability and formability and method of manufacturing the same | |
KR101767706B1 (en) | High yield ratio ultra high strength steel cold rolled steel sheet having excellent bendability and method for producing the same | |
KR20120138900A (en) | High strength cold-rolled steel sheet for automobile with excellent formability and method of manufacturing the steel sheet | |
KR101076082B1 (en) | Hot-rolled steel sheet having ultra-high strength, and method for producing the same | |
KR101070121B1 (en) | Cold-Rolled Steel Sheet, Galvanized SteelSheet, Galvannealed Steel Sheet and Method for Manufacturing The Same | |
KR101143086B1 (en) | Manufacturing Method of High Strength Steel Sheet Having Excellent Bake-Hardenability | |
KR20050032721A (en) | Ultra high strength steel of 120kgf/㎟ grade having excellent formability | |
KR101568495B1 (en) | High strength cold rolled steel sheet having excellent shape property and method for manufacturing the same | |
KR20190074659A (en) | High-strength steel sheet having excellent formability, and method for manufacturing thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20091223 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20111017 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20120501 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20120530 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20120530 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20150601 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20150601 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20160527 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20160527 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170529 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20170529 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20180529 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20180529 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20190530 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20190530 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20200529 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20210531 Start annual number: 10 End annual number: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20220530 Start annual number: 11 End annual number: 11 |