KR0174992B1 - Manufacturing method of semiconductor reticle and manufacturing method of vernier-key - Google Patents
Manufacturing method of semiconductor reticle and manufacturing method of vernier-key Download PDFInfo
- Publication number
- KR0174992B1 KR0174992B1 KR1019960003067A KR19960003067A KR0174992B1 KR 0174992 B1 KR0174992 B1 KR 0174992B1 KR 1019960003067 A KR1019960003067 A KR 1019960003067A KR 19960003067 A KR19960003067 A KR 19960003067A KR 0174992 B1 KR0174992 B1 KR 0174992B1
- Authority
- KR
- South Korea
- Prior art keywords
- vernier
- key
- pattern
- reticle
- manufacturing
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 33
- 239000004065 semiconductor Substances 0.000 title claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000010894 electron beam technology Methods 0.000 claims abstract description 23
- 238000010586 diagram Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70616—Monitoring the printed patterns
- G03F7/70633—Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/38—Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
- G03F1/44—Testing or measuring features, e.g. grid patterns, focus monitors, sawtooth scales or notched scales
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70681—Metrology strategies
- G03F7/70683—Mark designs
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/706843—Metrology apparatus
- G03F7/706845—Calibration, e.g. tool-to-tool calibration, beam alignment, spot position or focus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/317—Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
- H01J37/3174—Particle-beam lithography, e.g. electron beam lithography
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
Abstract
0.03μm 피치 패턴을 갖는 버니어-키를 제작하는 방법 및 이에 이용되는 반도체용 레티클 제작방법에 관한 것이다.A method for manufacturing a vernier-key having a 0.03 μm pitch pattern and a method for manufacturing a reticle for semiconductors used therein.
본 발명은, 컴퓨터를 이용하여 레티클을 구성하는 각 부분에 대하여 각기 해당하는 특정 패턴에 대한 데이터작업을 수행하는 단계, 상기 각 특정 패턴의 데이터를 테이프에 패턴으로 형성하는 단계, 상기 각 데이터 패턴에 따라 전자빔작업을 수행하여 레티클상에 상기 각 특정 패턴을 형성하는 단계를 구비하여 이루어지는 반도체용 레티클 제작방법에 있어서, 상기 버니어-키부에 형성되는 특정 패턴에 대하여 전자빔작업시 레티클의 다른 구성부분과 독립하여 일정 비율로 축소하여 원하는 크기의 버니어-키를 형성하며, 0.05μm 피치 패턴을 갖는 버니어-키 데이터에 대하여 60% 축소하는 전자빔작업을 통해 0.03μm 피치 패턴을 갖는 버니어-키를 제작한다.According to the present invention, a method of performing a data operation on a specific pattern corresponding to each part constituting a reticle using a computer, forming the data of each specific pattern into a pattern on a tape, A method of manufacturing a reticle for a semiconductor comprising the steps of forming the specific patterns on a reticle by performing an electron beam operation, wherein the specific pattern formed on the vernier-key portion is independent of other components of the reticle during the electron beam operation. To reduce the ratio to form a vernier-key having a desired size, and produce a vernier-key having a 0.03 μm pitch pattern through an electron beam operation that reduces the vernier-key data having a 0.05 μm pitch pattern by 60%.
따라서, 0.25μm 스폿 사이즈를 이용할 수 있어서 레티클 제작이 용이하며, 원가절감의 효과가 있다.Therefore, the 0.25 μm spot size can be used, making it easy to manufacture the reticle, thereby reducing the cost.
Description
제1도는 일반적인 레티클 제작과정을 나타내는 공정순서도이다.1 is a process flowchart showing a general reticle manufacturing process.
제2도는 종래의 버니어-키 데이터 작업시의 버니어-키 데이터를 나타내는 도면이다.2 is a diagram showing vernier-key data in a conventional vernier-key data operation.
제3도는 본 발명의 일 실시예에 따른 버니어-키 데이터 작업시의 버니어-키 데이터를 나타내는 도면이다.3 is a diagram illustrating vernier-key data when working with vernier-key data according to an embodiment of the present invention.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
10 : 전스텝 패턴 12,13 :후스텝 패턴10: pre-step pattern 12,13: post-step pattern
본 발명은 반도체용 레티클 제작방법 및 버니어-키 제작방법에 관한 것으로서, 보다 상세하게는 반도체 제조공정중 전스텝에서 형성된 패턴과 후스텝에서 형성된 패턴과의 정렬정도를 확인할 수 있는 버니어-키가 형성된 레티클 제작방법과 그 버니어-키 제작방법에 관한 것이다.The present invention relates to a method for manufacturing a reticle for semiconductors and a method for manufacturing a vernier-key, and more particularly, to form a vernier-key having a degree of alignment between a pattern formed in a previous step and a pattern formed in a subsequent step during a semiconductor manufacturing process. It relates to a reticle manufacturing method and its vernier-key manufacturing method.
반도체 제조공정은 웨이퍼상에 절연층과 도전층으로 된 다층막으로 특정 회로를 구현하는 것으로서, 가장 기초가 되는 것이 웨이퍼상에 특정의 패턴을 형성하는 것이다. 특히 광원과, 마스크나 레티클 등의 패턴 전사기구를 이용한 포토공정은 전스텝(step)에서 형성된 패턴과 후스텝에서 형성된 패턴간의 정렬이 정확히 이루어져야 신뢰성 있는 반도체회로를 구현할 수 있다.In the semiconductor manufacturing process, a specific circuit is realized by a multilayer film made of an insulating layer and a conductive layer on a wafer, and the most basic is to form a specific pattern on a wafer. In particular, in a photo process using a light source and a pattern transfer mechanism such as a mask or a reticle, a reliable semiconductor circuit may be realized only when the pattern formed in the previous step and the pattern formed in the subsequent step are correctly aligned.
통상적으로 포토공정에서 전,후스텝 패턴간의 정렬정도를 확인하기 위하여 버니어-키(Vernier Key)를 사용하고 있다. 버니어-키는 반도체 웨이퍼의 칩 주변에 형성되며, 웨이퍼공정 완료후 절단되어 폐기되는 스크라이브 라인(scribe line)내에 형성된다. 반도체 제조공정은 다단계의 패턴 형성과정을 거치기 때문에 매 단계마다 특정한 패턴이 형성된 레티클을 사용하게 되며, 각 단계에서 이용되는 레티클에는 버니어-키가 형성되고, 전(前) 단계에서 형성된 버니어-키가 기준키가 되고 후(後) 단계에서 형성된 버니어-키가 측정키가 되어 전 단계의 버니어-키에 대한 후 단계의 버니어-키의 상대적인 위치관계를 검사하여 패턴간의 오버랩 정도를 판단하게 된다.In general, Vernier Key is used to check the degree of alignment between pre and post step patterns in photo process. The vernier-key is formed around the chip of the semiconductor wafer and in a scribe line that is cut and discarded after the wafer process is completed. Since the semiconductor manufacturing process goes through a multi-step pattern formation process, a reticle with a specific pattern is used in each step. A vernier-key is formed in a reticle used in each step, and a vernier-key formed in a previous step is used. The reference key and the vernier-key formed in the later step become the measurement key, and the degree of overlap between the patterns is determined by examining the relative positional relationship of the vernier-key of the later step with respect to the vernier-key of the previous step.
제1도는 일반적인 레티클 제작과정을 나타내는 공정흐름도를 나타낸다. 반도체 포토공정을 수행하기 위한 레티클은 기본적으로 반도체 칩의 소자 활성영역인 메인(main)부, 스크라이브 라인부, 버니어-키부 및 상기 메인부와 동일한 과정을 거쳐 테스트용으로 사용되는 테그(Teg)부로 구성된다.1 is a process flow diagram showing a general reticle manufacturing process. The reticle for performing the semiconductor photo process is basically a main portion, a scribe line portion, a vernier-key portion, and a tag portion used for testing through the same process as the main portion, which is an element active region of a semiconductor chip. It is composed.
제1도를 참조하면, 먼저 컴퓨터를 이용하여 특정 회로패턴을 설계하는 데이터작업을 수행한다. 데이터작업은 레티클을 구성하는 메인부, 스크라이브 라인부, 버니어-키부 및 테그부 각각에 대하여 별도로 수행되며, 통상적으로 웨이퍼에 형성되는 패턴과 1:1의 크기로 실시한다.Referring to FIG. 1, a data operation of designing a specific circuit pattern is first performed using a computer. The data operation is performed separately for each of the main portion, the scribe line portion, the vernier-key portion, and the tag portion constituting the reticle, and is generally performed in a size of 1: 1 with the pattern formed on the wafer.
이어서, P/G(Pattern Gerneration)공정으로서, 상기 레티클의 각 부분에 대한 데이터를 테이프에 실제 패턴으로 형성한다. 이때도 통상 상기 데이터 패턴과 1:1의 크기로 형성한다.Subsequently, as a P / G (Pattern Gerneration) process, data for each part of the reticle is formed in a tape in an actual pattern. In this case, the size of the data pattern is 1: 1.
이어서, 상기 테이프에 형성된 패턴을 기초로 하여 전자빔(electron beam)작업을 수행하여 레티클상에 각 특정 패턴들을 형성하여 레티클 제작을 완료한다. 이때는 통상 5:1 정도로 확대하여 패턴을 형성한다.Subsequently, an electron beam operation is performed based on the pattern formed on the tape to form each specific pattern on the reticle to complete the reticle fabrication. In this case, the pattern is usually enlarged to about 5: 1.
제2도는 종래의 버니어-키 데이터를 나타내는 도면이다. 반도체 집적회로가 더욱 더 고집적화가 될 수록 디자인 룰이 엄격해짐에 따라 버니어-키의 피치 패턴도 0.05μm에서 0.03μm으로 축소된 것이 사용되기에 이르렀다.2 is a diagram showing conventional vernier-key data. As semiconductor integrated circuits become more highly integrated, design rules become more stringent, leading to the use of vernier-key pitch patterns reduced from 0.05 µm to 0.03 µm.
제2도를 참조하면, 점선으로 표시된 직사각형 패턴은 반도체 제조공정의 특정 단계를 수행하기 위하여 컴퓨터에서 설계한 버니어-키 데이터를 나타낸 것으로서, 다음 단계의 공정이 진행되기 전에 수행된다는 의미에서 전스텝 패턴(10)이라 명명한다. 상기 전스텝 패턴(10)은 중앙에 기준점(0점)을 기준으로 좌우 동일한 크기의 패턴이 복수개 형성되어 있으며, 각 단위 패턴의 중심간의 거리는 일정하며, 예를 들어 10μm으로 형성되어 있다.Referring to FIG. 2, the rectangular pattern indicated by the dotted line represents the vernier-key data designed by the computer to perform a specific step of the semiconductor manufacturing process, and the all-step pattern in the sense that it is performed before the next step of the process proceeds. It is named (10). In the previous step pattern 10, a plurality of patterns having the same size as the left and right are formed at the center of the reference point (zero point), and the distance between the centers of the unit patterns is constant, for example, 10 μm.
한편, 실선으로 표시한 작은 직사각형 패턴은 반도체 제조공정의 다른 특정 단계를 수행하기 위하여 컴퓨터에서 설계한 버니어-키 데이터를 나타낸 것으로서, 상기 전스텝 패턴(10) 단계의 공정이 진행된 후에 수행된다는 의미에서 후스텝 패턴(12)이라 명명한다. 상기 후스텝 패턴(12)도 상기 전스텝 패턴(10)과 같이 중앙에 기준점(0점)을 기준으로 좌우 동일한 크기의 패턴이 복수개 형성되어 있으며, 각 단위 패턴의 중심간의 거리는 일정하며, 예를 들어 9.97μm으로 형성되어 있다.On the other hand, the small rectangular pattern represented by a solid line represents vernier-key data designed by a computer in order to perform another specific step of the semiconductor manufacturing process, in the sense that it is performed after the process of the previous step pattern 10 step is performed. The post-step pattern 12 is called. Like the previous step pattern 10, a plurality of patterns having the same size as the previous step pattern 10 are formed on the basis of the reference point (zero point), and the distance between the centers of the unit patterns is constant. For example, it is formed in 9.97 micrometers.
따라서, 전스텝 패턴(10)에 비하여 후스텝 패턴(12)간의 거리는 0.03μm의 차이를 보이는 0.03μm 피치 패턴이 형성된다. 이러한 0.03μm 피치 패턴을 갖는 버니어-키를 형성하기 위하여는 전자빔작업시 전자빔의 스폿 사이즈가 0.15μm인 것을 사용하여야 한다.Therefore, compared with the previous step pattern 10, the 0.03 micrometer pitch pattern which shows the difference of 0.03 micrometer with the distance between the post-step patterns 12 is formed. In order to form a vernier-key having such a 0.03 μm pitch pattern, an electron beam spot size of 0.15 μm should be used.
그러나 상기 종래기술에 의하면 버니어-키를 형성하기 위하여 전자빔작업시 전자빔의 스폿 사이즈가 0.15μm의 작은 것을 사용하여야 하기 때문에 동일한 크기의 패턴을 형성하기 위하여 전자빔의 량이 많이 소요되며 전자빔 주사시간도 많이 소요되는 등의 원가상승의 요인이 된다는 문제점이 있다.However, according to the prior art, since the spot size of the electron beam must be used as small as 0.15 μm when forming the vernier-key, the amount of the electron beam is large and the electron beam scanning time is required to form the same size pattern. There is a problem that it becomes a factor of cost increase.
본 발명의 목적은, 동일한 크기의 버니어-키를 제작함에 있어서 전자빔의 스폿 사이즈를 크게 하여 원가절감을 꾀하며 용이하게 작업할 수 있는 반도체용 레티클 제작방법을 제공하는 데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a reticle for a semiconductor that can be easily operated with cost reduction by increasing the spot size of an electron beam in manufacturing a vernier-key of the same size.
본 발명의 다른 목적은, 전자빔의 스폿 사이즈를 크게 하여도 동일한 크기의 버니어-키를 용이하게 제작할 수 있는 버니어-키의 제작방법을 제공하는 데 있다.Another object of the present invention is to provide a method for manufacturing a vernier-key which can easily produce a vernier-key having the same size even when the spot size of the electron beam is increased.
상기 목적을 달성하기 위한 본 발명의 반도체용 레티클 제작방법은, 컴퓨터를 이용하여 레티클을 구성하는 메인부, 스크라이브 라인부, 버니어-키부 및 테그부에 각기 해당하는 특정 패턴에 대한 데이터작업을 수행하는 단계, 상기 각 특정 패턴의 데이터를 테이프에 패턴으로 형성하는 단계, 상기 각 데이터 패턴에 따라 전자빔작업을 수행하여 레티클상에 상기 각 특정 패턴을 형성하는 단계를 구비하여 이루어지는 반도체용 레티클 제작방법에 있어서, 상기 버니어-키부에 형성되는 특정 패턴에 대하여 전자빔작업시 레티클의 다른 구성부분과 독립하여 일정 비율로 축소하여 원하는 크기의 버니어-키를 형성하는 것을 특징으로 한다.In the semiconductor reticle manufacturing method of the present invention for achieving the above object, using a computer to perform a data operation for a specific pattern corresponding to the main portion, scribe line portion, vernier-key portion and the tag portion constituting the reticle A method of manufacturing a reticle for a semiconductor comprising the steps of: forming data of each specific pattern into a pattern on a tape; and performing the electron beam operation according to each data pattern to form each specific pattern on a reticle. In the electron beam operation, the specific pattern formed on the vernier-key portion is reduced to a predetermined ratio independently of other components of the reticle to form a vernier-key having a desired size.
상기 데이터작업시 버니어-키의 피치 패턴은 0.05μm로 하며, 상기 전자빔작업시 60% 축소하여 레티클상에 0.03μm 피치 패턴을 갖는 버니어-키를 형성하며, 상기 전자빔작업시 사용되는 스폿 사이즈는 0.25μm인 것을 사용할 수 있다.The pitch pattern of the vernier-key during the data operation is 0.05 μm, and is reduced by 60% during the electron beam operation to form the vernier-key having a 0.03 μm pitch pattern on the reticle, and the spot size used during the electron beam operation is 0.25. μm may be used.
상기 목적을 달성하기 위한 본 발명의 버니어-키 제작방법은, 전스텝에 의한 기준키에 대하여 상대적인 위치관계를 검사하여 반도체 웨이퍼에 형성되는 패턴의 정렬정도를 확인할 수 있는 버니어-키의 제작방법에 있어서, 컴퓨터를 이용하여 0.05μm 피치 패턴을 갖는 버니어-키 데이터작업을 수행하는 단계, 상기 버니어-키 데이터를 기초하여 테이프에 버니어-키 패턴을 형성하는 단계, 스폿 사이즈가 0.25μm이며, 60% 축소(shrink)한 전자빔작업을 수행하여 레티클상에 0.03μm 피치 패턴을 갖는 버니어-키를 형성하는 단계 및 상기 레티클상의 버니어-키를 웨이퍼상에 전사하는 단계를 구비하여 이루어진다.Vernier-key fabrication method of the present invention for achieving the above object is a manufacturing method of the vernier-key which can confirm the degree of alignment of the pattern formed on the semiconductor wafer by examining the relative positional relationship with respect to the reference key by all steps Performing a vernier-key data operation with a 0.05 μm pitch pattern using a computer, forming a vernier-key pattern on a tape based on the vernier-key data, the spot size being 0.25 μm, 60% Performing a reduced electron beam operation to form a vernier-key with a 0.03 μm pitch pattern on the reticle and transferring the vernier-key on the reticle onto the wafer.
이하, 본 발명의 구체적인 실시예를 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
제3도는 제2도에 대응하는 본 발명의 일 실시예에 따른 버니어-키 데이터 작업시의 버니어-키 데이터를 나타낸다. 상기 버니어-키 데이터 작업은 레티클을 구성하는 다른 부분과 별도로 분리하여 실시한다.3 shows vernier-key data in a vernier-key data operation according to an embodiment of the present invention corresponding to FIG. The vernier-key data operation is performed separately from other parts of the reticle.
제3도를 참조하면, 점선으로 표시된 직사각형 패턴은 제2도에서와 같이 반도체 제조공정의 특정 단계를 수행하기 위하여 컴퓨터에서 설계한 버니어-키 데이터를 나타낸 것으로서, 전스텝 패턴(10)이다. 상기 전스텝 패턴(10)은 중앙에 기준점(0점)을 기준으로 좌우 동일한 크기의 패턴이 10μm 간격을 유지하며 복수개 형성되어 있다.Referring to FIG. 3, the rectangular pattern indicated by the dotted line represents the vernier-key data designed by the computer to perform a specific step of the semiconductor manufacturing process as shown in FIG. In the previous step pattern 10, a plurality of patterns having the same size as the left and right are formed at the center with a reference point (0 point) at intervals of 10 μm.
한편, 실선으로 표시한 작은 직사각형 패턴은 컴퓨터에서 설계한 버니어-키 데이터를 나타낸 것으로서, 상기 전스텝 패턴(10) 단계의 공정이 진행된 후의 후스텝 패턴(13)이다. 상기 후스텝 패턴(13)도 상기 전스텝 패턴(10)과 같이 중앙에 기준점(0점)을 기준으로 좌우 동일한 크기의 패턴이 9.95μm 간격을 유지하며 복수개 형성되어 있다. 따라서, 전스텝 패턴(10)에 비하여 후스텝 패턴(13)간의 거리는 0.05μm의 차이를 보이는 0.05μm 피치 패턴에 대한 데이터가 형성된다.On the other hand, the small rectangular pattern shown by the solid line shows the vernier-key data designed by the computer, and is the post step pattern 13 after the process of the said previous step pattern 10 step progressed. Like the previous step pattern 10, a plurality of patterns having the same size as the left and right steps are formed at the center of the reference point (zero point) while maintaining a 9.95 μm spacing. Therefore, compared to the previous step pattern 10, data for a 0.05 μm pitch pattern having a difference of 0.05 μm between the post step patterns 13 is formed.
이어서, 상기 버니어-키 데이터를 테이프에 실제 패턴으로 형성하는 P/G(Pattern Gerneration)공정을 수행하며, 통상 상기 데이터 패턴과 1:1의 크기로 형성한다.Subsequently, a P / G (Pattern Gerneration) process of forming the vernier-key data into a tape in an actual pattern is performed, and is generally formed in a size of 1: 1 with the data pattern.
이어서, 상기 테이프에 형성된 0.05μm 피치 패턴을 기초로 하여 전자빔(electron beam)작업을 수행하여 레티클상에 각 버니어-키 패턴을 형성하며, 이때 레티클을 구성하는 다른 부분, 예를 들어 메인부, 스크라인부 및 테그부에 해당하는 특정 패턴을 형성하여 레티클 제작을 완료한다. 이때는 통상 5:1 정도로 확대하여 패턴을 형성한다.Subsequently, an electron beam operation is performed on the basis of the 0.05 μm pitch pattern formed on the tape to form each vernier-key pattern on the reticle, where other parts constituting the reticle, for example, a main part and a screed, are formed. The reticle fabrication is completed by forming a specific pattern corresponding to the line portion and the tag portion. In this case, the pattern is usually enlarged to about 5: 1.
한편, 상기와 같이 레티클을 형성하는 과정에서 상기 버니어-키 패턴은 다른 부분과 별도로 분리하여 전자빔작업을 수행하며 그 비율을 60% 축소(shrink)하여 수행하기 때문에 0.05μm 피치 패턴에 대한 데이터가 0.03μm 피치 패턴으로 형성된다.Meanwhile, in the process of forming the reticle as described above, the vernier-key pattern is separated from other parts to perform electron beam work, and the ratio is reduced by 60%, so that the data for the 0.05 μm pitch pattern is 0.03. It is formed in a μm pitch pattern.
한편, 반도체 웨이퍼상에 버니어-키를 형성하는 과정은, 먼저 반도체 웨이퍼공정의 특정 단계에서 상기 전스텝 패턴(10)을 갖는 레티클을 이용하여 웨이퍼상에 패턴전사작업을 수행하며, 이후 특정 단계에서 상기 후스텝 패턴(13)을 갖는 레티클을 사용하여 패턴전사작업을 수행한다. 따라서 상기 두 버니어-키의 상대적 위치관계를 검사하여 전,후 스텝간의 패턴의 오버랩정도를 확인할 수 있다.Meanwhile, in the process of forming the vernier-key on the semiconductor wafer, first, the pattern transfer operation is performed on the wafer using a reticle having the previous step pattern 10 in a specific step of the semiconductor wafer process, and then in the specific step. The pattern transfer operation is performed using the reticle having the post-step pattern 13. Therefore, by checking the relative positional relationship between the two vernier-key, it is possible to confirm the degree of overlap of the pattern between the front and rear steps.
따라서, 본 발명에 의하면 기존의 0.25μm 스폿 사이즈를 갖는 전자빔을 이용하기 때문에 레티클 제작이 용이하며, 0.03μm 단위의 피치 패턴을 갖는 버니어-키를 제작할 경우 스폿 사이즈가 0.15μm인 것을 사용하는 대신에 0.25μm인 것을 사용할 수 있어 원가절감의 효과가 있다.Therefore, according to the present invention, since a conventional electron beam having a 0.25 μm spot size is used, reticle fabrication is easy, and when manufacturing a vernier-key having a pitch pattern of 0.03 μm, instead of using a spot size of 0.15 μm, 0.25μm can be used, which can reduce the cost.
이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연하다.Although the present invention has been described in detail only with respect to the described embodiments, it will be apparent to those skilled in the art that various modifications and changes are possible within the technical scope of the present invention, and such modifications and modifications belong to the appended claims.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960003067A KR0174992B1 (en) | 1996-02-08 | 1996-02-08 | Manufacturing method of semiconductor reticle and manufacturing method of vernier-key |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019960003067A KR0174992B1 (en) | 1996-02-08 | 1996-02-08 | Manufacturing method of semiconductor reticle and manufacturing method of vernier-key |
Publications (2)
Publication Number | Publication Date |
---|---|
KR970063406A KR970063406A (en) | 1997-09-12 |
KR0174992B1 true KR0174992B1 (en) | 1999-04-01 |
Family
ID=19450953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019960003067A KR0174992B1 (en) | 1996-02-08 | 1996-02-08 | Manufacturing method of semiconductor reticle and manufacturing method of vernier-key |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR0174992B1 (en) |
-
1996
- 1996-02-08 KR KR1019960003067A patent/KR0174992B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR970063406A (en) | 1997-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960014963B1 (en) | Manufacturing Method of Semiconductor Device | |
CN107422611A (en) | A kind of method for realizing the matching of ASML different model litho machines alignment | |
JPS5968928A (en) | Manufacture of semiconductor device | |
US5482819A (en) | Photolithographic process for reducing repeated defects | |
US6820525B2 (en) | Precision Fiducial | |
US6340631B1 (en) | Method for laying out wide metal lines with embedded contacts/vias | |
KR0174992B1 (en) | Manufacturing method of semiconductor reticle and manufacturing method of vernier-key | |
US20030108803A1 (en) | Method of manufacturing phase shift mask, phase shift mask and apparatus | |
CN118550150A (en) | Optical proximity correction method | |
CN111273524B (en) | Process method for realizing accurate alignment | |
JPH0795543B2 (en) | Etching method | |
JPH0448715A (en) | Manufacture of semiconductor device | |
KR100215897B1 (en) | How to form an overlay pattern for measuring alignment | |
JP2000306822A (en) | Manufacture of semiconductor device | |
JPH03209711A (en) | Manufacture of semiconductor device | |
US20240210816A1 (en) | Method of forming a layout pattern and photomask | |
JPS5839015A (en) | Manufacture of semiconductor device | |
KR100214261B1 (en) | Method for manufacturing metal wiring of semiconductor device | |
JPS63275115A (en) | Pattern forming method for semiconductor device | |
KR100299520B1 (en) | Reticle of semiconductor device and mask process using the same | |
KR20010028305A (en) | Method for revising registration | |
KR100212011B1 (en) | Mask used in patterning and method of exposure using the same | |
KR100329605B1 (en) | Method for manufacturing metal wiring in semiconductor device | |
US6717685B1 (en) | In situ proximity gap monitor for lithography | |
JPS59161033A (en) | Photo mask |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19960208 |
|
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19960208 Comment text: Request for Examination of Application |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 19981028 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 19981106 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 19981106 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20011008 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20021007 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20031008 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20040331 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20051007 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20061030 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20061030 Start annual number: 9 End annual number: 9 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20081010 |