KR0142150B1 - Method for Etching Boron Nitride - Google Patents
Method for Etching Boron NitrideInfo
- Publication number
- KR0142150B1 KR0142150B1 KR1019940004533A KR19940004533A KR0142150B1 KR 0142150 B1 KR0142150 B1 KR 0142150B1 KR 1019940004533 A KR1019940004533 A KR 1019940004533A KR 19940004533 A KR19940004533 A KR 19940004533A KR 0142150 B1 KR0142150 B1 KR 0142150B1
- Authority
- KR
- South Korea
- Prior art keywords
- boron nitride
- silicon
- etching
- doped
- doping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/113—Nitrides of boron or aluminum or gallium
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Weting (AREA)
- Formation Of Insulating Films (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
본 발명은 실리콘, 탄소 또는 게르마늄과 같은 원소 주기율표의 IVA족의 원소로 붕소 질화물층을 도핑하는 단계를 포함하는 붕소 질화물의 에칭 방법을 제공한다. 붕소 질화물층이 도프된 후, 이것은 붕소 질화물을 도핑하기 전에 가능하지 않은 고온 인산, 플루오르화 수소산 또는 완충된 플루오르화 수소산으로 습식 에칭과 같은 기술로 에칭될 수 있다.The present invention provides a method of etching boron nitride comprising doping a boron nitride layer with an element of group IVA of the periodic table of the elements, such as silicon, carbon or germanium. After the boron nitride layer is doped, it may be etched by techniques such as wet etching with hot phosphoric acid, hydrofluoric acid, or buffered hydrofluoric acid, which is not possible before doping the boron nitride.
Description
본 발명은 붕소 질화물을 에칭하기 위한 방법에 관한 것으로, 특히 붕소 질화물의 에칭률을 증가시키기 위한 방법에 관한 것이다. 이것은 예를 들면, 실리콘, 탄소 또는 게르마늄과 같은 IVA족의 원소로 붕소 질화물을 도프시킴으로써 달성된다.The present invention relates to a method for etching boron nitride, and more particularly to a method for increasing the etching rate of boron nitride. This is accomplished by doping boron nitride with elements of group IVA, for example silicon, carbon or germanium.
반도체 디바이스 제조의 분야에 있어서, 도전층들을 분리시키기 위하여 통상적으로 절연층이 사용된다. 이러한 층간 절연막으로서 플라즈마 증강형 화학 진공 증착법(Plasma-Enhanced Chemical Vapor Deposition:PECVD)을 사용하여 인가된 실리콘 질화물층이 사용되어 왔다. 실리콘 질화물막은 습기 및 알칼리 금속 이온에 대한 높은 차단 효과 뿐만 아니라 우수한 절연 특성을 갖는다. 부가적으로, 실리콘 질화물 절연층은 공형특성(Conformal Step Coverage Characteristics) 및 높은 균열 저항 특성을 나타낸다. 1987년도 일본국 응용 물리학 저널 (Japanese Journal of Applied Physics) 26, 페이지 660-665의 엠. 마에다 (M. Maeda) 및 티. 마키노 (T. Makino)에 의해 기술된 내용을 참조하시오.In the field of semiconductor device manufacturing, an insulating layer is typically used to separate the conductive layers. As such an interlayer insulating film, a silicon nitride layer applied by using plasma-enhanced chemical vapor deposition (PECVD) has been used. The silicon nitride film has excellent insulation properties as well as a high blocking effect on moisture and alkali metal ions. In addition, the silicon nitride insulating layer exhibits conformal step coverage characteristics and high crack resistance characteristics. M. in Japanese Journal of Applied Physics, 1987, pages 660-665. M. Maeda and T. See description by T. Makino.
그러나, 실리콘 질화물 절연층에는 소정의 단점이 있다. 이러한 단점으로는 인 실리케이트 유리 (Phosphorous-Silicate Glass:PSG) 및 실리콘 이산화물 절연층에 비해 유전 상수가 높다는 것인데, 이것은 비교적 큰 기생 캐패시턴스 및 디바이스간의 비교적 긴 전파 지연 시간을 초래한다. 엠. 마에다(M. Maeda) 및 티. 마키노 (T. Makino)에 의해 기술된 상기 논문을 참조하시오.However, silicon nitride insulating layers have certain disadvantages. These drawbacks are higher dielectric constants compared to Phosphorous-Silicate Glass (PSG) and silicon dioxide insulating layers, which result in relatively large parasitic capacitances and relatively long propagation delay times between devices. M. M. Maeda and T. See the above article described by T. Makino.
따라서, 낮은 유전 상수, 공형특성, 우수한 절연 특성 및 높은 균열 저항을 갖는 다른 유전체 또는 절연막 물질에 대한 필요성이 계속 존재하여 왔다. 이러한 필요성에 대응하여, 대기 화학 진공 증착(CVD) 또는 PECVD에 의해 형성된 붕소질화물막이 고안되었다. 이들 붕소 질화물막은 높은 절연성을 띠고, 화학적으로 비활성 물질이며, 열적으로 안정하다. 또한, 이러한 막들은 낮은 유전 상수를 가진다.Thus, there has been a continuing need for other dielectric or insulating materials having low dielectric constants, conformal properties, good insulating properties and high crack resistance. In response to this need, boron nitride films formed by atmospheric chemical vacuum deposition (CVD) or PECVD have been devised. These boron nitride films are highly insulating, chemically inert, and thermally stable. In addition, these films have a low dielectric constant.
그러나, 붕소 질화물막이 유용성을 가지기 위해서는 현재의 반도체 디바이스 제조 공정에 적합해야만 한다. 따라서, 이에 적합한 에칭 기술이 사용되어야만 한다.However, the boron nitride film must be suitable for the current semiconductor device manufacturing process in order to have utility. Therefore, a suitable etching technique must be used.
습식 에칭 공정 (Wet Etching Process)은 반도체 디바이스 제조 공정에서 일반적으로 사용된다. 일반적인 습식 에칭제는 예를 들면, 불화 수소산 (Hydrofluoric Acid:HF), 완충된 불화 수소산 (Buffered Hydrofluoric Acid:BHF), 고온 인산 (Hot Phosphoric Acid)를 포함한다. 이들 에칭제는 붕소 질화물을 에칭할 수 없기 때문에, 현재의 반도체 디바이스 제조 공정은 붕소 질화물 절연층을 사용하기에 적합하지 않다.Wet etching processes are commonly used in semiconductor device manufacturing processes. Common wet etchants include, for example, Hydrofluoric Acid (HF), Buffered Hydrofluoric Acid (BHF), Hot Phosphoric Acid. Since these etchant cannot etch boron nitride, current semiconductor device manufacturing processes are not suitable for using boron nitride insulating layers.
따라서, 붕소 질화물이 반도체 디바이스의 제조에 사용되도록 종래의 에칭제를 사용하여 붕소 질화물을 에칭하는 방법이 필요하다. 붕소 질화물을 에칭할 수 있게 되면 붕소 질화물을 사용하여 그 물질의 양호한 절연층 특성을 이용할 수 있는 장점이 있다.Thus, there is a need for a method of etching boron nitride using conventional etchant such that boron nitride is used in the manufacture of semiconductor devices. Being able to etch boron nitride has the advantage of using the boron nitride to take advantage of the good insulating layer properties of the material.
따라서, 본 발명의 목적은 붕소 질화물의 에칭 방법을 제공하기 위한 것이다. 이 방법은 현재의 반도체 제조 공정에 적합해야만 한다.Accordingly, it is an object of the present invention to provide a method for etching boron nitride. This method must be compatible with current semiconductor manufacturing processes.
간단히 상술한 바와 같이, 본 발명은 붕소 질화물을 에칭하기 위한 방법을 포함한다. 이것은 원소 주기율표의 IVA족에서 선택된 원소로서 붕소 질화물층을 도프시킴으로써 달성된다. IVA족 원소는 실리콘, 탄소, 게르마늄, 주석 및 납을 포함한다. 각각의 이들 원소는 붕소 질화물과 유사한 구조를 갖고, 최종적으로 도프된 붕소 질화물은 동일한 육각형의 결합 구조를 유지하면서 약간 더 비정질로 된다. 붕소 질화물층이 도프된 후, 이것은 예를 들면 고온 인산과 같은 통상의 습식 에칭제를 사용하여 에칭될 수 있다.As briefly described above, the present invention includes a method for etching boron nitride. This is accomplished by doping the boron nitride layer as an element selected from group IVA of the periodic table of elements. Group IVA elements include silicon, carbon, germanium, tin and lead. Each of these elements has a structure similar to boron nitride, and the finally doped boron nitride becomes slightly more amorphous while maintaining the same hexagonal bonding structure. After the boron nitride layer is doped, it can be etched using a conventional wet etchant, for example, high temperature phosphoric acid.
도핑 레벨은 붕소 질화물의 에칭률을 제어하기 위하여 사용될 수 있다. 일반적으로, 약 20 %까지의 작은 양의 도펀트가 붕소 질화물 막의 물성을 손상시키지 않고 사용될 수 있다. 양호하게는 약 2 % 내지 약 10 % 범위의 도펀트가 사용된다.Doping levels can be used to control the etch rate of boron nitride. In general, small amounts of dopants of up to about 20% can be used without compromising the physical properties of the boron nitride film. Preferably dopants in the range of about 2% to about 10% are used.
따라서, 붕소 질화물의 도핑은 종래의 습식 에칭 기술을 사용하여 붕소 질화물을 에칭하기 위한 능력을 향상시킨다. 이것은 붕소 질화물을 반도체 디바이스에서 절연층으로 이용하여, 붕소 질화물의 절연 특성을 이용할 수 있는 장점을 가진다.Thus, the doping of boron nitride improves the ability to etch boron nitride using conventional wet etching techniques. This has the advantage of utilizing the insulating properties of boron nitride by using boron nitride as an insulating layer in a semiconductor device.
상술한 바와 같이, 본 발명의 넓은 개념은 붕소 질화물을 에칭하기 위한 방법에 관한 것이다. 붕소 질화물층은 실리콘, 탄소 또는 게르마늄과 같은 원소 주기율표의 IVA족에서 선택된 원소로 도프된다. 그 다음, 붕소 질화물의 도프된 층은 습식 에칭제 (약 165 ℃의 고온 인산, 불화 수소산 및 완충된 불화 수소산과 같은 질화물 에칭제)와 같은 적합한 에칭제를 사용하여 에칭된다. 일반적으로, 도펀트의 양은 원자 조성비 약 20 %, 양호하게는 원자 조성비 약 2 % 내지 약 10 % 까지의 범위일 수 있다. 도펀트의 낮은 농도는 절연층으로서 붕소 질화물의 특성에 역으로 영향을 미치지 않는다. 도펀트의 양은 붕소 질화물의 에칭률을 제어하기 위하여 변경될 수 있다.As mentioned above, the broad concept of the present invention relates to a method for etching boron nitride. The boron nitride layer is doped with an element selected from group IVA of the periodic table of the elements, such as silicon, carbon or germanium. The doped layer of boron nitride is then etched using a suitable etchant, such as a wet etchant (nitride etchant such as hot phosphoric acid, hydrofluoric acid, and buffered hydrofluoric acid at about 165 ° C.). In general, the amount of dopant may range from about 20% atomic ratio, preferably from about 2% to about 10% atomic ratio. The low concentration of dopant does not adversely affect the properties of boron nitride as an insulating layer. The amount of dopant can be varied to control the etch rate of boron nitride.
한 실시예에 있어서, PECVD 붕소 질화물막은 다음과 같은 조건 하에서 적합한 반응기(reactor)에서 증착되고 도프된다.In one embodiment, the PECVD boron nitride film is deposited and doped in a suitable reactor under the following conditions.
AME 5000 반응기 시스템 (실란 가스 분배 차단기)AME 5000 reactor system (silane gas distribution breaker)
압력 : 4.4 TorrsPressure: 4.4 Torrs
온도 : 400 ℃Temperature: 400 ℃
전극 간격 : 1.0cmElectrode spacing: 1.0cm
전력 밀도 : 2.0 w/㎠Power Density: 2.0 w / ㎠
가스 흐름 속도 : 질소 2,000-20,000 sccmGas Flow Rate: Nitrogen 2,000-20,000 sccm
B2H6(N2의 1%) 1,000 sccmB 2 H 6 (1% of N 2 ) 1,000 sccm
NH30-70 sccmNH 3 0-70 sccm
SiH4(SixBN에 대해) 1-5 sccmSiH 4 (for Si x BN) 1-5 sccm
균일성 (6 시그마) 5-10 %Uniformity (6 Sigma) 5-10%
증착률(nm/min) 100(BN에 대해)Deposition Rate (nm / min) 100 (for BN)
100-140(SixBN에 대해)100-140 (for Si x BN)
굴절률 1.75-1.8(BN 및 SixBN에 대해)Refractive Index 1.75-1.8 (for BN and Si x BN)
상술한 바와 같이, 낮은 농도로 실리콘 도프된 (5 % atomic %) 붕소 질화물막을 형성하기 위하여 작은 양의 실란 (SiH₄)이 추가된다. 붕소 질화물막은 우수한 두께 균일성 및 수증기에 대한 안정성을 갖는다. X선 광전자 분광기(X-ray Photoelectron Spectroscopic: XPS ) 분석은 5 sccm의 흐름으로 증착된 막이 깊이 두께를 통해 균일하게 분포된 5 atomic %보다 작은 실리콘 함유량을 가짐을 보여준다. 1-4 sccm SiH₄로 증착된 막은 막 벌크에서 5 atomic % 보다 작은 실리콘 도핑함량을 가진다. 푸우리에 변환 적외선 (Fourier Transform Infrared : FTIR) 및 투과 전자 현미경 (Transmission Electron Microscopy : TEM) 분석은 저농도 실리콘 도핑으로 증착된 막이 계속 동일한 육각형의 결합 구조를 가질지라도 더 비정질로 되는 것을 나타낸다. 붕소 질화물 (BN) 및 저농도로 실리콘이 도프된 BN (SiBN) 막은 고온 인산 (165℃)으로 에칭되고, 저압 화학 진공 증착 (Low Pressure Chemical Vapor Deposition : LPCVD) 실리콘 질화물막은 기준으로 사용된다.As mentioned above, a small amount of silane (SiH₄) is added to form a silicon doped (5% atomic%) boron nitride film at low concentration. The boron nitride film has excellent thickness uniformity and stability against water vapor. X-ray photoelectron spectroscopic (XPS) analysis shows that the film deposited with a flow of 5 sccm has a silicon content of less than 5 atomic% evenly distributed throughout the depth thickness. Films deposited with 1-4 sccm SiH₄ have a silicon doping content of less than 5 atomic% in the film bulk. Fourier Transform Infrared (FTIR) and Transmission Electron Microscopy (TEM) analysis shows that films deposited with low concentration of silicon doping become more amorphous even though they continue to have the same hexagonal bonding structure. Boron nitride (BN) and low concentration silicon-doped BN (SiBN) films are etched with high temperature phosphoric acid (165 ° C.) and a Low Pressure Chemical Vapor Deposition (LPCVD) silicon nitride film is used as a reference.
표1은 붕소 질화물, 저농도 실리콘 도프된 붕소 질화물 및 고온 인산으로 에칭된 LPCVD 실리콘 질화물막 에칭률 및 에칭 선택성을 나타낸다. 저 레벨 실란도핑 (2-5 sccm SiH₄, 즉 5 atomic % Si 함유량보다 적은)은 3배 이상의 크기로 에칭률을 향상시킴을 알 수 있다. 또한 에칭률은 LPCVD 실리콘 질화물보다 훨씬 더 크므로, 절연층으로서 붕소 질화물을 사용하는 것이 가능해진다.Table 1 shows the etch rates and etch selectivity of LPCVD silicon nitride films etched with boron nitride, low concentration silicon doped boron nitride and high temperature phosphoric acid. It can be seen that low level silane doping (less than 2-5 sccm SiH Si, ie less than 5 atomic% Si content) improves the etch rate by three times or more. In addition, since the etching rate is much larger than that of LPCVD silicon nitride, it becomes possible to use boron nitride as the insulating layer.
저농도 실리콘 도프된 붕소 질화물의 향상된 에칭률은 BN에 비해 적게 도프된 SiXBN의 비정질 특성이 크기 때문이다. 저농도로 도프된 (5 atomic %) 상태에서, 건식 에칭 작용에서의 중요한 변화는 발견되지 않고, 육각형의 결합이 아직 존재하기 때문에 단지 BN 특성의 작은 변화가 발생한다.The improved etch rate of low silicon doped boron nitride is due to the greater amorphous nature of the less doped Si X BN compared to BN. In the lightly doped (5 atomic%) state, no significant change in dry etching action is found, and only a small change in BN properties occurs because hexagonal bonds still exist.
도프된 BN이 동일한 육각형의 결합 구조를 유지하면서 약간 더 비정질로 되기 때문에, 반응 가스 (reactant gas)로서, CH₄ 또는 GeH₄을 사용하여 탄소 또는 게르마늄을 낮은 레벨로 도핑하면 붕소 질화물의 에칭률을 유사하게 향상시킬 수 잇다. 다른 IVA 족 원소를 사용하여도 유사한 결과가 얻어진다.Since the doped BN becomes slightly amorphous while maintaining the same hexagonal bonding structure, when doping carbon or germanium to low levels using CH₄ or GeH₄ as the reactant gas, the etching rate of boron nitride is similarly Can be improved. Similar results are obtained with other Group IVA elements.
본 발명의 다른 실시예에 있어서, 불화 수소산 용액의 붕소 질화물의 에칭률은 표2에 도시한 바와 같이 실리콘 도핑의 증가에 따라 향상된다.In another embodiment of the present invention, the etch rate of the boron nitride in the hydrofluoric acid solution is improved with increasing silicon doping as shown in Table 2.
상술한 바와 같은 SixBN막의 화학 조성은 다음과 같다 (상대적인 atomic %):The chemical composition of the Si x BN film as described above is as follows (relative atomic%):
또한, 본 발명의 원리는 ⅢA족 및 VA족 원소로 구성된 다른 화합물로 확장될 수 있다. 예를 들면, 붕소 인화물은 실리콘과 같은 IVA족 원소로 도프될 때에 붕소 질화물과 유사한 절연 및 에칭 특성을 나타낼 수 잇다.In addition, the principles of the present invention can be extended to other compounds composed of Group IIIA and Group VA elements. For example, boron phosphide may exhibit similar insulating and etching properties as boron nitride when doped with group IVA elements such as silicon.
본 발명은 양호한 실시예에 대해 상세히 설명되었지만, 본 분야에 숙련되 기술자들이라면 본 발명의 범위를 벗어나지 않고서 양호한 실시예를 여러 가지로 변형 및 변경시킬 수 있다. 그러므로, 본 발명은 첨부된 특허 청구의 범위에 의하여만 제한된다.Although the present invention has been described in detail with reference to the preferred embodiments, those skilled in the art can make various changes and modifications to the preferred embodiments without departing from the scope of the invention. Therefore, the invention is only limited by the appended claims.
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US4557093A | 1993-04-09 | 1993-04-09 | |
US8/045,570 | 1993-04-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR0142150B1 true KR0142150B1 (en) | 1998-07-15 |
Family
ID=21938670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019940004533A Expired - Fee Related KR0142150B1 (en) | 1993-04-09 | 1994-03-09 | Method for Etching Boron Nitride |
Country Status (5)
Country | Link |
---|---|
US (1) | US5536360A (en) |
EP (1) | EP0619600A3 (en) |
JP (1) | JP2664866B2 (en) |
KR (1) | KR0142150B1 (en) |
TW (1) | TW241374B (en) |
Families Citing this family (166)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6090300A (en) * | 1998-05-26 | 2000-07-18 | Xerox Corporation | Ion-implantation assisted wet chemical etching of III-V nitrides and alloys |
US6891236B1 (en) | 1999-01-14 | 2005-05-10 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of fabricating the same |
JPWO2002069382A1 (en) * | 2001-02-28 | 2004-07-02 | 杉野 隆 | Solid device and method of manufacturing the same |
US7034307B2 (en) * | 2003-09-25 | 2006-04-25 | General Electric Company | Neutron detector employing doped pyrolytic boron nitride and method of making thereof |
CN101048531A (en) * | 2004-07-07 | 2007-10-03 | 通用电气公司 | Protective coating on a substrate and method of making thereof |
KR100568257B1 (en) * | 2004-07-29 | 2006-04-07 | 삼성전자주식회사 | Manufacturing method of dual damascene wiring |
US8084105B2 (en) * | 2007-05-23 | 2011-12-27 | Applied Materials, Inc. | Method of depositing boron nitride and boron nitride-derived materials |
US8337950B2 (en) * | 2007-06-19 | 2012-12-25 | Applied Materials, Inc. | Method for depositing boron-rich films for lithographic mask applications |
US20090093100A1 (en) * | 2007-10-09 | 2009-04-09 | Li-Qun Xia | Method for forming an air gap in multilevel interconnect structure |
US8148269B2 (en) * | 2008-04-04 | 2012-04-03 | Applied Materials, Inc. | Boron nitride and boron-nitride derived materials deposition method |
US7910491B2 (en) * | 2008-10-16 | 2011-03-22 | Applied Materials, Inc. | Gapfill improvement with low etch rate dielectric liners |
US8563090B2 (en) * | 2008-10-16 | 2013-10-22 | Applied Materials, Inc. | Boron film interface engineering |
US9324576B2 (en) | 2010-05-27 | 2016-04-26 | Applied Materials, Inc. | Selective etch for silicon films |
US8741778B2 (en) | 2010-12-14 | 2014-06-03 | Applied Materials, Inc. | Uniform dry etch in two stages |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US8771539B2 (en) | 2011-02-22 | 2014-07-08 | Applied Materials, Inc. | Remotely-excited fluorine and water vapor etch |
US8999856B2 (en) | 2011-03-14 | 2015-04-07 | Applied Materials, Inc. | Methods for etch of sin films |
US9064815B2 (en) | 2011-03-14 | 2015-06-23 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
US8771536B2 (en) | 2011-08-01 | 2014-07-08 | Applied Materials, Inc. | Dry-etch for silicon-and-carbon-containing films |
US8679982B2 (en) | 2011-08-26 | 2014-03-25 | Applied Materials, Inc. | Selective suppression of dry-etch rate of materials containing both silicon and oxygen |
US8679983B2 (en) | 2011-09-01 | 2014-03-25 | Applied Materials, Inc. | Selective suppression of dry-etch rate of materials containing both silicon and nitrogen |
US8927390B2 (en) | 2011-09-26 | 2015-01-06 | Applied Materials, Inc. | Intrench profile |
US8808563B2 (en) | 2011-10-07 | 2014-08-19 | Applied Materials, Inc. | Selective etch of silicon by way of metastable hydrogen termination |
WO2013070436A1 (en) | 2011-11-08 | 2013-05-16 | Applied Materials, Inc. | Methods of reducing substrate dislocation during gapfill processing |
US9267739B2 (en) | 2012-07-18 | 2016-02-23 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US9373517B2 (en) | 2012-08-02 | 2016-06-21 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US9034770B2 (en) | 2012-09-17 | 2015-05-19 | Applied Materials, Inc. | Differential silicon oxide etch |
US9023734B2 (en) | 2012-09-18 | 2015-05-05 | Applied Materials, Inc. | Radical-component oxide etch |
US9390937B2 (en) | 2012-09-20 | 2016-07-12 | Applied Materials, Inc. | Silicon-carbon-nitride selective etch |
US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US8765574B2 (en) | 2012-11-09 | 2014-07-01 | Applied Materials, Inc. | Dry etch process |
US8969212B2 (en) | 2012-11-20 | 2015-03-03 | Applied Materials, Inc. | Dry-etch selectivity |
US8980763B2 (en) | 2012-11-30 | 2015-03-17 | Applied Materials, Inc. | Dry-etch for selective tungsten removal |
US9064816B2 (en) | 2012-11-30 | 2015-06-23 | Applied Materials, Inc. | Dry-etch for selective oxidation removal |
US9111877B2 (en) | 2012-12-18 | 2015-08-18 | Applied Materials, Inc. | Non-local plasma oxide etch |
US8921234B2 (en) | 2012-12-21 | 2014-12-30 | Applied Materials, Inc. | Selective titanium nitride etching |
US9018108B2 (en) | 2013-01-25 | 2015-04-28 | Applied Materials, Inc. | Low shrinkage dielectric films |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US9362130B2 (en) | 2013-03-01 | 2016-06-07 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9040422B2 (en) | 2013-03-05 | 2015-05-26 | Applied Materials, Inc. | Selective titanium nitride removal |
US8801952B1 (en) | 2013-03-07 | 2014-08-12 | Applied Materials, Inc. | Conformal oxide dry etch |
US10170282B2 (en) | 2013-03-08 | 2019-01-01 | Applied Materials, Inc. | Insulated semiconductor faceplate designs |
US20140271097A1 (en) | 2013-03-15 | 2014-09-18 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US8895449B1 (en) | 2013-05-16 | 2014-11-25 | Applied Materials, Inc. | Delicate dry clean |
US9114438B2 (en) | 2013-05-21 | 2015-08-25 | Applied Materials, Inc. | Copper residue chamber clean |
US9493879B2 (en) | 2013-07-12 | 2016-11-15 | Applied Materials, Inc. | Selective sputtering for pattern transfer |
US9224657B2 (en) | 2013-08-06 | 2015-12-29 | Texas Instruments Incorporated | Hard mask for source/drain epitaxy control |
US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
US8956980B1 (en) | 2013-09-16 | 2015-02-17 | Applied Materials, Inc. | Selective etch of silicon nitride |
US8951429B1 (en) | 2013-10-29 | 2015-02-10 | Applied Materials, Inc. | Tungsten oxide processing |
US9576809B2 (en) | 2013-11-04 | 2017-02-21 | Applied Materials, Inc. | Etch suppression with germanium |
US9236265B2 (en) | 2013-11-04 | 2016-01-12 | Applied Materials, Inc. | Silicon germanium processing |
US9520303B2 (en) | 2013-11-12 | 2016-12-13 | Applied Materials, Inc. | Aluminum selective etch |
US9245762B2 (en) | 2013-12-02 | 2016-01-26 | Applied Materials, Inc. | Procedure for etch rate consistency |
US9117855B2 (en) | 2013-12-04 | 2015-08-25 | Applied Materials, Inc. | Polarity control for remote plasma |
US9287095B2 (en) | 2013-12-17 | 2016-03-15 | Applied Materials, Inc. | Semiconductor system assemblies and methods of operation |
US9263278B2 (en) | 2013-12-17 | 2016-02-16 | Applied Materials, Inc. | Dopant etch selectivity control |
US9190293B2 (en) | 2013-12-18 | 2015-11-17 | Applied Materials, Inc. | Even tungsten etch for high aspect ratio trenches |
US9287134B2 (en) | 2014-01-17 | 2016-03-15 | Applied Materials, Inc. | Titanium oxide etch |
US9396989B2 (en) | 2014-01-27 | 2016-07-19 | Applied Materials, Inc. | Air gaps between copper lines |
US9293568B2 (en) | 2014-01-27 | 2016-03-22 | Applied Materials, Inc. | Method of fin patterning |
US9385028B2 (en) | 2014-02-03 | 2016-07-05 | Applied Materials, Inc. | Air gap process |
US9499898B2 (en) | 2014-03-03 | 2016-11-22 | Applied Materials, Inc. | Layered thin film heater and method of fabrication |
US9299575B2 (en) | 2014-03-17 | 2016-03-29 | Applied Materials, Inc. | Gas-phase tungsten etch |
US9299537B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9299538B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9136273B1 (en) | 2014-03-21 | 2015-09-15 | Applied Materials, Inc. | Flash gate air gap |
US9903020B2 (en) | 2014-03-31 | 2018-02-27 | Applied Materials, Inc. | Generation of compact alumina passivation layers on aluminum plasma equipment components |
US9269590B2 (en) | 2014-04-07 | 2016-02-23 | Applied Materials, Inc. | Spacer formation |
US9309598B2 (en) | 2014-05-28 | 2016-04-12 | Applied Materials, Inc. | Oxide and metal removal |
US9847289B2 (en) | 2014-05-30 | 2017-12-19 | Applied Materials, Inc. | Protective via cap for improved interconnect performance |
US9378969B2 (en) | 2014-06-19 | 2016-06-28 | Applied Materials, Inc. | Low temperature gas-phase carbon removal |
US9406523B2 (en) | 2014-06-19 | 2016-08-02 | Applied Materials, Inc. | Highly selective doped oxide removal method |
US9425058B2 (en) | 2014-07-24 | 2016-08-23 | Applied Materials, Inc. | Simplified litho-etch-litho-etch process |
US9496167B2 (en) | 2014-07-31 | 2016-11-15 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
US9159606B1 (en) | 2014-07-31 | 2015-10-13 | Applied Materials, Inc. | Metal air gap |
US9378978B2 (en) | 2014-07-31 | 2016-06-28 | Applied Materials, Inc. | Integrated oxide recess and floating gate fin trimming |
US9165786B1 (en) | 2014-08-05 | 2015-10-20 | Applied Materials, Inc. | Integrated oxide and nitride recess for better channel contact in 3D architectures |
US9659753B2 (en) | 2014-08-07 | 2017-05-23 | Applied Materials, Inc. | Grooved insulator to reduce leakage current |
US9553102B2 (en) | 2014-08-19 | 2017-01-24 | Applied Materials, Inc. | Tungsten separation |
US9355856B2 (en) | 2014-09-12 | 2016-05-31 | Applied Materials, Inc. | V trench dry etch |
US9355862B2 (en) | 2014-09-24 | 2016-05-31 | Applied Materials, Inc. | Fluorine-based hardmask removal |
US9368364B2 (en) | 2014-09-24 | 2016-06-14 | Applied Materials, Inc. | Silicon etch process with tunable selectivity to SiO2 and other materials |
US9613822B2 (en) | 2014-09-25 | 2017-04-04 | Applied Materials, Inc. | Oxide etch selectivity enhancement |
US9355922B2 (en) | 2014-10-14 | 2016-05-31 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US9299583B1 (en) | 2014-12-05 | 2016-03-29 | Applied Materials, Inc. | Aluminum oxide selective etch |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US9502258B2 (en) | 2014-12-23 | 2016-11-22 | Applied Materials, Inc. | Anisotropic gap etch |
US9343272B1 (en) | 2015-01-08 | 2016-05-17 | Applied Materials, Inc. | Self-aligned process |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US9373522B1 (en) | 2015-01-22 | 2016-06-21 | Applied Mateials, Inc. | Titanium nitride removal |
US9449846B2 (en) | 2015-01-28 | 2016-09-20 | Applied Materials, Inc. | Vertical gate separation |
US9728437B2 (en) | 2015-02-03 | 2017-08-08 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US20160225652A1 (en) | 2015-02-03 | 2016-08-04 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
US9741593B2 (en) | 2015-08-06 | 2017-08-22 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US9691645B2 (en) | 2015-08-06 | 2017-06-27 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US9349605B1 (en) | 2015-08-07 | 2016-05-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US9721789B1 (en) | 2016-10-04 | 2017-08-01 | Applied Materials, Inc. | Saving ion-damaged spacers |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US9768034B1 (en) | 2016-11-11 | 2017-09-19 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
JP7176860B6 (en) | 2017-05-17 | 2022-12-16 | アプライド マテリアルズ インコーポレイテッド | Semiconductor processing chamber to improve precursor flow |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
KR102037589B1 (en) * | 2018-01-17 | 2019-11-26 | 포항공과대학교 산학협력단 | Semiconductor Structure for improvement of surface roughness and methods for production thereof |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
TWI766433B (en) | 2018-02-28 | 2022-06-01 | 美商應用材料股份有限公司 | Systems and methods to form airgaps |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7015375A (en) * | 1970-10-21 | 1972-04-25 | ||
US4057895A (en) * | 1976-09-20 | 1977-11-15 | General Electric Company | Method of forming sloped members of N-type polycrystalline silicon |
GB1588669A (en) * | 1978-05-30 | 1981-04-29 | Standard Telephones Cables Ltd | Silicon transducer |
NL8301262A (en) * | 1983-04-11 | 1984-11-01 | Philips Nv | METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE APPLYING PATTERNS IN A LOW SILICON NITRIDE USING AN ION IMPLANTATION |
US4952446A (en) * | 1986-02-10 | 1990-08-28 | Cornell Research Foundation, Inc. | Ultra-thin semiconductor membranes |
US4875967A (en) * | 1987-05-01 | 1989-10-24 | National Institute For Research In Inorganic Materials | Method for growing a single crystal of cubic boron nitride semiconductor and method for forming a p-n junction thereof, and light emitting element |
JPH02192494A (en) * | 1989-01-20 | 1990-07-30 | Sumitomo Electric Ind Ltd | composite material |
US5227318A (en) * | 1989-12-06 | 1993-07-13 | General Motors Corporation | Method of making a cubic boron nitride bipolar transistor |
US5217567A (en) * | 1992-02-27 | 1993-06-08 | International Business Machines Corporation | Selective etching process for boron nitride films |
-
1994
- 1994-03-09 JP JP6038861A patent/JP2664866B2/en not_active Expired - Lifetime
- 1994-03-09 KR KR1019940004533A patent/KR0142150B1/en not_active Expired - Fee Related
- 1994-03-10 EP EP19940103684 patent/EP0619600A3/en not_active Withdrawn
- 1994-04-28 TW TW083103832A patent/TW241374B/zh active
-
1995
- 1995-01-03 US US08/368,254 patent/US5536360A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2664866B2 (en) | 1997-10-22 |
JPH076996A (en) | 1995-01-10 |
US5536360A (en) | 1996-07-16 |
EP0619600A2 (en) | 1994-10-12 |
EP0619600A3 (en) | 1994-11-30 |
TW241374B (en) | 1995-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0142150B1 (en) | Method for Etching Boron Nitride | |
KR960011015B1 (en) | DEPOSITION OF SILICON DIOXIDE FILMS AT TEMPERATURE AS LOW AS 100í• BY LPCVD USING ORGANODISILANE SOURCES | |
US5242530A (en) | Pulsed gas plasma-enhanced chemical vapor deposition of silicon | |
US5324690A (en) | Semiconductor device having a ternary boron nitride film and a method for forming the same | |
US6372669B2 (en) | Method of depositing silicon oxides | |
KR100925310B1 (en) | Method of forming thin sgoi wafers with high relaxation and low stacking fault defect density | |
US20080124946A1 (en) | Organosilane compounds for modifying dielectrical properties of silicon oxide and silicon nitride films | |
Herak et al. | Low‐temperature deposition of silicon dioxide films from electron cyclotron resonant microwave plasmas | |
US5376233A (en) | Method for selectively etching oxides | |
US5763021A (en) | Method of forming a dielectric film | |
US5217567A (en) | Selective etching process for boron nitride films | |
Yoshimaru et al. | Structure of fluorine-doped silicon oxide films deposited by plasma-enhanced chemical vapor deposition | |
KR20040051537A (en) | Low dielectric constant material and method of processing by cvd | |
JP2607503B2 (en) | Double dielectric MOS gate insulating device and method of forming the same | |
KR102780614B1 (en) | Methods for depositing doped silicon nitride films | |
Chapple‐Sokol et al. | Energy Considerations in the Deposition of High‐Quality Plasma‐Enhanced CVD Silicon Dioxide | |
US3558348A (en) | Dielectric films for semiconductor devices | |
Jeong et al. | Annealing effects on structural and electrical properties of fluorinated amorphous carbon films deposited by plasma enhanced chemical vapor deposition | |
US6271150B1 (en) | Methods of raising reflow temperature of glass alloys by thermal treatment in steam, and microelectronic structures formed thereby | |
Oroshnik et al. | Pyrolytic Deposition of Silicon Dioxide in an Evacuated System | |
KR100275712B1 (en) | Method of fabrication oxide film of semiconductor device | |
EP0935284A1 (en) | CVD of silicon containing film using Si2H6 | |
Lakhani | Device-quality SiO2 films on InP and Si obtained by operating the pyrolytic CVD reactor in the retardation regime | |
KR102670993B1 (en) | 1-Methyl-1-iso-propoxy-silacycloalkane and high-density organosilica film prepared therefrom | |
Bagratishvili et al. | Boron diffusion from a reactively sputtered glass source in Si and SiO2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
R17-X000 | Change to representative recorded |
St.27 status event code: A-3-3-R10-R17-oth-X000 |
|
PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
R17-X000 | Change to representative recorded |
St.27 status event code: A-3-3-R10-R17-oth-X000 |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U11-oth-PR1002 Fee payment year number: 1 |
|
PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
FPAY | Annual fee payment |
Payment date: 20010209 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 4 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
St.27 status event code: A-4-4-U10-U13-oth-PC1903 Not in force date: 20020328 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE |
|
PC1903 | Unpaid annual fee |
St.27 status event code: N-4-6-H10-H13-oth-PC1903 Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20020328 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |