[go: up one dir, main page]

KR100341532B1 - Method for producing a fluorescent material - Google Patents

Method for producing a fluorescent material Download PDF

Info

Publication number
KR100341532B1
KR100341532B1 KR1019970014839A KR19970014839A KR100341532B1 KR 100341532 B1 KR100341532 B1 KR 100341532B1 KR 1019970014839 A KR1019970014839 A KR 1019970014839A KR 19970014839 A KR19970014839 A KR 19970014839A KR 100341532 B1 KR100341532 B1 KR 100341532B1
Authority
KR
South Korea
Prior art keywords
mol
phosphor
samples
luminance
concentration
Prior art date
Application number
KR1019970014839A
Other languages
Korean (ko)
Other versions
KR970070161A (en
Inventor
시게오 이토
히토시 도키
요시타카 가가와
요시타카 사토
히사시 가니에
Original Assignee
후다바 덴시 고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP8100215A external-priority patent/JP2897716B2/en
Application filed by 후다바 덴시 고교 가부시키가이샤 filed Critical 후다바 덴시 고교 가부시키가이샤
Publication of KR970070161A publication Critical patent/KR970070161A/en
Application granted granted Critical
Publication of KR100341532B1 publication Critical patent/KR100341532B1/en

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

도너농도가 제한되기 위하여 발광효율이 높고 첨가원소의 선택에 의해 전자선 여기에 의해 각종 발광색을 실현할 수 있고, 수명특성에도 우수한 형광체를 제공한다.In order to limit the donor concentration, the luminous efficiency is high, and various emission colors can be realized by electron beam excitation by selection of additional elements, thereby providing a phosphor having excellent life characteristics.

Ga2S3을 23.5g(0.1mol)에 MgCl2를 0.02g(0.1mol%/Ga)가한다. 다시, Si농도와 Mg농도가 같아지도록 폴리실라잔 20% 용액을 0.05g 가한다. 혼합하여 암모니아 분위기 1100℃에서 10시간 유지하고, GaN:Mg, Si형광체를 얻었다. 폴리실라잔의 양을 변화시켜서 Si량을 0.001mol∼10mol%까지 변화시켜서 복수종류의 시료를 얻는다. Si 없는 시료와 폴리실라잔 대신 SiO2를 사용한 시료도 제작하였다. 이들 시료를 형광표시관 양극에 사용하고, 점등하여 형광체 휘도특성을 평가하였다. 각 시료의 발광색은 모두 청색이었다. 발광휘도는 Si의 도프량이 적은 영역에서는 휘도가 낮고, 과다하면 휘도가 낮아진다. Mg의 농도 M은 0.01<M<0.3이 좋고, Si의 농도 X는 0.005<X<0.3이 좋다.23.5 g (0.1 mol) of Ga 2 S 3 is added and 0.02 g (0.1 mol% / Ga) of MgCl 2 . Again, 0.05 g of polysilazane 20% solution is added so that the Si and Mg concentrations are equal. The mixture was kept at 1100 ° C. for 10 hours in an ammonia atmosphere to obtain GaN: Mg and Si phosphors. By varying the amount of polysilazane, the amount of Si is varied from 0.001 mol to 10 mol% to obtain a plurality of types of samples. Samples without Si and samples using SiO 2 instead of polysilazane were also prepared. These samples were used for the anode of the fluorescent display tube and lit to evaluate the phosphor luminance characteristics. The emission color of each sample was all blue. The luminance of light emitted is low in the region where the doping amount of Si is low, and the brightness is low when excessive. The concentration M of Mg is preferably 0.01 <M <0.3, and the concentration X of Si is preferably 0.005 <X <0.3.

Description

형광체의 제조방법{METHOD FOR PRODUCING A FLUORESCENT MATERIAL}Manufacturing method of phosphor {METHOD FOR PRODUCING A FLUORESCENT MATERIAL}

본 발명은 질화 갈륨과 질화인듐 고용체에 도프물질이 도프된 형광체로서, 전자선 여기에 의해 발광되고, 원료물질의 선택에 의해 각종 발광색을 실현할 수 있는 휘도특성 및 수명특성이 우수한 형광체에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphor in which a dopant is doped in gallium nitride and an indium nitride solid solution, and emits light by electron beam excitation, and has excellent luminance and lifespan characteristics capable of realizing various emission colors by selection of a raw material.

특개소 51-41686호 공보에는 Ga2O3을 암모니아 분위기 하에서 질화시켜 얻은 GaN을 모체로 하여, Cd를 도팬트한 형광체가 개시되어 있다. 이 형광체는 전자선 여기에 의한 발광에는 응용되어 있지 않고, 상기 문헌에도 전자선 여기에 의한 발광에 대한 기재는 없다.Japanese Patent Application Laid-Open No. 51-41686 discloses a phosphor doped with Cd using GaN obtained by nitriding Ga 2 O 3 in an ammonia atmosphere as a matrix. This phosphor is not applied to light emission by electron beam excitation, and there is no description of light emission by electron beam excitation in the above document.

Ga2O3을 질소분위기 하에서 질화시키면, Ga2O3은 물질 표면에서 질화되어 가나, 고온으로 하면 그 표면은 재차 산화되어 버린다. 즉, 질화갈륨은 질소가 빠지기 쉬운 성질이 있고, 이 때문에 n형으로 매우 저저항이며, 논 도프에서도 발광한다.When Ga 2 O 3 is nitrided in a nitrogen atmosphere, Ga 2 O 3 is nitrided on the surface of the material, but when heated to a high temperature, the surface is oxidized again. That is, gallium nitride has the property that nitrogen is easy to fall out, and therefore, it is n type, very low resistance, and emits light even in non-dope.

질화갈륨의 발광은 도너(D)와 액셉터(A)의 페어 발광이다. 액셉터는 Zn, Mg등을 사용하나, 도너는 자연히 형성되는 질소결함이므로 종래의 제법으로는 도너농도를 높이고자 하면 물질중의 결함을 증가시키게 되고, 결정성을 저하시키는 것이 되어 버린다. 이와같이, 종래의 질화갈륨에 있어서는 도너수를 희망하는 값으로 제어하여 생성할 수는 없었다.The light emission of gallium nitride is a pair light emission of the donor (D) and the acceptor (A). Although the acceptor uses Zn, Mg, etc., the donor is a nitrogen defect that is naturally formed, and according to the conventional method, if the donor concentration is to be increased, defects in the material are increased and crystallinity is reduced. As described above, in the conventional gallium nitride, the donor number could not be controlled and produced.

또 질화갈륨은 산소의 존재에 의해 산화될 가능성을 가지고 있으며, 따라서 산화물인 Ga2O3를 원료물질로 하면, 이것을 완전히 질화하기는 곤란하며, 얻은 질화갈륨도 잔존한 산소가 발광에 악영향을 미치는 등, 품질이 양호하다고 할 수 없다.In addition, gallium nitride has a possibility of being oxidized due to the presence of oxygen. Therefore, if Ga 2 O 3 is used as the raw material, it is difficult to completely nitrate the gallium nitride, and the obtained gallium nitride also adversely affects luminescence. Such quality cannot be said to be good.

본 발명은, 제조시에 산소의 영향을 받지 않고 도너 온도가 제어되기 때문에 발광효율이 높고 첨가원소의 선택에 의해 전자선 여기에 의해 각종 발광색을 실현할 수 있고, 휘도특성 및 수명특성이 우수한 형광체를 제공하는 것을 목적으로 한다.The present invention provides a phosphor having a high luminous efficiency and realizing various luminous colors by electron beam excitation by selection of an additional element because the donor temperature is controlled without being influenced by oxygen at the time of manufacture, and excellent in luminance and lifetime characteristics. It aims to do it.

(과제를 해결하기 위한 수단)(Means to solve the task)

본 발명의 형광체는 Ga1-xInxN: M, X(단, 0≤x<0.8, M은 Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg의 집합에서 선택된 적어도 하나의 원소, X는 C, Si, Ge, Sn, Pb의 집합에서 선택된 적어도 하나의 원소)로 표시된다.Phosphor of the present invention is Ga 1-x In x N: M, X (where 0≤x <0.8, M is at least one element selected from the set of Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg) , X is at least one element selected from the set of C, Si, Ge, Sn, Pb).

본 발명의 형광체는 상기 M 및 상기 X의 농도범위(mol%)가 각각 0.005<M<0.7 및 0.002<X<0.8인 것을 특징으로 한다.The phosphor of the present invention is characterized in that the concentration range (mol%) of M and X is 0.005 <M <0.7 and 0.002 <X <0.8, respectively.

바람직하게는 본 발명의 형광체는 상기 M 및 상기 X의 농도범위(mol%)가 각각 0.01<M<0.3 및 0.005<X<0.3인 것을 특징으로 한다.Preferably, the phosphor of the present invention is characterized in that the concentration range (mol%) of M and X is 0.01 <M <0.3 and 0.005 <X <0.3, respectively.

본 발명의 형광체는 상기 형광체를 산소를 함유하지 않은 원료물질로 제조한 것을 특징으로 한다.The phosphor of the present invention is characterized in that the phosphor is made of a raw material containing no oxygen.

본 발명의 형광체는 상기 Si의 원료물질이 산소를 함유하지 않은 (SiHaNb)n(단 a=1∼3, b=O 또는 1)인 것을 특징으로 한다.The phosphor of the present invention is characterized in that the Si raw material is (SiH a N b ) n (where a = 1 to 3, b = O or 1) containing no oxygen.

(발명의 실시형태)Embodiment of the Invention

본 발명의 형광체는 도너가 되는 원소를 첨가함으로써 도너 농도를 제어하고, 발광효율을 향상시킨다. 또, 제조시에는 산소의 영향을 받지 않을 원료물질을 이용하여 제조한다. 화학식은 Ga1-xInxN:M, X(단 0≤x<0.8)로 표시된다. 도너가 되는 원소 X는 C, Si, Ge, Sn, Pb등의 4족 원소가 좋다. 첨가원소 M은 Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg가 좋다. 특히 Si를 형광체중에 첨가하기 위해서는 폴리실라잔(도넨(주)의 상표)을 사용하면 좋다. 폴리실라잔은 화학식(SiHaNb)n(단 a=1∼3, b=0 또는 1)의 퍼히드로폴리실라잔이다. 이 물질을 이용하면, 형광체 중에 첨가되는 Si원자수를 정밀하게 제어할 수 있다. 또, 이 물질은 C나 O를 함유하지 않으므로 질화물 제조에 유리하다. 또한, Ge를 첨가하기 위해서는 GeS2, Sn을 첨가하기 위해서는 SnCl2등의 물질을 사용한다. 이와같이 도너물질의 첨가량을 적이제어하면 전자선 여기에 의해 각종 발광색으로 발광하는 휘도특성 및 수명특성이 우수한 형광체를 제조할 수 있다.The phosphor of the present invention controls the donor concentration by adding an element which becomes a donor, and improves luminous efficiency. In addition, during the production, it is prepared using a raw material that will not be affected by oxygen. The chemical formula is represented by Ga 1-x In x N: M, X (where 0 ≦ x <0.8). The element X serving as a donor is preferably a Group 4 element such as C, Si, Ge, Sn, or Pb. Addition element M is preferably Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg. In particular, in order to add Si to the phosphor, polysilazane (trademark of Tonen Co., Ltd.) may be used. Polysilazane is a perhydropolysilazane of the formula (SiH a N b ) n (where a = 1 to 3, b = 0 or 1). By using this substance, the number of Si atoms added to the phosphor can be precisely controlled. In addition, this material does not contain C or O, which is advantageous for the production of nitrides. In addition, materials such as GeS 2 for adding Ge and SnCl 2 for adding Sn are used. When the amount of donor material added is controlled in this way, it is possible to produce a phosphor having excellent luminance characteristics and lifetime characteristics which emit light in various emission colors by electron beam excitation.

(실시예)(Example)

(1) 제 1실시예 GaN: Mg, Si(1) First Embodiment GaN: Mg, Si

Ga2S3을 23.5g(0.1mol)칭량한다. 여기에 MgCl2를 0.02g(0.1mol%/Ga)을 가한다. 또한, Si농도와 Mg농도가 같아지도록 폴리실라잔 20%용액을 0.05g가한다. 이들을 혼합하여 석영보드에 얹어 이것을 석영관안에 둔다. 석영관내에 10ml/min으로 암모니아를 흘리면서 1100℃로 10시간 유지하였다. GaN: Mg, Si를 얻었다.23.5 g (0.1 mol) of Ga 2 S 3 is weighed. To this was added 0.02 g (0.1 mol% / Ga) of MgCl 2 . In addition, 0.05 g of polysilazane 20% solution is added so that the Si concentration and the Mg concentration are the same. These are mixed and placed on a quartz board and placed in a quartz tube. The solution was maintained at 1100 ° C. for 10 hours while flowing ammonia at 10 ml / min in the quartz tube. GaN: Mg and Si were obtained.

상기 제조공정에서 Mg량을 고정함과 동시에 폴리실라잔 20%용액의 양을 변화시켜서 Si량을 0.001mol%∼10mol%까지 변화시킨 복수종류의 시료를 제작하였다. 이와같이 제작한 본 실시예의 형광체의 입형(粒形)은 SEM에 의한 관찰결과 종래의 질화갈륨형광체와 같은 침상이 아닌, 평판상이었다.In the manufacturing process, a plurality of samples were prepared in which the amount of Si was changed to 0.001 mol% to 10 mol% by fixing the amount of Mg and varying the amount of the polysilazane 20% solution. The particle shape of the phosphor of this Example thus produced was flat, rather than acicular, as in the conventional gallium nitride phosphor.

또, Si 없는 시료와, 폴리실라잔 대신 SiO2를 사용한 시료도 제작하였다.In Fig sample was prepared using the Si-free sample, and a polysilazane instead of SiO 2.

이들 시료를 유리기판상의 양극도체상에 유기바인더를 이용하여 도포하고, 대기중에서 500℃에서 소성하여 바인더를 제거하여 형광체층이 형성된 양극기판을 제작하였다. 양극기판 상면측에 제어전극이나 음극을 배치하고, 양극기판의 상면에 상자형 용기부를 프리트글라스로 봉착하여 외위기를 구성한다. 외위기 내부를 고진공상태로 배기하여 약 500℃에서 외위기를 밀봉하여 형광표시관을 제작하였다. 양극도체에 약 50V의 전압을 인가하고, 형광체를 발광시켜서 그 휘도특성을 비교·평가하였다.These samples were applied onto an anode conductor on a glass substrate using an organic binder, and then fired at 500 ° C. in the air to remove the binder to prepare a cathode substrate on which a phosphor layer was formed. A control electrode or a cathode is disposed on the upper surface of the positive electrode substrate, and a box-shaped container is sealed with fritted glass on the upper surface of the positive electrode substrate to form an envelope. The inside of the envelope was evacuated in a high vacuum state, and the envelope was sealed at about 500 ° C. to manufacture a fluorescent display tube. A voltage of about 50 V was applied to the anode conductor, and the phosphor was made to emit light, and the luminance characteristics thereof were compared and evaluated.

도 1에 도시하는 바와같이 각 시료의 발광색은 모두 청색이었다. 도 2에 도시하는 바와같이, 발광휘도는 Si의 도프량에 따라 변화되고, 도프량이 적은 영역에서는 휘도가 낮다. 또 Si가 과다하면 여분의 Si가 석출하여 휘도가 낮아지고, 그때에는 형광체의 발광상태가 불균일이 되어 차지업이 곳곳에 보였다. SiO2를 사용한 시료의 휘도는 폴리실라잔을 이용한 시료 휘도의 약 75%였다.As shown in FIG. 1, the light emission color of each sample was all blue. As shown in Fig. 2, the luminance of light emission changes according to the amount of Si doping, and the luminance is low in a region where the amount of doping is small. In addition, when Si is excessive, extra Si is precipitated and the luminance is lowered. At that time, the light emitting state of the phosphor becomes nonuniform, and charge up appears everywhere. The luminance of the sample using SiO 2 was about 75% of the sample luminance using polysilazane.

(2) 제 2실시예 GaN:Mg, Ge(2) Second Embodiment GaN: Mg, Ge

Ga2S323.5g(0.1mol)을 칭량하였다. 여기에 MgCl2즉 0.01g(0.05mol%/Ga)을 가한다. 또한, Mg농도와 Ge농도가 같은 농도가 되도록 GeS2를 0.014g 첨가하여 잘 혼합한다. 이들을 석영포드에 얹어, 이들을 석영관 안에 둔다. 석영관내에 10ml/min으로 암모니아를 흘리면서 1100℃로 10시간 유지하였다. GaN:Mg,Ge를 얻었다.23.5 g (0.1 mol) of Ga 2 S 3 were weighed. MgCl 2, that is, 0.01 g (0.05 mol% / Ga) is added thereto. In addition, 0.014 g of GeS 2 is added and mixed well so that the Mg concentration and the Ge concentration are the same. They are placed on a quartz pod and placed in a quartz tube. The solution was maintained at 1100 ° C. for 10 hours while flowing ammonia at 10 ml / min in the quartz tube. GaN: Mg, Ge was obtained.

또, Ge 없는 시료와, GeS2대신 GeO2를 이용한 시료도 제작하였다.In Fig was produced in the sample and, GeS 2 instead of the sample with no GeO 2 Ge.

이들 시료를 이용하여 제 1실시예와 동일하게 형광표시관을 제작하였다. 양극도체에 약 50V의 전압을 인가하고, 형광체를 발광시켜서 그 휘도특성을 비교·평가하였다.Using these samples, a fluorescent display tube was produced in the same manner as in the first embodiment. A voltage of about 50 V was applied to the anode conductor, and the phosphor was made to emit light, and the luminance characteristics thereof were compared and evaluated.

각 시료의 발광색은 모두 청색이었다. Ge를 이용하지 않은 시료의 휘도를 100%로하면, 본 실시예의 시료의 휘도는 170%이고, Ge를 첨가한 효과가 확인되었다. GeO2를 이용한 시료의 휘도는 130%였다.The emission color of each sample was all blue. When the luminance of the sample without using Ge was 100%, the luminance of the sample of the present example was 170%, and the effect of adding Ge was confirmed. The luminance of the sample using GeO 2 was 130%.

(3) 제 3실시예 Ga0.7InN:Zn, Ge(3) Third Example Ga 0.7 InN: Zn, Ge

Ga2S316.4g과 In2S39.8g을 이용한다. 여기에 ZnS 0.02g(0.1mol%/Ga)과 Zn농도와 Ge농도가 같은 농도가 되도록 GeS2를 0.027g 첨가하여 잘혼합한다. 이들을 석영보드에 얹어, 이것을 석영관 안에 둔다. 석영관내에 10ml/min으로 암모니아를 흘리면서 1150℃로 6시간 유지한다. Ga0.7InN:Zn, Ge를 얻었다.16.4 g of Ga 2 S 3 and 9.8 g of In 2 S 3 are used. Here, 0.02 g of ZnS (0.1 mol% / Ga) and 0.027 g of GeS 2 are added and mixed well so that Zn and Ge have the same concentration. They are placed on a quartz board and placed in a quartz tube. It is maintained at 1150 ° C. for 6 hours while flowing ammonia at 10 ml / min in the quartz tube. Ga 0.7 InN: Zn, Ge was obtained.

상기 제조공정에서 Ge량을 고정함과 동시에 ZnS의 양을 변화시켜서 Zn량을 0.001mol%∼10mol%까지 변화시킨 복수종류의 시료를 제작하였다. 또, Ge 없는 시료와, 폴리실라잔 대신 SiO2를 사용한 시료도 제작하였다. 또, Zn량을 고정하고, Ge를 0.001∼5mol%까지 변화시킨 복수의 시료도 제작하였다.In the manufacturing process, a plurality of samples were prepared in which the amount of Zn was changed at the same time the amount of ZnS was changed and the amount of Zn was changed to 0.001 mol% to 10 mol%. In Fig sample was prepared using a Ge-free sample, and a polysilazane instead of SiO 2. In addition, a plurality of samples in which the amount of Zn was fixed and Ge was changed to 0.001 to 5 mol% were also produced.

이들 시료와 PVA를 사용하여 슬러리액을 제작하고, 그 슬러리액을 유리기판상의 ITO전극에 도포한다. 이것을 대기중에 480℃로 소성하여 형광체층이 형성된 양극기판을 제작하였다. 내면측에 전계방출형 음극이 형성된 음극기판을 준비하고, 이의 내면측을 상기 양극기판 상면측에 소정 간격으로 대면시켜, 양기판 외주 사이를 스페이서 부재를 통하여 봉착함으로써 외위기를 구성한다. 외위기 내부를 고진공상태로 배기하고, 밀봉하여 전계방출 표시소자(FED, Field EmissionCathode)를 제작하였다. 양극도체에 전압을 인가하고, 전계방출형 음극에서 방출된 전자를 양극의 형광체층에 사돌시켜서 형광체를 발광시켜, 그 휘도특성을 비교·평가하였다.Slurry liquids are prepared using these samples and PVA, and the slurry liquid is applied to an ITO electrode on a glass substrate. This was fired at 480 ° C. in the air to prepare a positive electrode substrate on which a phosphor layer was formed. A negative electrode substrate having a field emission-type negative electrode formed on the inner surface side thereof is prepared, and the inner surface side thereof faces the upper surface side of the positive electrode substrate at predetermined intervals, and the outer periphery is sealed between the outer circumferences of the two substrates through a spacer member. The inside of the enclosure was evacuated and sealed in a high vacuum state to fabricate a field emission display device (FED, Field Emission Cathode). A voltage was applied to the anode conductor, and the electrons emitted from the field emission cathode were adolescent to the phosphor layer of the anode to emit phosphors, and the luminance characteristics thereof were compared and evaluated.

도 3에 도시하는 바와같이, 발광휘도는 Ge의 도프량에 따라 변화되고, 도프량이 적은 영역에서는 휘도가 낮다. 또 Ge가 과다하면 휘도가 낮아진다. Zn에 대해서도, 도 5에 도시하는 바와같이 최적치를 중심으로 도프량에 따라 휘도의 상대강도가 변화된다.As shown in Fig. 3, the luminance of light emission changes according to the amount of Ge doping, and the luminance is low in a region where the amount of doping is small. In addition, when Ge is excessive, the luminance is lowered. Also for Zn, as shown in Fig. 5, the relative intensity of luminance changes with the amount of dope around the optimum value.

(4) 제 4실시예 Ga0.7InN:Mg, Zn, Si(4) Fourth Example Ga 0.7 InN: Mg, Zn, Si

Ga2S316.4g과 In2S39.8g을 사용한다. 여기에, MgCl20.01g(0.05mol%/Ga)과 ZnS 0.01g(0.05mol%/Ga)을 가하고, 또한 Si 농도가 Zn과 Mg를 합한 농도와 같게 되도록 폴리실라잔 20% 수용액을 0.05g첨가한다. 이들을 잘 혼합하여 석영보드에 얹어, 이것을 석영관 안에 둔다. 석영관내에 10ml/min으로 암모니아를 흘리면서 1180℃로 6시간 유지하였다. Ga0.7InN:Mg, Zn, Si를 얻었다. Si없는 시료도 제작하였다.16.4 g of Ga 2 S 3 and 9.8 g of In 2 S 3 are used. 0.01 g (0.05 mol% / Ga) of MgCl 2 and 0.01 g (0.05 mol% / Ga) of ZnS were added thereto, and 0.05 g of a 20% aqueous polysilazane solution was added so that the Si concentration was equal to the concentration of Zn and Mg. Add. These are mixed well and placed on a quartz board and placed in a quartz tube. The solution was maintained at 1180 ° C. for 6 hours while flowing ammonia at 10 ml / min in the quartz tube. Ga 0.7 InN: Mg, Zn, and Si were obtained. Si-free samples were also prepared.

이들 시료를 사용하여 제 1실시예와 동일하게 FED를 제작하였다. 양극도체에 약 100V의 전압을 인가하여 형광체를 발광시켜서 그 휘도특성을 비교·평가하였다.Using these samples, FED was produced similarly to the first example. A phosphor of about 100V was applied to the anode conductor to emit light, and the luminance characteristics thereof were compared and evaluated.

본 예의 형광체는 녹색으로 발광하였다. Si없는 시료의 발광휘도를 100%로 하면 본 예의 형광체는 180%의 휘도가 얻어지고, Si첨가효과가 확인되었다.The phosphor of this example emitted green light. When the emission luminance of the sample without Si was 100%, the phosphor of this example obtained 180% luminance, and the Si addition effect was confirmed.

(5) 제 5실시예 GaN: Mg, Sn(5) Fifth Embodiment GaN: Mg, Sn

Ga2S323.5g(0.1mol)을 칭량한다. MgCl20.02g(0.1mol%/Ga)과, Sn농도가 Mg농도와 같아지도록 SnCl2를 0.04g 첨가하여 잘 혼합한다. 이들을 석영보드에 얹어 이것을 석영관안에 둔다. 석영관내에 10ml/min으로 암모니아를 흘리면서 1200℃로 10시간 유지한다. GaN: Mg, Sn을 얻었다.23.5 g (0.1 mol) of Ga 2 S 3 is weighed. 0.02 g of MgCl 2 (0.1 mol% / Ga) and 0.04 g of SnCl 2 are added and mixed well so that the Sn concentration is equal to the Mg concentration. They are placed on a quartz board and placed in a quartz tube. It is maintained at 1200 ° C. for 10 hours while flowing ammonia at 10 ml / min in the quartz tube. GaN: Mg and Sn were obtained.

상기 제조공정에 있어서 Sn량을 고정함과 동시에 Mg량을 0.001mol%∼10mol%까지 변화시킨 복수종류의 시료를 제작하였다. Sn없는 시료도 제작하였다. 또, Mg량을 고정함과 동시에 Sn을 0.001∼5mol%까지 변화시킨 복수의 시료도 제작하였다.In the manufacturing process, a plurality of types of samples were prepared in which the amount of Sn was fixed and the amount of Mg was changed from 0.001 mol% to 10 mol%. Sn-free samples were also prepared. In addition, a plurality of samples in which the amount of Mg was fixed and the Sn was changed to 0.001 to 5 mol% were also produced.

이들 시료를 이용하여 제 1실시예와 동일하게 형광표시관을 제작하였다. 양극도체에 약 50V의 전압을 인가하고, 형광체를 발광시켜 그 휘도 특성을 비교·평가하였다.Using these samples, a fluorescent display tube was produced in the same manner as in the first embodiment. A voltage of about 50 V was applied to the anode conductor, and the phosphor was emitted to compare and evaluate the luminance characteristics.

도 4에 도시하는 바와같이, 발광휘도는 Sn의 도프량에 따라 변화하고, 도프량이 적은 영역에서는 휘도가 낮다. 또 Sn이 과다하면 휘도가 낮아진다. Mg에 대해서도, 도 5에 도시하는 바와같이 최적치를 중심으로 도프량에 따라 휘도의 상대강도가 변화한다.As shown in Fig. 4, the luminance of light emission changes according to the amount of Sn doping, and the luminance is low in a region where the amount of doping is small. In addition, excessive Sn lowers the brightness. Also for Mg, as shown in Fig. 5, the relative intensity of luminance changes with the amount of dope around the optimum value.

(6) 제 6실시예 Ga0.5InN:Zn,Sn(6) Sixth Embodiment Ga 0.5 InN: Zn, Sn

Ga2S311.7g과 In2S316.3g을 사용한다.11.7g Ga 2 S 3 and 16.3g In 2 S 3 are used.

여기에 ZnS 0.004g(0.02mol%/Ga)과, Sn농도가 Zn 농도와 같아지도록 SnCl2를 0.008g 첨가한다. 이들을 잘 혼합하여 석영보드에 얹어 이것을 석영관 안에 둔다. 석영관내에 10ml/min으로 암모니아를 흘리면서 1150℃로 8시간 유지하였다. Ga0.5InN:Zn, Sn를 얻었다. Sn없는 시료도 제작하였다.0.004 g of ZnS (0.02 mol% / Ga) and 0.008 g of SnCl 2 are added thereto so that the Sn concentration is equal to the Zn concentration. Mix them well and place them on a quartz board and place them in a quartz tube. It was maintained at 1150 ° C. for 8 hours while flowing ammonia at 10 ml / min in the quartz tube. Ga 0.5 InN: Zn, Sn was obtained. Sn-free samples were also prepared.

이들 시료를 사용하여 제 1실시예와 동일하게 FED를 제작하였다. 양극도체에 약 0∼100V범위에서 여러가지 값의 전압을 인가하고, 형광체를 발광시켜서 각각 그 휘도특성을 비교·평가하였다.Using these samples, FED was produced similarly to the first example. Voltages of various values were applied to the anode conductors in the range of about 0 to 100 V, and the phosphors were made to emit light, and their luminance characteristics were compared and evaluated, respectively.

본예의 형광체는 주황색으로 발광하였다. Sn가 없는 시료의 발광휘도에 대하여 약 배의 상대휘도를 나타내고, Sn첨가효과가 확인되었다.The phosphor of this example emitted orange. The relative luminance of the emitted light of the sample without Sn was approximately doubled, and the Sn addition effect was confirmed.

이상 설명한 실시예에 있어서 사용된 Mg나 Zn에 대해서는 그 농도 M(mol%)의 범위는 0.005<M<0.7이고, 더욱 바람직하게는 0.01<M<0.3이 좋다. 또, Mg나 Zn 대신 Be, Ca, Sr, Ba, Cd, Hg를 사용하여도 된다.For Mg and Zn used in the above-described examples, the concentration M (mol%) is in the range of 0.005 <M <0.7, more preferably 0.01 <M <0.3. Be, Ca, Sr, Ba, Cd or Hg may be used instead of Mg or Zn.

이상 설명한 실시예에 있어서 사용된 Si, Ge, Sn에 대해서는 그 농도X(mol%)의 범위는 0.002<X<0.8이고, 더욱 바람직하게는 0.005<X<0.3이 좋다. Si, Ge, Sn 대신 C 또는 Pb를 사용할 수도 있다.For Si, Ge, and Sn used in the above-described examples, the concentration X (mol%) has a range of 0.002 <X <0.8, more preferably 0.005 <X <0.3. C or Pb may be used instead of Si, Ge, Sn.

도 1은 본 발명의 제 1실시예 효과를 나타내는 도면,1 is a view showing the effect of the first embodiment of the present invention,

도 2는 본 발명의 제 1실시예 효과를 나타내는 도면,2 is a view showing the effect of the first embodiment of the present invention,

도 3은 본 발명의 제 3실시예 효과를 나타내는 도면,3 is a view showing the effect of the third embodiment of the present invention;

도 4는 본 발명의 제 5실시예 효과를 나타내는 도면,4 is a view showing the effect of the fifth embodiment of the present invention;

도 5는 본 발명의 제 3실시예 및 제 5실시예의 효과를 나타내는 도면,5 is a view showing the effect of the third and fifth embodiments of the present invention,

도 6는 본 발명의 제 6실시예 효과를 나타내는 도면이다.6 is a view showing the effect of the sixth embodiment of the present invention.

Figure pat00001
Figure pat00001

본 발명의 형광체는 Ga1-xInxN(단 O≤x<0.8)의 모체에 도너 농도가 적당하게 제어되도록 첨가원소를 도프시키고 있다. 이때문에 본 발명의 형광체는 휘도특성 및 수명특성이 우수하고, 첨가원소의 선택에 따라 전자선 여기에 의해 각종 발광색을 실현할 수 있는 효과가 있다. 또, 산소를 함유하지 않은 원료물질을 사용하면, 제조시에 산소의 악영향을 받지 않는다.The phosphor of the present invention is doped with additional elements such that the donor concentration is appropriately controlled in the matrix of Ga 1-x In x N (where O ≦ x <0.8). For this reason, the phosphor of the present invention is excellent in luminance characteristics and lifespan characteristics, and has the effect of realizing various emission colors by electron beam excitation depending on the selection of additional elements. In addition, if a raw material containing no oxygen is used, the oxygen is not adversely affected during production.

Claims (4)

산소를 함유하지 않는 Ga 황화물로 구성되는 형광체 모체재료에, 산소를 함유하지 않는 도프물질인 Mg, Zn, Si, Ge, Sn으로 구성되는 군으로부터 선택되는 화합물을 혼합하고, 암모니아 분위기중에서 1100℃∼1200℃로 가열하여 얻어지는 일반식 GaN:M, X (단, M은 Mg, Zn의 군으로부터 선택된 적어도 하나의 원소, X는 Si, Ge, Sn으로 이루어지는 군으로부터 선택된 적어도 하나의 원소)로 표시되고, 상기 M과 상기 X의 농도범위 (mol%)가 각각 0.01<M<0.3 및 0.005<M<0.3인 형광체의 제조방법.A compound selected from the group consisting of Mg, Zn, Si, Ge, and Sn, which is a dope material containing no oxygen, is mixed with a phosphor matrix material composed of Ga sulfide containing no oxygen, and is subjected to 1100 DEG C. in an ammonia atmosphere. Represented by the general formula GaN: M, X obtained by heating to 1200 ° C., wherein M is at least one element selected from the group consisting of Mg and Zn, and X is at least one element selected from the group consisting of Si, Ge, and Sn; , Wherein the concentration range (mol%) of M and X is 0.01 <M <0.3 and 0.005 <M <0.3, respectively. 제 1 항에 있어서, 상기 Si 화합물은 폴리실라잔 (SiHaNb)n(단, a=1∼3, b=0 또는 1, 그리고 n은 1 이상의 정수)인 것을 특징으로 하는 형광제의 제조방법.The fluorescent compound according to claim 1, wherein the Si compound is polysilazane (SiH a N b ) n ( where a = 1 to 3, b = 0 or 1, and n is an integer of 1 or more). Manufacturing method. 산소를 함유하지 않는 인듐 황화물로 구성되는 형광체 모체재료에, 산소를 함유하지 않는 도프물질인 Ma, Zn, Si, Ge, Sn으로 구성되는 군으로부터 선택되는 화합물을 혼합하여, 암모니아 분위기중에서 1100℃∼1200℃로 가열하여 얻어지는 일반식 GaN: M, X (단, M은 Mg, Zn의 군으로부터 선택된 적어도 하나의 원소, X는 Si, Ge, Sn으로 이루어지는 군으로부터 선택되는 적어도 하나의 원소)로 표시되고, 상기 M 및 상기 X의 농도범위 (mol%)가 각각 0.01<M<0.3 및 0.005<M<0.3인 형광체의 제조방법.A compound selected from the group consisting of Ma, Zn, Si, Ge, and Sn, which is a dope substance containing no oxygen, is mixed with a phosphor matrix material composed of indium sulfide containing no oxygen, and then subjected to 1100 DEG C. in an ammonia atmosphere. Represented by general formula GaN: M, X (wherein M is at least one element selected from the group consisting of Mg and Zn, X is at least one element selected from the group consisting of Si, Ge, Sn) obtained by heating to 1200 ° C And the concentration range (mol%) of M and X is 0.01 <M <0.3 and 0.005 <M <0.3, respectively. 제 3 항에 있어서, 상기 Si 화합물은 폴리실라잔 (SiHaNb)n(단, a=1∼3, b=0 또는 1, 그리고 n은 1 이상의 정수)인 것을 특징으로 하는 형광체의 제조방법.The method of claim 3, wherein the Si compound is polysilazane (SiH a N b ) n ( where a = 1 to 3, b = 0 or 1, and n is an integer of 1 or more), the production of phosphor Way.
KR1019970014839A 1996-04-22 1997-04-22 Method for producing a fluorescent material KR100341532B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP96-100215 1996-04-22
JP8100215A JP2897716B2 (en) 1996-04-22 1996-04-22 Phosphor

Publications (2)

Publication Number Publication Date
KR970070161A KR970070161A (en) 1997-11-07
KR100341532B1 true KR100341532B1 (en) 2002-08-22

Family

ID=65954962

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970014839A KR100341532B1 (en) 1996-04-22 1997-04-22 Method for producing a fluorescent material

Country Status (1)

Country Link
KR (1) KR100341532B1 (en)

Also Published As

Publication number Publication date
KR970070161A (en) 1997-11-07

Similar Documents

Publication Publication Date Title
JP2947156B2 (en) Phosphor manufacturing method
US8017037B2 (en) Fluorescent substance and light emitting device using the same
KR100341532B1 (en) Method for producing a fluorescent material
US5976412A (en) Fluorescent material
KR900009045B1 (en) Electron beam excitation phosphors, light emitting compositions and fluorescent display tubes
JP2897716B2 (en) Phosphor
KR100716069B1 (en) Manufacturing method of white light emitting phosphor
KR100572796B1 (en) Phosphor, phosphor layer manufacturing method and fluorescent display tube
KR100481394B1 (en) Phosphor of white luminous color
JP3032921B2 (en) Luminescent material
Ohsawa et al. P‐182: Long‐Life Green Phosphorescent OLED with Light‐Emitting Layer Formed by Two‐Source Evaporation Using Host Material with Novel Hetero Fused Ring
JP5521247B2 (en) Phosphor and light emitting device
JP5515143B2 (en) Phosphor, phosphor manufacturing method, and light emitting device
Maruska et al. Challenges for flat panel display phosphors
JPH01168789A (en) Electron beam-excited phosphor and preparation thereof
JP4249571B2 (en) Fluorescent light emitting device and manufacturing method thereof
JP4249572B2 (en) Fluorescent light emitting device and manufacturing method thereof
KR790001427B1 (en) White light emitting phosphor
KR100450801B1 (en) Phosphor and fluorescent display device
KR100223518B1 (en) Low-Voltage ZnGa2O4 (: Mn) Phosphors and Phosphor Films Manufacturing Method Using the Same
KR100669684B1 (en) Green light emitting phosphor for plasma display panel
JP3707131B2 (en) Phosphor
JPS63135481A (en) Phosphor excited with electron beam
KR20010097835A (en) A red emitting phosphor for low-voltage applications and a method of preparing the same
JPH11307020A (en) Field emission type display element

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19970422

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19970830

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 19970422

Comment text: Patent Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 19990630

Patent event code: PE09021S01D

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20000614

Patent event code: PE09021S01D

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20010710

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20020316

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20020610

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20020611

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
G170 Re-publication after modification of scope of protection [patent]
PG1701 Publication of correction

Patent event code: PG17011E01I

Patent event date: 20020926

Comment text: Request for Publication of Correction

Publication date: 20021030

PR1001 Payment of annual fee

Payment date: 20050524

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20060525

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20070523

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20080522

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20080522

Start annual number: 7

End annual number: 7

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20100510