[go: up one dir, main page]

KR100316309B1 - Wavelength fluorescent circuit - Google Patents

Wavelength fluorescent circuit Download PDF

Info

Publication number
KR100316309B1
KR100316309B1 KR1019970041986A KR19970041986A KR100316309B1 KR 100316309 B1 KR100316309 B1 KR 100316309B1 KR 1019970041986 A KR1019970041986 A KR 1019970041986A KR 19970041986 A KR19970041986 A KR 19970041986A KR 100316309 B1 KR100316309 B1 KR 100316309B1
Authority
KR
South Korea
Prior art keywords
optical
output
light
optical waveguides
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019970041986A
Other languages
Korean (ko)
Other versions
KR19990018760A (en
Inventor
김동수
Original Assignee
윤종용
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자 주식회사 filed Critical 윤종용
Priority to KR1019970041986A priority Critical patent/KR100316309B1/en
Publication of KR19990018760A publication Critical patent/KR19990018760A/en
Application granted granted Critical
Publication of KR100316309B1 publication Critical patent/KR100316309B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/287Structuring of light guides to shape optical elements with heat application
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12135Temperature control

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PURPOSE: A planar lightwave circuit is provided to control respective waveguide characteristics independently. CONSTITUTION: A lightwave(102) transmits light to a planar lightwave circuit board(101). The first star coupler(104) scatters and outputs the light incident through an input portion(LI1). A resistor heater(106) heats the lightwave(102) to adjust a temperature. A heater controller(108) controls the resistor heater(106). The second star coupler(105) couples and outputs lights transmitted through the lightwave(102). An optical tap(110) selects a part of an output light of an output portion(LO1) and feeds the selected light back to the lightwave(102) of the output portion(LO1). An optical sensor(112) measures the selected output light. The resistor heater(106), the heater controller(108), the optical tap(110) and the optical sensor(112) are integrated.

Description

평면도파로형 광회로Waveguide optical circuit

본 발명은 평면도파로형 광회로(PLC: Planar Lightwave Circuit, 이하 PLC라 칭함)에 관한 것으로 더 상세하게는 도파로의 온도가 제어되는 평면도파로형 광회로에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planar lightwave circuit (PLC), and more particularly, to a planar waveguide optical circuit in which a temperature of a waveguide is controlled.

평면도파로형 광회로는 광파장분할기나 광커플러(optical coupler)등의 다양한 광기기 분야에서 응용되고 있는데, 최근에는 광감지기(optical detector)나 레이저관련장치등의 광전자기기뿐만 아니라, 레이저구동용 집적회로등 전자회로에 집적시켜 포함됨으로써 하나의 기판상에서 광 및 전기적 처리기능을 동시에 수행할 수 있는 광전자집적회로(opto-electronic integrated circuit)의 형태로도 적용되고 있다.Planar wave type optical circuits have been applied to various optical devices such as optical splitters and optical couplers. Recently, not only optoelectronic devices such as optical detectors and laser-related devices, but also integrated circuits for driving lasers It is also applied in the form of an opto-electronic integrated circuit that can be integrated into the electronic circuit, such that the optical and electrical processing functions can be simultaneously performed on one substrate.

PLC에 있어서 광도파로는 온도에 따라 상기 광도파로의 굴절율 및 길이등이 변화하기 때문에 온도를 조절하는 것이 요구된다. 예를들어, 광파장분할기의 경우, 입사하는 빛의 파장이 변화함에 따라 그 특성이 변화하는 데, 온도를 조절함에 의해 분할기의 특성을 보정할 수 있다. 따라서, 대부분의 광소자기기들은 열전기 냉각기(thermoelectric cooler)나 히터위에 부착함에 의해 조립되며, 종래의 PLC 기판의 경우도 상기 기판 전체가 냉각기나 히터위에 올려져 조립된다. 또한, PLC의 적정 성능을 유지하기 위하여 출력을 귀환(feedback)하여 제어하는 자동제어장치가 기판의 외부에 설치되는 경우도 있다.In the PLC, since the refractive index and the length of the optical waveguide change with temperature, it is required to adjust the temperature. For example, in the case of the optical wavelength splitter, the characteristic changes as the wavelength of incident light changes, and the characteristics of the splitter can be corrected by adjusting the temperature. Therefore, most optical device devices are assembled by attaching on a thermoelectric cooler or a heater, and in the case of a conventional PLC substrate, the whole board is mounted on the cooler or heater. In addition, in order to maintain proper performance of the PLC, an automatic control device that feeds back and controls the output may be installed outside the substrate.

하지만, 상기와 같은 종래의 PLC는 PLC 기판 전체가 하나의 온도조절장치로 온도가 조절되기 때문에 각 도파로의 독립적인 온도조절을 할 수가 없으며, 상기 온도조절장치를 설치함에 의해 장치의 부피가 증가하고 조립비용이 상승되는 단점이 있다. 또한, 출력의 귀환을 이용한 자동제어장치를 설치하는 방법도 정확한 제어가 어렵다는 단점이 있다.However, the conventional PLC as described above cannot control the temperature of each waveguide independently because the temperature of the entire PLC substrate is controlled by one temperature controller, and the volume of the device is increased by installing the temperature controller. There is a disadvantage that the assembly cost is increased. In addition, the method of installing the automatic control device using the feedback of the output has the disadvantage that the precise control is difficult.

본 발명이 이루고자 하는 기술적 과제는, 각 도파로의 특성을 독립적으로 제어할 수 있는 평면도파로형 광회로를 제공하는 것이다.It is an object of the present invention to provide a planar waveguide optical circuit capable of independently controlling the characteristics of each waveguide.

도 1은 본 발명의 일실시예에 의한 광파장분할장치의 구성을 도시한 구성도이다.1 is a block diagram showing the configuration of an optical wavelength division apparatus according to an embodiment of the present invention.

도 2는 본 발명의 타실시예에 의한 광커플러의 구성을 도시한 구성도이다.2 is a block diagram showing the configuration of an optocoupler according to another embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for main parts of the drawings>

LI1...입력부, LO1...출력부,LI1 ... input section, LO1 ... output section,

101...PLC 기판, 102...광도파로,101 ... PLC substrate, 102 ... waveguide,

104, 105...스타커플러, 106...저항히터,104, 105 ... star coupler, 106 ... resistance heater,

108...히터제어기, 110...출력귀환용 광탭,108 ... heater controller, 110 ... optical tap for output feedback,

112...광감지기.112 ... light detector.

상기 과제를 이루기 위하여 본 발명에 의한 평면도파로형 광회로는, 광도파로를 포함하는 상기 평면도파로형 광회로에 있어서, 상기 광도파로의 온도제어가 요구되는 부분에 부착되어 상기 광도파로의 온도를 제어하기 위한 온도조절부; 상기 온도조절부의 양단에 접속되어 상기 온도조절부를 제어하기 위한 제어부; 상기 광도파로의 출력부에 접속되어 출력광의 일부를 검출하기 위한 출력귀환용 광탭; 및 상기 출력귀환용 광탭에 접속되어 검출광을 분석하기 위한 광감지기를 상기 평면도파로형 광회로의 기판상에 포함하는 것을 특징으로 한다.In order to achieve the above object, the planar waveguide optical circuit according to the present invention, in the planar waveguide optical circuit including the optical waveguide, is attached to a portion where temperature control of the optical waveguide is required to control the temperature of the optical waveguide. Temperature control unit for; A control unit connected to both ends of the temperature control unit to control the temperature control unit; An output feedback optical tap connected to an output of the optical waveguide for detecting a part of the output light; And an optical sensor connected to said output feedback optical tab for analyzing detected light on a substrate of said planar waveguide optical circuit.

또한, 상기 온도조절부는 가열에 의해 온도를 조절하기 위한 저항히터인 것이 바람직하다.In addition, the temperature control unit is preferably a resistance heater for controlling the temperature by heating.

또한, 상기 온도조절부는 냉각에 의해 온도를 조절하기 위한 쿨러이어도 무방하다.In addition, the temperature control unit may be a cooler for controlling the temperature by cooling.

또한, 상기 온도조절부, 상기 제어부, 상기 출력귀환용 광탭, 상기 광감지기로 구성되는 온도제어장치는 집적공정에 의해 부착되는 것이 바람직하다.In addition, the temperature control unit, the control unit, the output feedback optical tab, the temperature control device consisting of the light sensor is preferably attached by an integration process.

이하 첨부된 도면들을 참조하면서 본 발명의 광도파로형 광회로를 광파장분할장치와 광커플러에 적용한 실시예들을 설명하기로 한다.Hereinafter, embodiments of applying the optical waveguide optical circuit of the present invention to an optical wavelength splitting apparatus and an optical coupler will be described with reference to the accompanying drawings.

도 1에 본 발명의 일실시예에 의한 광파장분할장치의 구성을 도시하였다. 도 1을 참조하면, 본 발명의 실시예에 의한 광파장분할장치(100)는, PLC 기판(101)상에 빛을 전달시키기 위한 광도파로(102)와, 입력부(LI1)를 통해 입사된 빛을 분산시켜 출력시키기 위한 제 1 스타커플러(104, star coupler)와, 각 광도파로(102)에는 광도파로(102)를 가열시켜 온도를 조절하기 위한 저항히터(106)와, 저항히터(106)의 양단과 접속되어 저항히터(106)를 제어하기 위한 히터제어기(108)와, 광도파로(102)를 통해 도파된 빛을 결합시켜 출력시키기 위한 제 2 스타커플러(105)와, 출력부(LO1)의 광도파로(102)에 상기 출력부(LO1)의 출력광의 일부를 빼내어 히터제어기(108)로 귀환시키기 위한 출력귀환용 광탭(110, optical tap) 및 상기 광탭(110)에서 빼어낸 출력광을 측정하기 위한 광감지기(112)를 구비하고 있다. 상기 저항히터(106), 히터제어기(108), 출력귀환용 광탭(110), 광감지기(112)는 장치의 소형화와 생산성을 고려하여 최근 개발된 광전자 집적기술을 이용하여 집적시키는 것이 바람직하다.1 shows a configuration of an optical wavelength splitting apparatus according to an embodiment of the present invention. Referring to FIG. 1, an optical wavelength splitting apparatus 100 according to an exemplary embodiment of the present invention includes an optical waveguide 102 for transmitting light onto a PLC substrate 101 and light incident through the input unit LI1. The first star coupler 104 for dispersing and outputting the light, each optical waveguide 102 has a resistance heater 106 for heating the optical waveguide 102 to adjust the temperature, and the resistance heater 106. A heater controller 108 for controlling the resistance heater 106 connected to both ends, a second star coupler 105 for coupling and outputting the light guided through the optical waveguide 102, and an output unit LO1. A part of the output light of the output part LO1 to the optical waveguide 102 of the output light and outputs the optical tap 110 for returning to the heater controller 108 and the output light extracted from the optical tap 110. The light sensor 112 for measuring is provided. The resistance heater 106, the heater controller 108, the optical return 110 for output feedback, the light sensor 112 is preferably integrated using the recently developed optoelectronic integrated technology in consideration of the miniaturization and productivity of the device.

상기와 같이 구성된 광파장분할장치(100)의 동작을 설명하면, 입력부(LI1)를 통해 입사된 빛은 제 1 스타커플러(104)에서 분산되어 각 도파로(102)를 통해 도파되며, 제 2 스타커플러(105)를 통해 출력부(LO1)로 출력된다. 이때 각 도파로(102)의 길이가 다른 경우 당해분야에 기술적 지식을 가진자에 의하여 이해되는 바와 같이 도파로(102)에서 출력되는 빛의 파장이 달라져 파장이 분할되는 효과가 얻어진다. 출력부(LO1)에서는 출력귀환용 광탭(110)에 의해 출력광의 일부가 검출되며 광감지기(112)에서는 검출된 상기 출력광을 입력받아 광파워, 파장등을 분석하여 히터제어기(108)로 전기신호를 송출한다. 히터제어기(108)에서는 상기 전기신호에 따라 저항히터(106)를 제어함으로써, 광도파로(102)의 온도를 제어할 필요가 있는 부분에 설치되어 있는 저항히터(106)를 가열하여 광도파로(102)의 온도를 조절한다.따라서, 저항히터(106), 히터제어기(108), 출력귀환용 광탭(110), 광 감지기(112)가 자동온도제어장치로 작용하며, 제어하고자 하는 온도 범위에 따라 저항히터(106)는 쿨러(cooler), 히터제어기(108)는 쿨러제어기로 사용되어도 무방하다. 이와 같이 광도파로(102)의 온도를 조절하면, 온도에 따라 변화하는 굴절율등 광도파로(102)의 광학적 특성 변화로 출력파워, 광파장등 PLC의 다양한 특성을 제어할 수 있게 된다. 또한, 입력되는 광 신호의 파장 변화와 같은 외부 조건의 변화나 공정의 변화에 따른 광도파로(102)의 특성차와 같은 요인에 대해서도, 광탭에 의해 출력의 일부분이 PLC에서 곧바로 귀환되므로 광도파로(102)의 온도를 정확히 조절하여 광파장, 출력파워를 제어함으로써 안정된 출력을 유지할 수 있을 뿐만 아니라 각 광도파로(102)의 출력광의 파장 및 출력비율도 제어할 수 있다.Referring to the operation of the optical wavelength splitting apparatus 100 configured as described above, the light incident through the input unit LI1 is dispersed in the first star coupler 104 is guided through each waveguide 102, the second star coupler It is output to the output part LO1 via the 105. In this case, when the lengths of the waveguides 102 are different, the wavelength of the light output from the waveguide 102 is changed as understood by those skilled in the art, thereby obtaining an effect of dividing the wavelengths. A part of the output light is detected by the output feedback optical tab 110 at the output part LO1, and the light detector 112 receives the detected output light and analyzes the optical power, wavelength, and the like, and supplies it to the heater controller 108. Send a signal. The heater controller 108 controls the resistance heater 106 in accordance with the electric signal, thereby heating the resistance heater 106 provided at the portion where the temperature of the optical waveguide 102 needs to be controlled to heat the optical waveguide 102. Therefore, the resistance heater 106, the heater controller 108, the light return 110 for output feedback, and the light detector 112 act as an automatic temperature control device, depending on the temperature range to be controlled. The resistance heater 106 may be used as a cooler and the heater controller 108 may be used as a cooler controller. When the temperature of the optical waveguide 102 is adjusted in this way, various characteristics of the PLC such as output power and optical wavelength can be controlled by changing optical characteristics of the optical waveguide 102 such as refractive index which changes according to the temperature. In addition, even for factors such as changes in external conditions such as changes in wavelength of the optical signal input or characteristics differences in the optical waveguide 102 due to the process change, the optical taps return a part of the output directly from the PLC. By accurately adjusting the temperature of 102 to control the optical wavelength and output power, not only stable output can be maintained, but also wavelength and output ratio of the output light of each optical waveguide 102 can be controlled.

상술한 바와 같이 본 발명의 실시예에 의한 광파장분할장치(100)는, 각 광도파로(102)의 온도를 독립적으로 제어함으로써 각종 외부조건에 의한 변화에 대응하여 안정된 출력을 유지할 수 있으며, 온도제어장치들의 집적화로 부피를 작게 할 수 있고 고생산성을 기대할 수 있다.As described above, the optical wavelength splitting apparatus 100 according to the embodiment of the present invention can maintain a stable output in response to changes caused by various external conditions by independently controlling the temperature of each optical waveguide 102. The integration of devices allows for a smaller volume and higher productivity.

도 2에 본 발명의 타실시예에 의한 광커플러를 도시하였다. 도 2를 참조하면, 본 발명의 실시예에 의한 광커플러(optical coupler, 200)는, PLC 기판(201)상에 빛을 전달시키기 위한 광도파로(202)와, 광도파로(202)를 가열시켜 온도를 조절하기 위한 저항히터(206)와, 저항히터(206)의 양단에 접속되어 저항히터(206)를 제어하기 위한 히터제어기(208)와, 출력부(LO2)의 광도파로(202)에 상기 출력부의 출력광의 일부를 빼내어 히터제어기(208)로 귀환시키기 위한 출력귀환용 광탭(210,optical tap) 및 상기 광탭(210)에서 빼낸 출력광을 측정하기 위한 광감지기(212)가 부착되어 있다. 상기 저항히터(206), 히터제어기(208), 출력귀환용 광탭(210), 광감지기(212)는 장치의 소형화와 생산성을 고려하여 최근 개발된 광전자 집적기술을 이용하여 집적시키는 것이 바람직하다.2 illustrates an optocoupler according to another embodiment of the present invention. Referring to FIG. 2, an optical coupler 200 according to an embodiment of the present invention heats an optical waveguide 202 and an optical waveguide 202 for transmitting light onto a PLC substrate 201. A resistance heater 206 for controlling temperature, a heater controller 208 for controlling the resistance heater 206 connected to both ends of the resistance heater 206, and an optical waveguide 202 of the output unit LO2. An optical return tab 210 for extracting a part of the output light of the output unit and returning it to the heater controller 208 and an optical sensor 212 for measuring the output light extracted from the optical tab 210 are attached. . The resistance heater 206, the heater controller 208, the output feedback optical tab 210, the light sensor 212 is preferably integrated using the recently developed optoelectronic integrated technology in consideration of the miniaturization and productivity of the device.

상기와 같이 구성된 광커플러(200)의 동작을 설명하면, 도시되지 않은 제1전기회로부를 통하여 입력부(LI2)로 입사된 빛은 각 도파로(202)를 통해 도파되며, 출력부(LO2)를 통하여 도시되지 않은 제2전기회로부로 출력된다. 출력부(LO2)에서는 출력귀환용 광탭(210)에 의해 출력광의 일부가 검출되어 광감지기(212)에서는 상기 검출 출력광을 입력받아 광파워, 파장등을 분석하여 히터제어기(208)로 전기신호를 송출한다. 히터제어기(208)에서는 상기 전기신호에 따라 저항히터(206)를 제어함으로써, 광도파로(202)의 온도를 제어할 필요가 있는 부분에 설치되어 있는 저항히터(206)를 가열하여 광도파로(202)의 온도를 조절한다. 따라서, 저항히터(206), 히터제어기(208), 출력귀환용 광탭(210), 광 감지기(212)가 자동온도제어장치로 작용한다. 이와 같이 광도파로(202)의 온도를 조절하면, 온도에 따라 변화하는 굴절율등 광도파로(202)의 광학적 특성 변화로 출력파워, 광파장등 PLC의 다양한 특성을 제어할 수 있게 된다. 또한, 입력되는 광 신호의 파장 변화와 같은 외부 조건의 변화나 공정의 변화에 따른 광도파로(202)의 특성차와 같은 요인에 대해서도, 광도파로(202)의 온도를 적절히 조절하여 광파장, 출력파워를 제어함으로써 안정된 커플링 동작을 유지할 수 있을 뿐만 아니라 각 광도파로(202)의 출력광의 파장 및 출력비율도 제어할 수 있다.Referring to the operation of the optical coupler 200 configured as described above, the light incident to the input unit LI2 through the first electric circuit unit (not shown) is guided through each waveguide 202, and through the output unit LO2 It is output to the 2nd electric circuit part not shown. A part of the output light is detected by the output feedback optical tap 210 in the output part LO2, and the photodetector 212 receives the detected output light and analyzes the optical power, wavelength, etc., and transmits the electric signal to the heater controller 208. Send the. In the heater controller 208, the resistance heater 206 is controlled according to the electric signal, thereby heating the resistance heater 206 provided at the portion where the temperature of the optical waveguide 202 needs to be controlled to heat the optical waveguide 202. Adjust the temperature of). Therefore, the resistance heater 206, the heater controller 208, the light return 210 for the output feedback, the light detector 212 acts as an automatic temperature control device. When the temperature of the optical waveguide 202 is adjusted in this way, various characteristics of the PLC such as output power and optical wavelength can be controlled by changing optical characteristics of the optical waveguide 202 such as refractive index that varies with temperature. In addition, the optical waveguide 202 is appropriately adjusted for the optical wavelength and output power for factors such as changes in external conditions such as changes in wavelength of the input optical signal or characteristic differences in the optical waveguide 202 due to process changes. In addition to maintaining a stable coupling operation, the wavelength and output ratio of the output light of each optical waveguide 202 can be controlled.

상술한 바와 같이 본 발명의 실시예에 의한 광커플러(200)는, 각 광도파로(202)의 온도를 독립적으로 제어함으로써 각종 외부조건에 의한 변화에 대응하여 안정된 출력을 유지할 수 있으며, 온도제어장치들의 집적화로 부피를 작게 할 수 있고 고생산성을 기대할 수 있다.As described above, the optical coupler 200 according to the embodiment of the present invention independently maintains a stable output in response to changes caused by various external conditions by independently controlling the temperature of each optical waveguide 202. By integrating them, the volume can be reduced and high productivity can be expected.

상술한 바와 같이 본 발명에 따른 광도파로형 광회로는, 광도파로의 온도를 독립적으로 제어할 수 있음에 따라, 외부조건에 의한 변화에 대응하여 각 광도파로별 안정된 출력을 유지할 수 있으며, 시스템의 부피를 작게 할 수 있다.As described above, the optical waveguide type optical circuit according to the present invention can independently control the temperature of the optical waveguide, so that it is possible to maintain stable output for each optical waveguide in response to changes caused by external conditions. The volume can be made small.

Claims (2)

복수의 광도파로를 포함하는 평면 도파로형 광회로에 있어서,In a planar waveguide type optical circuit including a plurality of optical waveguides, 상기 광도파로들에 각각 부착되어 상기 광도파로들을 가열하는 복수의 저항히터;A plurality of resistance heaters respectively attached to the optical waveguides to heat the optical waveguides; 상기 저항히터들의 양단에 접속되어 상기 저항히터들을 제어하는 히터 제어부;A heater controller connected to both ends of the resistance heaters to control the resistance heaters; 상기 광도파로들에서 출력되는 광의 일부를 각각 분할하는 복수의 출력귀환용 광탭; 및A plurality of output feedback optical tabs each dividing a part of the light output from the optical waveguides; And 상기 출력귀환용 광탭들으로부터 입력되는 광들의 특성을 측정하고, 측정된 결과에 따라 전기신호를 각각 생성하여 상기 히터제어부로 송출하는 복수의 광감지기를 포함함을 특징으로하고,It characterized in that it comprises a plurality of light detectors for measuring the characteristics of the light input from the optical return for the output tab, and generates an electric signal according to the measured result and output to the heater control unit, 상기 복수의 저항히터, 상기 히터 제어부, 상기 복수의 출력귀환용 광탭, 및 상기 복수의 광감지기는 일체형으로 집적되고, 상기 광도파로들 각각의 온도를 조절하여 상기 광도파로들로부터 출력되는 광들의 특성을 제어하는 평면 도파로형 광회로.The plurality of resistance heaters, the heater control unit, the plurality of output feedback optical tabs, and the plurality of light detectors are integrally integrated, and characteristics of light output from the optical waveguides by adjusting the temperature of each of the optical waveguides. Planar waveguide optical circuit for controlling the. 복수의 광도파로를 포함하는 평면 도파로형 광회로에 있어서,In a planar waveguide type optical circuit including a plurality of optical waveguides, 상기 광도파로들에 각각 부착되어 상기 광도파로들을 냉각하는 복수의 쿨러;A plurality of coolers respectively attached to the optical waveguides to cool the optical waveguides; 상기 쿨러들의 양단에 접속되어 상기 쿨러들을 제어하는 쿨러 제어부;A cooler controller connected to both ends of the coolers to control the coolers; 상기 광도파로들에서 출력되는 광의 일부를 각각 분할하는 복수의 출력귀환용 광탭; 및A plurality of output feedback optical tabs each dividing a part of the light output from the optical waveguides; And 상기 출력귀환용 광탭들으로부터 입력되는 광들의 특성을 측정하고, 측정된 결과에 따라 전기신호를 각각 생성하여 상기 쿨러제어부로 송출하는 복수의 광감지기를 포함함을 특징으로하고,And a plurality of light detectors measuring characteristics of the light input from the output feedback optical taps, and generating electric signals according to the measured results and sending them to the cooler controller. 상기 복수의 쿨러, 상기 쿨러 제어부, 상기 복수의 출력귀환용 광탭, 및 상기 복수의 광감지기는 일체형으로 집적되고, 상기 광도파로들 각각의 온도를 조절하여 상기 광도파로들로부터 출력되는 광들의 특성을 제어하는 평면 도파로형 광회로.The plurality of coolers, the cooler control unit, the plurality of output feedback optical tabs, and the plurality of light detectors are integrally integrated and adjust the temperature of each of the optical waveguides to adjust characteristics of the light output from the optical waveguides. Planar waveguide optical circuit to control.
KR1019970041986A 1997-08-28 1997-08-28 Wavelength fluorescent circuit Expired - Fee Related KR100316309B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970041986A KR100316309B1 (en) 1997-08-28 1997-08-28 Wavelength fluorescent circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970041986A KR100316309B1 (en) 1997-08-28 1997-08-28 Wavelength fluorescent circuit

Publications (2)

Publication Number Publication Date
KR19990018760A KR19990018760A (en) 1999-03-15
KR100316309B1 true KR100316309B1 (en) 2002-02-19

Family

ID=37531671

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970041986A Expired - Fee Related KR100316309B1 (en) 1997-08-28 1997-08-28 Wavelength fluorescent circuit

Country Status (1)

Country Link
KR (1) KR100316309B1 (en)

Also Published As

Publication number Publication date
KR19990018760A (en) 1999-03-15

Similar Documents

Publication Publication Date Title
US6192170B1 (en) Multiple-wavelength light source and method of controlling oscillation frequencies thereof
JPH11264943A (en) Wavelength tracking in adjustable optical system
CA2537716A1 (en) Tunable laser using multiple ring resonators, optical module, and control method thereof
CA2463500A1 (en) Transmitter photonic integrated circuit (txpic) chip architectures and drive systems and wavelength stabilization for txpics
JP3902373B2 (en) Self-monitoring light source for stable wavelength optical communication
KR100220150B1 (en) Electric field sensor
US6124956A (en) Optical transmitter output monitoring tap
EP1324516A2 (en) Apparatus for detecting cross-talk and method therefor
CN108011671A (en) Control includes the method for the semiconductor optical device of semiconductor optical amplifier
US6304697B1 (en) Thermo-optic device with evanescent wave coupling
CN113703100A (en) Optical module
KR100316309B1 (en) Wavelength fluorescent circuit
JP2546151B2 (en) Laser diode emission wavelength controller
KR100236832B1 (en) Transmission apparatus and implementation method having wavelength stabilizer in wavelength division multiplexing
KR100281552B1 (en) Integrated Optical Variable Optical Attenuator Using Thermo-optic Effect
KR100237871B1 (en) Transmitter with wavelength stabilization in wavelength division multiplexing
JP2008078437A (en) Semiconductor laser module
WO2020196957A1 (en) Optical device capable of long-range communication and having wide wavelength variable range
KR100416967B1 (en) Planer lightwave circuit module with heat transfer device
US20230314705A1 (en) Optical waveguide module and manufacturing method of optical waveguide module
US20060062259A1 (en) Optical wavelength control system and related method of assembly
JP2000151011A (en) Digital optical signal transmitter
JP2002286965A (en) Wavelength stabilizing module and device for generating stable wavelength laser beam
RU2171996C1 (en) Current transmitter
KR100381782B1 (en) Method for filtering optical signal and apparatus for measuring optical signal thereby

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19970828

PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19970828

Comment text: Request for Examination of Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 19991130

Patent event code: PE09021S01D

AMND Amendment
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20000531

Patent event code: PE09021S01D

AMND Amendment
E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20010619

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20000531

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

Patent event date: 19991130

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

J201 Request for trial against refusal decision
PJ0201 Trial against decision of rejection

Patent event date: 20010709

Comment text: Request for Trial against Decision on Refusal

Patent event code: PJ02012R01D

Patent event date: 20010619

Comment text: Decision to Refuse Application

Patent event code: PJ02011S01I

Appeal kind category: Appeal against decision to decline refusal

Decision date: 20011012

Appeal identifier: 2001101002152

Request date: 20010709

AMND Amendment
PB0901 Examination by re-examination before a trial

Comment text: Amendment to Specification, etc.

Patent event date: 20010806

Patent event code: PB09011R02I

Comment text: Request for Trial against Decision on Refusal

Patent event date: 20010709

Patent event code: PB09011R01I

Comment text: Amendment to Specification, etc.

Patent event date: 20000729

Patent event code: PB09011R02I

Comment text: Amendment to Specification, etc.

Patent event date: 20000126

Patent event code: PB09011R02I

B701 Decision to grant
PB0701 Decision of registration after re-examination before a trial

Patent event date: 20010929

Comment text: Decision to Grant Registration

Patent event code: PB07012S01D

Patent event date: 20010905

Comment text: Transfer of Trial File for Re-examination before a Trial

Patent event code: PB07011S01I

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20011120

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20011121

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20041022

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20051021

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20061018

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20071011

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20081008

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20091029

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20101028

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20111028

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20121030

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20121030

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20131030

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20131030

Start annual number: 13

End annual number: 13

FPAY Annual fee payment

Payment date: 20141030

Year of fee payment: 14

PR1001 Payment of annual fee

Payment date: 20141030

Start annual number: 14

End annual number: 14

FPAY Annual fee payment

Payment date: 20151105

Year of fee payment: 15

PR1001 Payment of annual fee

Payment date: 20151105

Start annual number: 15

End annual number: 15

PC1903 Unpaid annual fee