[go: up one dir, main page]

KR100234062B1 - Ammonia absorber cycle - Google Patents

Ammonia absorber cycle Download PDF

Info

Publication number
KR100234062B1
KR100234062B1 KR1019970024570A KR19970024570A KR100234062B1 KR 100234062 B1 KR100234062 B1 KR 100234062B1 KR 1019970024570 A KR1019970024570 A KR 1019970024570A KR 19970024570 A KR19970024570 A KR 19970024570A KR 100234062 B1 KR100234062 B1 KR 100234062B1
Authority
KR
South Korea
Prior art keywords
rectifier
refrigerant
absorber
condenser
cooling water
Prior art date
Application number
KR1019970024570A
Other languages
Korean (ko)
Other versions
KR19990001306A (en
Inventor
황동곤
Original Assignee
구자홍
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자주식회사 filed Critical 구자홍
Priority to KR1019970024570A priority Critical patent/KR100234062B1/en
Publication of KR19990001306A publication Critical patent/KR19990001306A/en
Application granted granted Critical
Publication of KR100234062B1 publication Critical patent/KR100234062B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/04Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being ammonia evaporated from aqueous solution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

본 발명은 암모니아 흡수식 사이클에 관한 것으로, 특히 냉매순도를 높이고자 종래의 저온 강용액을 이용하는 것 이외에 히트펌프의 흡수기 및 응축기의 냉각에 사용된 냉각수를 정류기로 유입시켜 저온 용액에 의해 1단 정류후 냉각수를 사용하여 다시 2단 정류시키는 사이클을 구현함으로서 시스템의 성능을 향상시키도록 하는데 목적이 있다.The present invention relates to an ammonia absorption cycle, and in particular, to increase the refrigerant purity, in addition to using the conventional low temperature steel solution, the cooling water used for cooling the absorber and condenser of the heat pump is introduced into the rectifier and then rectified by a low temperature solution. The goal is to improve the performance of the system by implementing a two-stage rectification cycle with coolant.

이를 실현하기 위하여 본 발명은 강용액을 가열, 비등시켜 저농도의 용액으로 재생하는 재생기와, 상기 재생기에서 발생한 냉매증기를 응축, 정류시키는 정류기와, 상기 정류기에서 오는 냉매증기를 액냉매로 응축하는 응축기와, 상기 응축기에서 응축된 냉매를 증발시켜 냉수를 만드는 증발기와, 상기 증발기에서 증발된 냉매증기를 흡수하는 흡수기로 구성되는 암모니아 흡수식 히트펌프에 있어서, 정류를 위해 흡수기를 거친 냉각수를 정류기로 유입시켜 열교환시키도록 구성시킨 것이다.In order to achieve this, the present invention provides a regenerator for heating and boiling a strong solution to regenerate a low concentration solution, a rectifier for condensing and rectifying refrigerant vapor generated in the regenerator, and a condenser for condensing refrigerant vapor from the rectifier with a liquid refrigerant. And an ammonia absorption heat pump including an evaporator for evaporating the refrigerant condensed in the condenser to form cold water and an absorber for absorbing the refrigerant vapor evaporated in the evaporator, wherein the cooling water having passed through the absorber is introduced into the rectifier for rectification. It is configured to heat exchange.

Description

암모니아흡수식 사이클{Ammonia absorber cycle}Ammonia absorber cycle

본 발명은 암모니아 흡수식 사이클에 관한 것으로서, 특히 공냉 직화시 암모니아 흡수식 히트펌프에서 재생기에서 발생하는 냉매증기를 정류기에서 정류하는 암모니아 흡수식 히트펌프의 정류사이클에 관한 것이다.The present invention relates to an ammonia absorption type cycle, and more particularly, to a rectification cycle of an ammonia absorption type heat pump that rectifies refrigerant vapor generated in a regenerator in an ammonia absorption type heat pump during air cooling.

종래 암니아흡수식 히트펌프의 사이클구성을 살펴보면 도 1 에 도시된 바와같이 강용액을 가열, 비등시켜 암모니아 증기를 발생시켜 흡수력이 우수한 저농도의 용액으로 재생하는 재생기(1)와, 상기 재생기(1)에서 발생한 암모니아 증기에 포함된 수증기를 응축,정류시키는 정류기(2)와, 상기 정류기(2)에서 오는 냉매 증기를 액냉매로 응축하는 응축기(3)와, 실제 냉매가 증발하여 냉수를 만드는 증발기(4)와, 상기 증발기(4)에서 발생하는 냉매증기를 흡수하는 흡수기(5) 및 약용액의 압력을 강하시키는 제1감압기구(7b)와, 응축기(3)에서 오는 고압의 액냉매의 압력을 저압부의 압력까지 강하시키는 제2감압기구(7a)와, 저압부의 강용액을 고압부인 재생기(1)로 보내는 용액펌프(8)와, 냉/온수를 실내기로 압송하는 제1순환펌프(11a)와, 냉각수를 실외기로 압송하는 제2순환펌프(11b)와, 냉/난방사이클 전환시 냉각수,냉/온수의 유동 방향을 변경시키는 4방밸브(12a,12b)로 이루어진다.Referring to the cycle configuration of the conventional ammonia absorption heat pump as shown in Figure 1, the regenerator (1) and the regenerator (1) which heat and boil the strong solution to generate ammonia vapor and regenerate it into a low concentration solution having excellent absorption. A rectifier (2) for condensing and rectifying the water vapor contained in the ammonia vapor generated in the condensate, a condenser (3) for condensing the refrigerant vapor from the rectifier (2) with a liquid refrigerant, and an evaporator for evaporating the actual refrigerant to form cold water ( 4), the absorber 5 absorbing the refrigerant vapor generated in the evaporator 4, the first pressure reducing mechanism 7b for lowering the pressure of the medicinal solution, and the pressure of the high pressure liquid refrigerant from the condenser 3; A second pressure reducing mechanism (7a) for lowering the pressure to the pressure of the low pressure part, a solution pump (8) for sending the strong solution of the low pressure part to the regenerator (1), and a first circulation pump (11a) for pumping cold / hot water to the indoor unit ) And coolant to the outdoor unit The second consists of a circulation pump (11b), and a heating / cooling cycle, four-way valve (12a, 12b) for changing the direction of flow of the cooling water, the cold / hot switchover.

도면중 미설명 부호 6 은 열교환기, 9 는 실내기를 나타낸다.In the figure, reference numeral 6 denotes a heat exchanger, and 9 denotes an indoor unit.

암모니아를 냉매로 사용하고, 물을 흡수제로 사용하는 암모니아 흡수식사이클은 리튬브로마이드사이클과 달리 정류기(2)라는 열교환기를 필요로 하게된다.Ammonia absorption cycles using ammonia as a refrigerant and water as an absorbent require a heat exchanger, a rectifier (2), unlike a lithium bromide cycle.

그 이유는 암모니아 수계는 양성분의 비등점의 차(암모니아:-33.8℃, 물:100℃)가 비교적 적어서 간단히 분리가 힘들기 때문이다. 이와 같은 경우는 평형에서 기액2상의 농도차를 이용해서 순수한 성분으로 나누는 정류기가 필요하다.The reason for this is that the aqueous ammonia system has a relatively small difference in the boiling point of the cationic component (ammonia: -33.8 ° C, water: 100 ° C), making it difficult to separate easily. In such a case, a rectifier is needed to divide the pure components by using the concentration difference between two liquid phases in equilibrium.

암모니아 흡수식 사이클에서 냉매순도가 성능에 미치는 영향은 매우 크다. 그 일례로서 암모니아 농도가 90%와 100%의 경우를 생각해 보자. 농도 100%인 경우는 증발온도를 0℃로 하면 압력은 0.43MPa이 되고, 냉매는 증발기에서 등온 등압하에서 완전히 증발한다. 이에 대비해서 도 2 와 같이 농도가 90%의 경우는 0.39MPa를 유지할 필요가 있다. 또 2성분계에서 일정 압력으로 해서 증발을 시키면, 액성분의 변화에 동반해서 비등점이 상승하기 때문에 점A의 0℃에서 증발이 시작되지만, 점B의 증발 완료온도는 81℃에 도달한다. 직선 L-V 에 표시한 증발온도 10℃까지 유효하게 이용할 수 있지만, 증발기 출구에서의 냉매의 미증발분이 30%(VC/VL)나 되게 된다. 이 미증발분에 기인해서 냉동효과가 대폭 감소하게 되어, 냉매순도의 유지,즉 정류가 중요한 것을 이해할 수 있다.In ammonia absorption cycle, the effect of refrigerant purity on the performance is very large. As an example, consider the case where ammonia concentrations are 90% and 100%. In the case of the concentration of 100%, when the evaporation temperature is 0 ° C, the pressure is 0.43 MPa, and the refrigerant evaporates completely under isothermal isothermal pressure in the evaporator. In contrast, as shown in FIG. 2, when the concentration is 90%, it is necessary to maintain 0.39 MPa. When the evaporation is carried out at a constant pressure in a two-component system, the boiling point rises with the change of the liquid component, so that evaporation starts at 0 ° C at point A, but the evaporation completion temperature at point B reaches 81 ° C. Although the evaporation temperature indicated by the straight line L-V can be effectively used up to 10 ° C, the evaporation of the refrigerant at the outlet of the evaporator is 30% (VC / VL). It is understood that the refrigeration effect is greatly reduced due to this unevaporated powder, and it is understood that maintenance of refrigerant purity, that is, rectification is important.

종래에는 도 1 에서와 같이 저온의 강용액과 재생기에서 발생하는 저순도의 냉매증기를 정류기(2)에서 열교환시켜 냉매 증기중 수증기 성분을 응축시킴으로서, 냉매를 정류한다. 하지만 이 경우에는 저온의 강용액만으로 정류기의 부하를 처리함에 따라 고순도의 냉매를 얻기 어렵기 때문에 성능이 저하된다.Conventionally, as shown in FIG. 1, the refrigerant is rectified by condensing water vapor components in the refrigerant vapor by heat-exchanging the low-temperature steel solution and the low-purity refrigerant vapor generated in the regenerator in the rectifier 2. However, in this case, the high purity refrigerant is difficult to obtain as the load of the rectifier is treated only with a low temperature steel solution, thereby degrading performance.

또한 고농도의 냉매를 얻기 위해서는 제품의 크기를 크게 해야하며, 특히 GAX 사이클과 같은 고효율사이클에서는 용액의 농도가 2% 정도의 저농도가 되도록 물(H20)성분을 추출해야 하기 때문에 정류기의 부하는 더욱 더 커지는 문제가 있고, 또한 제품화시는 사이즈에 큰 영향을 미치게 되는 문제점이 있었다.In addition, in order to obtain a high concentration of refrigerant, the size of the product must be increased. Especially in a high efficiency cycle such as a GAX cycle, the load of the rectifier must be extracted because the water (H 2 0) component must be extracted so that the concentration of the solution is as low as 2%. There is a problem that grows larger and larger, and also has a problem that has a big impact on the size of the product.

본 발명은 상기한 바와같은 종래 기술의 문제점을 해결하기 위하여 흡수기를 <거친 냉각수가 정류기로 유입되도록 구성함으로서, 정류기 내에 냉각수를 도입하여 강용액에 의해 1단 정류된 냉매증기를 다시 냉각수로 2단 정류시킴으로 냉매증기의 순도를 높여, 시스템의 성능 향상을 도모하고자 하는데 목적이 있다.In order to solve the problems of the prior art as described above, the present invention is configured such that the coolant having passed through the absorber flows into the rectifier, and the coolant is introduced into the rectifier, and the refrigerant vapor rectified in the first stage by the strong solution is returned to the coolant. The purpose is to improve the performance of the system by increasing the purity of the refrigerant vapor by rectifying.

도 1 은 종래 암모니아 흡수식 사이클 구조도.1 is a conventional ammonia absorption cycle structure diagram.

도 2 는 증발과정의 온도변화를 나타낸 도면.Figure 2 shows the temperature change of the evaporation process.

도 3 은 본 발명 암모니아 흡수식 사이클 구조도.Figure 3 is a structure diagram of the present invention ammonia absorption cycle.

도 4 는 본 발명의 제 1 실시예도.4 is a first embodiment of the present invention;

도 5 는 본 발명의 제 2 실시예도.5 is a second embodiment of the present invention.

도 6 은 본 발명의 제 3 실시예도.6 is a third embodiment of the present invention.

*** 도면의 주요 부분에 대한 부호의 설명 ****** Explanation of symbols for the main parts of the drawing ***

1 : 재생기 2 : 정류기1: regenerator 2: rectifier

3 : 응축기 4 : 증발기3: condenser 4: evaporator

5 : 흡수기 6 : 열교환기5: absorber 6: heat exchanger

7a,7b: 팽창밸브 8 : 용액펌프7a, 7b: expansion valve 8: solution pump

9 : 실내기 10 : 실외기9: indoor unit 10: outdoor unit

11a,11b : 순환펌프 12a,12b : 4방밸브11a, 11b: Circulation pump 12a, 12b: 4-way valve

본 발명을 도 3 내지 도 6 을 참조하여 이하에서 상세히 설명한다.The present invention is described in detail below with reference to FIGS. 3 to 6.

먼저 구성을 살펴보면 도 3 에 나타낸 바와같이 강용액을 가열,비등시켜 저농도의 용액으로 재생하는 재생기(1)와, 상기 재생기(1)에서 발생한 냉매증기를 응축, 정류시키는 정류기(2)와, 상기 정류기(2)에서 오는 냉매증기를 액냉매로 응축하는 응축기(3)와, 상기 응축기에서 응축된 냉매를 증발시켜 냉수를 만드는 증발기(4)와, 상기 증발기(4)에서 증발된 냉매증기를 흡수하는 흡수기(5)로 구성되는 암모니아 흡수식 히트펌프에 있어서, 정류를 위해 흡수기(5)를 거친 냉각수를 정류기로 유입시켜 열교환시키도록 구성하였다.First, as shown in FIG. 3, a regenerator 1 for heating and boiling a strong solution to regenerate a low concentration solution, a rectifier 2 for condensing and rectifying refrigerant vapor generated in the regenerator 1, and A condenser (3) for condensing the refrigerant vapor from the rectifier (2) with a liquid refrigerant, an evaporator (4) for evaporating the refrigerant condensed in the condenser to produce cold water, and a refrigerant vapor evaporated in the evaporator (4) In the ammonia absorption type heat pump composed of the absorber 5, the cooling water passed through the absorber 5 is flowed into the rectifier for heat exchange for rectification.

이와같이 구성되는 본 발명의 암모니아 흡수식 사이클은 흡수기를 거친 냉각수(대략 46℃정도)를 정류기(2) 상단에 열교환 코일을 장착하여 코일 내로 냉각수를 유입시켜, 냉매 증기를 냉각시켜 수증기 성분을 응축시킴으로서 고순도의 냉매를 얻어 고성능을 확보하도록 하는 것이다.The ammonia absorption cycle of the present invention configured as described above is equipped with a heat exchanger coil at the top of the rectifier 2 with cooling water (approximately 46 ° C.) passing through the absorber to introduce the cooling water into the coil, cool the refrigerant vapor, and condense the water vapor components to achieve high purity. It is to obtain a refrigerant to ensure high performance.

그리고 다른 실시예 1 로 도 4 에서와 같이 흡수기(5)와 응축기(3)를 거친 냉각수를 정류기(2)로 유입시켜 정류에 사용할 수 있고, 다른 실시예 2 로 도 5 에서와 같이 실외기(10)에서 오는 저온 냉각수를 흡수기(5) 전에서 분지시켜 일부를 정류기로 유입시켜 정류에 사용한후 응축기(3) 후단에서 합류시키게 되며, 다른 실<시예 3 으로는 도 6 에 도시된 바와같이 흡수기(5)를 거친 냉각수를 13a에서 분지하여 일부를 정류기(2)로 유입시켜 열교환시킨후 응축기(3) 후단의 13b 에서 합류시키게된다.In another embodiment, as shown in FIG. 4, the coolant having passed through the absorber 5 and the condenser 3 may be introduced into the rectifier 2 to be used for rectification. In another embodiment, the outdoor unit 10 may be used as shown in FIG. 5. The low temperature cooling water coming from) is branched in front of the absorber (5), introduced into the rectifier and used for rectification, and then joined at the rear end of the condenser (3). The cooling water passed through 5) is branched at 13a, and a part of the cooling water is introduced into the rectifier 2 to be heat exchanged and then joined at 13b after the condenser 3.

이상 설명한 바와같이 본 발명의 암모니아 흡수식 사이클 구조는 고농도의 냉매를 확보하도록 함으로서 고성능의 사이클 구현을 가능하도록 하며, 특히 GAX 사이클과 같은 고효율 사이클에서 작은 정류기로 고농도의 냉매를 확보함으로 시스템 성능향상과 제품의 컴팩트화를 이룰수 있는 효과가 있다.As described above, the ammonia absorption cycle structure of the present invention enables high performance cycles by securing a high concentration of refrigerant, and in particular, by improving the system performance and product by securing a high concentration of refrigerant with a small rectifier in a high efficiency cycle such as a GAX cycle. It is effective to achieve compactness.

Claims (1)

강용액을 가열,비등시켜 저농도의 용액으로 재생하는 재생기와, 상기 재생기에서 발생한 냉매증기를 응축, 정류시키는 정류기와, 상기 정류기에서 오는 냉매증기를 액냉매로 응축하는 응축기와, 상기 응축기에서 응축된 냉매를 증발시켜 냉수를 만드는 증발기와, 상기 증발기에서 증발된 냉매증기를 흡수하는 흡수기로 구성되는 암모니아 흡수식 히트펌프에 있어서,A regenerator for heating and boiling steel solution to regenerate it into a low concentration solution, a rectifier for condensing and rectifying refrigerant vapor generated in the regenerator, a condenser for condensing refrigerant vapor from the rectifier with liquid refrigerant, and condensing in the condenser In the ammonia absorption heat pump comprising an evaporator for evaporating the refrigerant to make cold water, and an absorber for absorbing the refrigerant vapor evaporated in the evaporator, 상기 흡수기를 거친 냉각수를 정류기로 유입시켜 열교환시킨후 되돌리도록 구성하고, 상기 흡수기의 저온의 강용액을 정류기로 유입시켜 열교환시킨후 되돌리도록 구성하며,It is configured to return the cooling water passed through the absorber to the rectifier for heat exchange and then to return, and to return the low-temperature steel solution of the absorber to the rectifier for heat exchange and then to return. 상기 냉각수는 흡수기 전에서 분지되어 일부가 정류기로 유입된후 응축기 후단에서 다시 합류되도록 구성하고, 상기 흡수기를 거친 냉각수를 분지하여 일부를 정류기로 유입시킨후 응축기를 거치는 나머지 냉각수와 합류되도록 구성한 것을 특징으로 하는 암모니아 흡수식 사이클.The cooling water is branched before the absorber is configured to be joined again at the rear end of the condenser after entering the rectifier, and the cooling water passed through the absorber branched into the rectifier and configured to be joined with the remaining cooling water through the condenser. Ammonia absorption type cycle.
KR1019970024570A 1997-06-13 1997-06-13 Ammonia absorber cycle KR100234062B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970024570A KR100234062B1 (en) 1997-06-13 1997-06-13 Ammonia absorber cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970024570A KR100234062B1 (en) 1997-06-13 1997-06-13 Ammonia absorber cycle

Publications (2)

Publication Number Publication Date
KR19990001306A KR19990001306A (en) 1999-01-15
KR100234062B1 true KR100234062B1 (en) 2000-01-15

Family

ID=19509479

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970024570A KR100234062B1 (en) 1997-06-13 1997-06-13 Ammonia absorber cycle

Country Status (1)

Country Link
KR (1) KR100234062B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102292157B1 (en) * 2020-03-10 2021-08-20 고려대학교 산학협력단 Hybrid absorption heat pump system using renewable heat

Also Published As

Publication number Publication date
KR19990001306A (en) 1999-01-15

Similar Documents

Publication Publication Date Title
JP2592625B2 (en) Heat absorbing device and method
US20180172320A1 (en) Multi-stage plate-type evaporation absorption cooling device and method
US8720216B1 (en) Hybrid aqua-ammonia and lithium bromide-water absorption chiller
US4542629A (en) Variable effect desorber-resorber absorption cycle
US4546620A (en) Absorption machine with desorber-resorber
KR0177719B1 (en) GX Absorption Cycle System
US5467614A (en) Dual-circuit, multiple-effect refrigeration system and method
JP2000171119A (en) Triple-effect absorption refrigerating machine
KR100234062B1 (en) Ammonia absorber cycle
US5966948A (en) Sub-ambient absorber GAX cycle
CN215892833U (en) Two-stage generation absorption heat pump air conditioner
JP5338270B2 (en) Absorption refrigeration system
JPH03152362A (en) Absorption refrigerator
KR20080094985A (en) Absorption Chiller with Hot Water
JP2000154946A (en) Triple effect absorption refrigeration machine
CN112413925A (en) Low-temperature heat source refrigerating device
CN113587491B (en) Two-stage generation absorption type heat pump air conditioner
KR200144045Y1 (en) Absorption Chiller
JPH01234761A (en) Dual effect multi-stage pressure absorption chiller and its system
JP2520946B2 (en) Air-cooled absorption refrigerator
JP3785737B2 (en) Refrigeration equipment
JPH047495Y2 (en)
KR100213794B1 (en) Ammonia absorption air conditioner
JP3429906B2 (en) Absorption refrigerator
KR0156395B1 (en) Rectifier of ammonia absorption air conditioner

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19970613

PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19970613

Comment text: Request for Examination of Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 19990408

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 19990907

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 19990915

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 19990916

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20011217

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20030312

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20031229

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20050607

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20060622

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20070629

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20080618

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20080618

Start annual number: 10

End annual number: 10

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20100810