[go: up one dir, main page]

JPWO2020129885A1 - Molding materials for semiconductor encapsulation, manufacturing methods of molding materials for semiconductor encapsulation, and semiconductor devices using them - Google Patents

Molding materials for semiconductor encapsulation, manufacturing methods of molding materials for semiconductor encapsulation, and semiconductor devices using them Download PDF

Info

Publication number
JPWO2020129885A1
JPWO2020129885A1 JP2020561403A JP2020561403A JPWO2020129885A1 JP WO2020129885 A1 JPWO2020129885 A1 JP WO2020129885A1 JP 2020561403 A JP2020561403 A JP 2020561403A JP 2020561403 A JP2020561403 A JP 2020561403A JP WO2020129885 A1 JPWO2020129885 A1 JP WO2020129885A1
Authority
JP
Japan
Prior art keywords
rolling
cooling
crushing
sheet
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020561403A
Other languages
Japanese (ja)
Other versions
JP7270645B2 (en
Inventor
功雅 今野
前田 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JPWO2020129885A1 publication Critical patent/JPWO2020129885A1/en
Application granted granted Critical
Publication of JP7270645B2 publication Critical patent/JP7270645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/35Extrusion nozzles or dies with rollers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0468Crushing, i.e. disintegrating into small particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Food Science & Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

大きさ100μm超の凝集物及び/又はゲル状物質の含有率が50ppm以下である半導体封止用成形材料。 A molding material for semiconductor encapsulation in which the content of agglomerates and / or gel-like substances having a size of more than 100 μm is 50 ppm or less.

Description

本開示は、半導体封止用成形材料及びその製造方法、並びに半導体封止用成形材料を用いた半導体装置に関する。 The present disclosure relates to a molding material for semiconductor encapsulation, a method for producing the same, and a semiconductor device using the molding material for semiconductor encapsulation.

一般に、半導体装置は支持体に固定した半導体チップを、半導体封止用成形材料で樹脂封止している。ここで、半導体封止用成形材料は、電気特性、耐熱性、量産性等に優れるエポキシ樹脂等の熱硬化性樹脂とその硬化剤、触媒、離型剤、難燃剤、着色剤等の添加剤及び無機充填剤から構成されている。また、その製造方法としては、樹脂組成物を構成する成分を所定量配合して混合後、ロール、1軸押出機、1軸押出機とロールの組み合わせ又は2軸押出機により混練を行い、混練物をシート状に圧延、冷却後、衝撃式破砕機を用いて粉砕を行い、必要に応じて粉粒状、又はタブレット状に加工している。 Generally, in a semiconductor device, a semiconductor chip fixed to a support is resin-sealed with a molding material for semiconductor encapsulation. Here, the molding material for semiconductor encapsulation is a thermosetting resin such as an epoxy resin having excellent electrical properties, heat resistance, mass productivity, etc., and an additive such as a curing agent, a catalyst, a mold release agent, a flame retardant, and a colorant. And an inorganic filler. As a manufacturing method thereof, a predetermined amount of the components constituting the resin composition are mixed and mixed, and then kneaded by a roll, a single-screw extruder, a combination of a single-screw extruder and a roll, or a twin-screw extruder, and kneading. The material is rolled into a sheet, cooled, and then crushed using an impact type crusher, and processed into powder granules or tablets as needed.

ところで、半導体装置は、より薄いことが要求されてきている。薄い半導体装置を製造する方法として、半導体ウェハを研削又は薄くすることが行われているが、反り、間欠的な歩留まり、及び信頼性等が懸念されている。このため、半導体ウェハを損傷することなく、半導体パッケージを所望の極薄の厚さにする手法として、樹脂封止されたパッケージの表面を研削する方法が検討されている。例えば、特許文献1には、パッケージの厚さを減少させるために成形されたパッケージを研削するための方法が開示されている。また、特許文献2には、チップ上の樹脂厚が薄い狭ギャップ構造のパッケージにおいて、ワイヤ流れ又は充填不良といった不具合を生じることなく歩留まり良く成形することができる封止技術が開示されている。 By the way, semiconductor devices are required to be thinner. As a method for manufacturing a thin semiconductor device, a semiconductor wafer is ground or thinned, but there are concerns about warpage, intermittent yield, reliability, and the like. Therefore, a method of grinding the surface of a resin-sealed package has been studied as a method of making a semiconductor package into a desired ultrathin thickness without damaging the semiconductor wafer. For example, Patent Document 1 discloses a method for grinding a molded package in order to reduce the thickness of the package. Further, Patent Document 2 discloses a sealing technique capable of forming a package having a narrow gap structure having a thin resin thickness on a chip with good yield without causing problems such as wire flow or poor filling.

米国特許出願公開第2009/0230567号明細書U.S. Patent Application Publication No. 2009/0230567 特開2010−159401号公報Japanese Unexamined Patent Publication No. 2010-159401

しかしながら、チップ上の樹脂厚が薄くなってくると、成形材料中の無機充填剤の凝集物またはゲル状物質によって、表面の突起、外観異常、ワイヤ変形、チップの割れ等の不具合が発生するおそれがあった。 However, when the resin thickness on the chip becomes thin, defects such as surface protrusions, abnormal appearance, wire deformation, and chip cracking may occur due to aggregates or gel-like substances of the inorganic filler in the molding material. was there.

本開示は、上記の事情に鑑みてなされたものである。例えば半導体パッケージのチップ上樹脂厚さが100μm以下のように薄くなっても、半導体装置の外観および信頼性を優れたものとすることができる半導体封止用成形材料及びその製造方法、並びに当該半導体封止用成形材料を用いた半導体装置を提供することにある。 This disclosure has been made in view of the above circumstances. For example, a semiconductor encapsulating molding material and a manufacturing method thereof, which can improve the appearance and reliability of a semiconductor device even if the resin thickness on the chip of the semiconductor package is as thin as 100 μm or less, and the semiconductor. An object of the present invention is to provide a semiconductor device using a molding material for encapsulation.

上記目的を達成するため、本発明者らは鋭意検討した結果、大きさ100μm超の凝集物及び/又はゲル状物質の含有率が特定の値以下である半導体封止用成形材料が、上記特性を満足することを見出し、本開示を完成した。 As a result of diligent studies by the present inventors in order to achieve the above object, the semiconductor encapsulation molding material in which the content of agglomerates and / or gel-like substances having a size of more than 100 μm is equal to or less than a specific value has the above-mentioned characteristics. We found that we were satisfied with this, and completed this disclosure.

すなわち、本開示は、以下の[1]〜[5]を提供する。
[1]大きさ100μm超の凝集物及び/又はゲル状物質の含有率が50ppm以下である半導体封止用成形材料。
[2]エポキシ樹脂、硬化剤及び無機充填剤を含む原材料を混合する混合工程と、前記混合工程で得られた混合物を混練して混練物とする混練工程と、前記混練工程で得られた混練物を圧延ロールでシート状組成物に圧延する圧延工程と、前記圧延工程で圧延したシート状組成物を冷却コンベアにて搬送しながら、気体中で冷却する冷却工程と、前記冷却工程で冷却したシート状組成物を粉砕機にて粉砕する粉砕工程と、を有する半導体封止用成形材料の製造方法であって、さらに粉砕対象物を粒度100μm以下に粉砕・分級する粉砕・分級工程を有することを特徴とする上記[1]に記載の半導体封止用成形材料の製造方法。
[3]エポキシ樹脂、硬化剤及び無機充填剤を含む原材料を混合する混合工程と、前記混合工程で得られた混合物を混練して混練物とする混練工程と、前記混練工程で得られた混練物を圧延ロールでシート状組成物に圧延する第1の圧延工程と、前記第1の圧延工程で圧延したシート状組成物を冷却コンベアにて搬送しながら、気体中で冷却する第1の冷却工程と、前記第1の冷却工程で冷却したシート状組成物を粉砕機にて粉砕する第1の粉砕工程と、前記第1の粉砕工程で得られた粉砕物を粒度100μm以下に粉砕・分級する粉砕・分級工程と、前記粉砕・分級工程で得られた粉砕物を圧延ロールでシート状に圧延する第2の圧延工程と、前記第2の圧延工程で圧延したシート状組成物を冷却コンベアにて搬送しながら、気体中で冷却する第2の冷却工程と、前記第2の冷却工程で冷却したシート状組成物を粉砕機にて粉砕する第2の粉砕工程と、を有する上記[1]に記載の半導体封止用成形材料の製造方法。
[4]前記粉砕・分級工程において、粉砕・分級を10℃以下の低温雰囲気で行う上記[2]又は[3]に記載の半導体封止用成形材料の製造方法。
[5]半導体素子を、上記[1]に記載の半導体封止用成形材料で封止してなる半導体装置。
That is, the present disclosure provides the following [1] to [5].
[1] A molding material for semiconductor encapsulation in which the content of agglomerates and / or gel-like substances having a size of more than 100 μm is 50 ppm or less.
[2] A mixing step of mixing raw materials containing an epoxy resin, a curing agent and an inorganic filler, a kneading step of kneading the mixture obtained in the mixing step to obtain a kneaded product, and kneading obtained in the kneading step. A rolling step of rolling a product into a sheet-like composition with a rolling roll, a cooling step of cooling the sheet-like composition rolled in the rolling step in a gas while transporting it on a cooling conveyor, and a cooling step of cooling the product in the cooling step. A method for producing a molding material for semiconductor encapsulation, which comprises a crushing step of crushing a sheet-like composition with a crusher, and further having a crushing / classification step of crushing / classifying a crushed object to a particle size of 100 μm or less. The method for producing a molding material for encapsulating a semiconductor according to the above [1].
[3] A mixing step of mixing raw materials containing an epoxy resin, a curing agent and an inorganic filler, a kneading step of kneading the mixture obtained in the mixing step to obtain a kneaded product, and kneading obtained in the kneading step. A first rolling step of rolling a product into a sheet-like composition with a rolling roll, and a first cooling process of cooling the sheet-like composition rolled in the first rolling step in a gas while being conveyed by a cooling conveyor. The step, the first crushing step of crushing the sheet-like composition cooled in the first cooling step with a crusher, and the crushed product obtained in the first crushing step are crushed and classified into a particle size of 100 μm or less. The crushing / classification step, the second rolling step of rolling the crushed product obtained in the crushing / classification step into a sheet shape with a rolling roll, and the sheet-like composition rolled in the second rolling step are cooled conveyors. [1] ] A method for producing a molding material for encapsulating a semiconductor.
[4] The method for producing a molding material for semiconductor encapsulation according to the above [2] or [3], wherein the pulverization / classification is performed in a low temperature atmosphere of 10 ° C. or lower in the pulverization / classification step.
[5] A semiconductor device in which a semiconductor element is sealed with the molding material for semiconductor encapsulation according to the above [1].

本開示によれば、半導体パッケージのチップ上樹脂厚さが100μm以下のように薄くなっても、半導体装置の外観および信頼性を優れたものとすることができる半導体封止用成形材料及びその製造方法、並びに当該半導体封止用成形材料を用いた半導体装置を提供することができる。 According to the present disclosure, even if the resin thickness on the chip of the semiconductor package is as thin as 100 μm or less, the appearance and reliability of the semiconductor device can be improved, and the molding material for semiconductor encapsulation and its manufacture thereof. A method and a semiconductor device using the semiconductor encapsulation molding material can be provided.

実施例1の半導体封止用成形材料の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the molding material for semiconductor encapsulation of Example 1. FIG. 実施例2の半導体封止用成形材料の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the molding material for semiconductor encapsulation of Example 2.

以下、本開示について詳細に説明する。
<半導体封止用成形材料>
本開示の半導体封止用成形材料(以下、単に封止用成形材料ともいう)は、大きさ100μm超の凝集物及び/又はゲル状物質の含有率が50ppm以下である。封止用成形材料中に含まれる大きさ100μm超の凝集物及び/又はゲル状物質の含有率が50ppmを超えると、半導体パッケージのチップ上樹脂厚さが100μm以下となるように上記封止用成形材料により上記チップを封止する場合、樹脂表面に凝集物及びゲル状物質が突起として現れ、外観異常、ワイヤ変形、チップの割れ等の不具合を発生させるおそれがある。このような観点から、封止用成形材料中に含まれる大きさ100μm超の凝集物及び/又はゲル状物質の含有率は、30ppm以下であってもよく、10ppm以下であってもよく、0ppmであってもよい。
ここで、本明細書において、大きさ100μm超の凝集物及びゲル状物質としては、無機充填剤の凝集物及びゲル状物質、無機充填剤及びシランカップリング剤の凝集物及びゲル状物質、熱硬化性樹脂の反応硬化物等が挙げられる。
Hereinafter, the present disclosure will be described in detail.
<Molding material for semiconductor encapsulation>
The semiconductor encapsulation molding material of the present disclosure (hereinafter, also simply referred to as encapsulation molding material) has a content of agglomerates and / or gel-like substances having a size of more than 100 μm of 50 ppm or less. When the content of agglomerates and / or gel-like substances having a size of more than 100 μm contained in the sealing molding material exceeds 50 ppm, the resin thickness on the chip of the semiconductor package becomes 100 μm or less. When the chip is sealed with a molding material, agglomerates and gel-like substances may appear as protrusions on the resin surface, causing problems such as abnormal appearance, wire deformation, and chip cracking. From this point of view, the content of agglomerates and / or gel-like substances having a size of more than 100 μm contained in the sealing molding material may be 30 ppm or less, 10 ppm or less, or 0 ppm. It may be.
Here, in the present specification, the agglomerates and gel-like substances having a size of more than 100 μm include agglomerates and gel-like substances of inorganic fillers, agglomerates and gel-like substances of inorganic fillers and silane coupling agents, and heat. Examples thereof include a reaction-cured product of a curable resin.

なお、封止用成形材料中に含まれる大きさ100μm超の凝集物及び/又はゲル状物質の含有率は、例えば、試料150gを秤量し、アセトン200ccに分散させ、30分間撹拌した後、公称目開き106μmの篩を用いてろ過し、大きさ106μmより大きい凝集物及びゲル状物質の残さの重量を測定することにより求めることができる。 The content of agglomerates and / or gel-like substances having a size of more than 100 μm contained in the sealing molding material is, for example, weighed 150 g of a sample, dispersed in 200 cc of acetone, stirred for 30 minutes, and then nominally. It can be determined by filtering using a sieve having a mesh size of 106 μm and measuring the weight of the residue of agglomerates and gel-like substances larger than 106 μm in size.

本開示の半導体封止用成形材料は、エポキシ樹脂、硬化剤及び無機充填剤を含む。エポキシ樹脂、硬化剤及び無機充填剤は、通常、半導体封止用のエポキシ樹脂成形材料に用いるものであれば、特に限定されるものではない。 The molding materials for semiconductor encapsulation of the present disclosure include epoxy resins, curing agents and inorganic fillers. The epoxy resin, the curing agent, and the inorganic filler are not particularly limited as long as they are usually used as an epoxy resin molding material for semiconductor encapsulation.

本開示で用いるエポキシ樹脂としては、半導体封止用のエポキシ樹脂成形材料に一般に使用されているものであれば特に制限はないが、例えば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物と、を酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換又は非置換のビフェノール等のジグリシジルエーテルなどのグリシジルエーテル型エポキシ樹脂、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、フタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、ジシクロペンタジエンとフェノール類及び/又はナフトール類との共縮合樹脂のエポキシ化物、ナフタレン環を有するエポキシ樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂のエポキシ化物、トリメチロールプロパン型エポキシ樹脂、テルペン変性エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、及び脂環族エポキシ樹脂などが挙げられる。これらは単独で用いても2種以上を組み合わせて用いてもよい。 The epoxy resin used in the present disclosure is not particularly limited as long as it is generally used as an epoxy resin molding material for semiconductor encapsulation, and examples thereof include phenol novolac type epoxy resin and orthocresol novolac type epoxy resin. Phenols such as phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F and / or naphthols such as α-naphthol, β-naphthol, dihydroxynaphthalene and formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde. Epoxy of novolak resin obtained by condensing or co-condensing a compound having an aldehyde group such as, bisphenol A, bisphenol F, bisphenol S, alkyl-substituted or unsubstituted biphenol, etc. Glycidyl ether type epoxy resin such as ether, stillben type epoxy resin, hydroquinone type epoxy resin, glycidyl ester type epoxy resin obtained by reaction of polybasic acid such as phthalic acid and dimer acid with epichlorohydrin, polyamine such as diaminodiphenylmethane and isocyanuric acid. Glycidylamine type epoxy resin obtained by the reaction of epichlorohydrin with epichlorohydrin, epoxidized product of cocondensation resin of dicyclopentadiene and phenols and / or naphthols, epoxy resin having naphthalene ring, phenol aralkyl resin, aralkyl such as naphthol aralkyl resin Examples include epoxies of type phenol resins, trimethylolpropane type epoxy resins, terpen-modified epoxy resins, linear aliphatic epoxy resins obtained by oxidizing olefin bonds with a peracid such as peracetic acid, and alicyclic epoxy resins. Be done. These may be used alone or in combination of two or more.

本開示で用いる硬化剤は、半導体封止用のエポキシ樹脂成形材料に一般に使用されているものであれば特に制限はないが、例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られる樹脂、フェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるフェノール・アラルキル樹脂、ナフトール・アラルキル樹脂等のアラルキル型フェノール樹脂などが挙げられる。これらは単独で用いても2種以上を組み合わせて用いてもよい。 The curing agent used in the present disclosure is not particularly limited as long as it is generally used as an epoxy resin molding material for semiconductor encapsulation, but for example, phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenyl. A resin obtained by condensing or co-condensing phenols such as phenol and aminophenol and / or naphthols such as α-naphthol, β-naphthol and dihydroxynaphthalene with a compound having an aldehyde group such as formaldehyde under an acidic catalyst. Examples thereof include phenol / aralkyl resins synthesized from phenols and / or naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl, and aralkyl-type phenol resins such as naphthol / aralkyl resin. These may be used alone or in combination of two or more.

本開示で用いる無機充填剤は、吸湿性低減、線膨張係数低減、熱伝導性向上及び強度向上のために封止用成形材料に配合されるものであり、例えば、溶融シリカ、結晶シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミニウム、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、又はこれらを球形化したビーズ、ガラス繊維などが挙げられる。さらに、難燃性のある無機充填剤としては水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛等が挙げられる。これらの無機充填剤は単独で用いても2種以上を組み合わせて用いてもよい。中でも、線膨張係数の低減の観点からは溶融シリカであってもよく、高熱伝導性の観点からはアルミナであってもよい。また、無機充填剤の形状は成形時の流動性の向上及び金型耐久性の観点から球形であってもよい。 The inorganic filler used in the present disclosure is blended in a sealing molding material for reducing moisture absorption, reducing linear expansion coefficient, improving thermal conductivity and improving strength, and is, for example, fused silica, crystalline silica, or alumina. , Zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllium, zirconia, zircone, fosterite, steatite, spinel, mulite, titania, etc. Examples include spherical beads and glass fiber. Further, examples of the flame-retardant inorganic filler include aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate and the like. These inorganic fillers may be used alone or in combination of two or more. Among them, fused silica may be used from the viewpoint of reducing the coefficient of linear expansion, and alumina may be used from the viewpoint of high thermal conductivity. Further, the shape of the inorganic filler may be spherical from the viewpoint of improving fluidity during molding and mold durability.

無機充填剤の平均粒子径は、成形時の流動性及び成形性の観点から2〜25μmであってもよく、3〜15μmであってもよい。
なお、本明細書において、無機充填材の平均粒径は、例えば、レーザー回折式粒度分布測定装置により求めることができる。平均粒径は、同装置で測定された粒度分布において積算体積が50%になる粒径(d50)である。
The average particle size of the inorganic filler may be 2 to 25 μm or 3 to 15 μm from the viewpoint of fluidity and moldability during molding.
In the present specification, the average particle size of the inorganic filler can be obtained by, for example, a laser diffraction type particle size distribution measuring device. The average particle size is the particle size (d50) at which the integrated volume is 50% in the particle size distribution measured by the same device.

無機充填剤の配合量は、半導体封止用成形材料中、70〜97質量%の範囲であってもよく、80〜95質量%であってもよく、88〜92質量%であってもよい。70質量%以上であると耐リフロー性が向上し、97質量%以下であると流動性が向上する。 The blending amount of the inorganic filler may be in the range of 70 to 97% by mass, 80 to 95% by mass, or 88 to 92% by mass in the molding material for semiconductor encapsulation. .. When it is 70% by mass or more, the reflow resistance is improved, and when it is 97% by mass or less, the fluidity is improved.

また、本開示の半導体封止用成形材料には、必要に応じて硬化促進剤、シランカップリング剤、カーボンブラック、カルナバワックスあるいは低分子量ポリエチレン等の離型剤、封止用成形材料の柔軟性を保持させるためのシリコーンオイル、ゴム等を適宜添加してもよい。 Further, the molding material for semiconductor encapsulation of the present disclosure includes a curing accelerator, a silane coupling agent, a mold release agent such as carbon black, carnauba wax or low molecular weight polyethylene, and flexibility of the molding material for encapsulation, if necessary. Silicone oil, rubber, etc. may be appropriately added to retain the wax.

<半導体封止用成形材料の製造方法>
本開示の第一の実施形態の半導体封止用成形材料の製造方法(以下、単に第一の実施形態ともいう)は、エポキシ樹脂、硬化剤及び無機充填剤を含む原材料を混合する混合工程と、前記混合工程で得られた混合物を混練して混練物とする混練工程と、前記混練工程で得られた混練物を圧延ロールでシート状組成物に圧延する圧延工程と、前記圧延工程で圧延したシート状組成物を冷却コンベアにて搬送しながら、気体中で冷却する冷却工程と、前記冷却工程で冷却したシート状組成物を粉砕機にて粉砕する粉砕工程と、を有する半導体封止用成形材料の製造方法であって、さらに粉砕対象物を粒度100μm以下に粉砕・分級する粉砕・分級工程を有する。
<Manufacturing method of molding material for semiconductor encapsulation>
The method for producing a molding material for semiconductor encapsulation according to the first embodiment of the present disclosure (hereinafter, also simply referred to as the first embodiment) includes a mixing step of mixing raw materials including an epoxy resin, a curing agent and an inorganic filler. , A kneading step of kneading the mixture obtained in the mixing step to obtain a kneaded product, a rolling step of rolling the kneaded product obtained in the kneading step into a sheet-like composition with a rolling roll, and rolling in the rolling step. For semiconductor encapsulation, which comprises a cooling step of cooling the prepared sheet-like composition in a gas while transporting it on a cooling conveyor, and a crushing step of crushing the sheet-like composition cooled in the cooling step with a crusher. It is a method for producing a molding material, and further has a crushing / classification step of crushing / classifying an object to be crushed to a particle size of 100 μm or less.

第一の実施形態では、粉砕・分級工程を有すれば特に限定されず、粉砕・分級工程は、混合工程の前に行ってもよく、混合工程の後かつ混練工程の前に行ってもよく、混練工程の後かつ圧延工程の前に行ってもよく、圧延工程の後かつ冷却工程の前に行ってもよく、冷却工程の後かつ粉砕工程の前に行ってもよく、粉砕工程の後に行ってもよい。また、粉砕・分級工程は、粉砕工程と同一行程内で行ってもよいし、粉砕工程と別の工程として行ってもよい。得られる半導体封止用成形材料中に含まれる大きさ100μm超の凝集物及び/又はゲル状物質の含有率を50ppm以下とする観点から、粉砕・分級工程は、混練工程より後に行ってもよい。
以下、各工程を順番に説明する。
In the first embodiment, the crushing / classification step is not particularly limited as long as it has a crushing / classification step, and the crushing / classification step may be performed before the mixing step, or after the mixing step and before the kneading step. , After the kneading step and before the rolling step, after the rolling step and before the cooling step, after the cooling step and before the crushing step, after the crushing step. You may go. Further, the crushing / classifying step may be performed within the same process as the crushing step, or may be performed as a step different from the crushing step. From the viewpoint of reducing the content of agglomerates and / or gel-like substances having a size of more than 100 μm contained in the obtained molding material for semiconductor encapsulation to 50 ppm or less, the pulverization / classification step may be performed after the kneading step. ..
Hereinafter, each step will be described in order.

(混合工程)
混合工程は、エポキシ樹脂、硬化剤及び無機充填剤を含む原材料を混合する工程であり、従来公知の混合方法を用いることができる。混合方法としては、例えば、ブレンダー法、へンシェル法、パンミル法、パワーミル法、バーチカル法等が挙げられるが、特に限定されるものではない。
また、混合機としては、従来公知のものを特に制限なく用いることができ、例えば、V型混合機、ヘンシェルミキサー、ロッキングミキサー、ナウターミキサー、スーパーミキサーなどが挙げられる。
(Mixing process)
The mixing step is a step of mixing raw materials including an epoxy resin, a curing agent, and an inorganic filler, and a conventionally known mixing method can be used. Examples of the mixing method include, but are not limited to, a blender method, a Henshell method, a pan mill method, a power mill method, and a vertical method.
Further, as the mixer, conventionally known ones can be used without particular limitation, and examples thereof include a V-type mixer, a Henschel mixer, a locking mixer, a nouter mixer, and a super mixer.

(混練工程)
混練工程は、前記混合工程で得られた混合物を混練して混練物とする工程である。この混練工程は、従来使用されている混練機を用いて、上記混合物を混練するもので、混練機としては、従来公知の二軸混練機、ロール混練機等が挙げられ、特に限定されるものではない。
(Kneading process)
The kneading step is a step of kneading the mixture obtained in the mixing step to obtain a kneaded product. In this kneading step, the above-mentioned mixture is kneaded using a conventionally used kneader, and examples of the kneader include conventionally known biaxial kneaders, roll kneaders, and the like, and are particularly limited. is not it.

二軸混練機は、材料供給口と混練後の材料排出口が形成されたシリンダー内に同方向に回転するスクリュー軸を平行に備えて配置しており、材料供給口より供給されてくる材料をスクリュー刃で先へ送りつつ混練するものである。 The twin-screw kneader has screw shafts that rotate in the same direction arranged in parallel in a cylinder in which a material supply port and a material discharge port after kneading are formed, and the material supplied from the material supply port is provided. It is kneaded while being fed forward with a screw blade.

また、ロール混練装置は、減速機等を内蔵した駆動手段を有し、一定の間隔をもって平行に配置された第一のロール及び第二のロールからなる一対のロールと、第一のロールの両端部に連結された、一対のロール間の間隔を調整する間隔調整機構部とを具備しており、一対のロールの間に混練材料を供給し、次いで駆動手段により一対のロールを互いに混練材料を間に巻き込む方向に駆動することで混合物を混練するのである。 Further, the roll kneading device has a driving means having a built-in speed reducer or the like, and has a pair of rolls composed of a first roll and a second roll arranged in parallel at regular intervals, and both ends of the first roll. It is provided with an interval adjusting mechanism unit connected to the unit to adjust the interval between the pair of rolls, and a kneading material is supplied between the pair of rolls, and then the pair of rolls are kneaded with each other by a driving means. The mixture is kneaded by driving in the direction of getting caught in between.

混練温度は、70〜110℃であってもよく、80〜105℃であってもよい。 The kneading temperature may be 70 to 110 ° C. or 80 to 105 ° C.

(圧延工程)
圧延工程は、前記混練工程で得られた混練物を圧延ロールでシート状組成物に圧延する工程である。ここで、シート状組成物の厚みは1mm以上5mm以下であってもよく、このシート状組成物の冷却効率を上げるためには1mm以上3mm以下であってもよい。
圧延ロール温度は、通常10〜60℃であり、10〜50℃であってもよい。
(Rolling process)
The rolling step is a step of rolling the kneaded product obtained in the kneading step into a sheet-like composition with a rolling roll. Here, the thickness of the sheet-like composition may be 1 mm or more and 5 mm or less, and may be 1 mm or more and 3 mm or less in order to increase the cooling efficiency of the sheet-like composition.
The rolling roll temperature is usually 10 to 60 ° C, and may be 10 to 50 ° C.

(冷却工程)
冷却工程は、前記圧延工程で得られたシート状組成物を冷却コンベアにて搬送しながら、気体中で冷却する工程である。この冷却工程では、圧延工程で得られたシート状組成物を冷却コンベアにて搬送しながら、低温の気体雰囲気下を通過させながら冷却する。
(Cooling process)
The cooling step is a step of cooling the sheet-like composition obtained in the rolling step in a gas while transporting it on a cooling conveyor. In this cooling step, the sheet-like composition obtained in the rolling step is conveyed by a cooling conveyor and cooled while passing through a low-temperature gas atmosphere.

ここで、シート状組成物を搬送する冷却コンベアの材質、形状は特に限定しないが、低温の気体の循環を妨げないメッシュ状の冷却コンベアであってもよい。また、冷却の効率性及び作業性の観点から、冷却コンベアは筐体等で覆われていてもよい。 Here, the material and shape of the cooling conveyor that conveys the sheet-like composition is not particularly limited, but a mesh-shaped cooling conveyor that does not interfere with the circulation of low-temperature gas may be used. Further, from the viewpoint of cooling efficiency and workability, the cooling conveyor may be covered with a housing or the like.

低温の気体としては、空気、窒素ガス、炭酸ガスなどが挙げられるが、作業性の観点から空気であってもよい。なお窒素ガスは液体窒素から得ることができる。また炭酸ガスはドライアイスなどから得ることができる。また気体中でシート状組成物を冷却する場合は、シート状組成物に低温の気体を吹き付けて冷却してもよい。なおシート状組成物は、冷却コンベアにて搬送されながら、5〜30℃まで冷却してもよく、10〜15℃まで冷却してもよい。 Examples of the low-temperature gas include air, nitrogen gas, carbon dioxide gas, and the like, but air may be used from the viewpoint of workability. Nitrogen gas can be obtained from liquid nitrogen. In addition, carbon dioxide gas can be obtained from dry ice or the like. When the sheet-like composition is cooled in a gas, the sheet-like composition may be cooled by spraying a low-temperature gas. The sheet-like composition may be cooled to 5 to 30 ° C. or 10 to 15 ° C. while being conveyed by the cooling conveyor.

このとき気体の温度は、0〜15℃であってもよく、0〜10℃であってもよい。また、0〜15℃の気体を、冷風としてシート状組成物に直接吹き付けるようにしてもよい。気体の温度が0℃以上であると冷却効率がよく、冷却した気体を生成する冷却装置等のエネルギーコストが抑えられ経済性に優れる。また、気体の温度が15℃以下であるとシート状組成物の冷却効果が十分に得られる。なお、冷風を吹付ける際の風速は1〜50m/秒であってもよい。このとき用いる気体は空気を用いてもよい。 At this time, the temperature of the gas may be 0 to 15 ° C. or 0 to 10 ° C. Further, a gas having a temperature of 0 to 15 ° C. may be blown directly onto the sheet-like composition as cold air. When the temperature of the gas is 0 ° C. or higher, the cooling efficiency is good, the energy cost of the cooling device for generating the cooled gas is suppressed, and the economy is excellent. Further, when the temperature of the gas is 15 ° C. or lower, the cooling effect of the sheet-like composition can be sufficiently obtained. The wind speed when blowing cold air may be 1 to 50 m / sec. Air may be used as the gas used at this time.

(粉砕工程)
粉砕工程は、前記冷却工程で冷却されたシート状組成物を粉砕機にて粉砕する工程である。本工程において、シート状組成物は、従来公知の一般的な半導体封止用成形材料の製造方法に使用される粉砕機にて粉砕され粉砕物となる。粉砕機は、例えば粒径5mm以下の大きさに粉砕可能なものであれば特に限定されるものではなく、例えば、カッティングミル、ボールミル、サイクロンミル、ハンマーミル、振動ミル、カッターミル、グラインダーミル、スピードミル等が挙げられる。中でも、粉砕機はスピードミルであってもよい。
粉砕機による粉砕は、例えば、シート状組成物を粗粉砕機などにより比較的粗く粉砕してから、微粉砕機にてさらに細かく粉砕して粉砕物とする2段階以上で行なってもよい。
(Crushing process)
The pulverization step is a step of pulverizing the sheet-like composition cooled in the cooling step with a pulverizer. In this step, the sheet-like composition is pulverized by a pulverizer used in a conventionally known general method for producing a molding material for semiconductor encapsulation to obtain a pulverized product. The crusher is not particularly limited as long as it can crush to a size of 5 mm or less, for example, a cutting mill, a ball mill, a cyclone mill, a hammer mill, a vibration mill, a cutter mill, a grinder mill, and the like. Examples include speed mills. Above all, the crusher may be a speed mill.
The pulverization by a pulverizer may be performed in two or more steps, for example, the sheet-like composition is pulverized relatively coarsely by a coarse pulverizer or the like, and then further finely pulverized by a fine pulverizer to obtain a pulverized product.

粉砕工程における粉砕は、低温度低露点の空気中で行ってもよい。また低温度低露点の空気の温度は10℃以下であってもよい。 The pulverization in the pulverization step may be performed in air having a low temperature and a low dew point. Further, the temperature of the air having a low temperature and a low dew point may be 10 ° C. or lower.

なお、上記粉砕工程で得られた粉砕物は、充填タンクに一時保管してもよい。 The crushed product obtained in the above crushing step may be temporarily stored in a filling tank.

(粉砕・分級工程)
粉砕・分級工程は、粉砕対象物を粒度100μm以下に粉砕・分級する工程である。
本工程において、粉砕対象物は、10〜40μmの粒度範囲となるように粉砕される。粉砕対象物を粒度100μm以下に粉砕することにより、製造工程中で発生した無機充填剤等の凝集物またはゲル状物質がより細かく解砕される。
ここで、本明細書において、粒度とは、例えば、レーザー回折式粒度分布測定装置により測定された粒度分布において積算体積が50%になる粒径(d50)をいう。
(Crushing / classification process)
The crushing / classifying step is a step of crushing / classifying the object to be crushed to a particle size of 100 μm or less.
In this step, the object to be pulverized is pulverized so as to have a particle size range of 10 to 40 μm. By crushing the object to be crushed to a particle size of 100 μm or less, agglomerates such as inorganic fillers or gel-like substances generated in the manufacturing process are crushed more finely.
Here, in the present specification, the particle size means, for example, the particle size (d50) at which the integrated volume becomes 50% in the particle size distribution measured by the laser diffraction type particle size distribution measuring device.

また、本明細書において、粉砕対象物とは、粉砕・分級工程を混合工程の前に行う場合には原材料のことであり、粉砕・分級工程を混合工程の後かつ混練工程の前に行う場合には混合物のことであり、粉砕・分級工程を混練工程の後かつ圧延工程の前に行う場合には混練物のことであり、粉砕・分級工程を圧延工程の後かつ冷却工程の前に行う場合にはシート状組成物のことであり、粉砕・分級工程を冷却工程の後かつ粉砕工程の前に行う場合にはシート状組成物のことであり、粉砕・分級工程を粉砕工程の後に行う場合には粉砕物のことである。 Further, in the present specification, the crushed object is a raw material when the crushing / classifying step is performed before the mixing step, and when the crushing / classifying step is performed after the mixing step and before the kneading step. Is a mixture, and when the crushing / classifying step is performed after the kneading step and before the rolling step, it is a kneaded product, and the crushing / classifying step is performed after the rolling step and before the cooling step. In this case, it is a sheet-like composition, and when the crushing / classification step is performed after the cooling step and before the crushing step, it is a sheet-like composition, and the crushing / classification step is performed after the crushing step. In some cases, it is a crushed product.

粉砕機としては、前記(粉砕工程)の項で例示した装置を用いることができる。 As the crusher, the apparatus exemplified in the above section (crushing step) can be used.

本工程の粉砕は10℃以下の低温または冷凍雰囲気で行ってもよい。温度範囲は−30〜10℃であってもよく、−20〜5℃であってもよく、−10〜0℃であってもよい。このような低温・冷凍雰囲気で粉砕することで、封止用成形材料が低温脆化することにより、製造工程中で発生した微細な無機充填剤等の凝集物またはゲル状物質が容易に解砕される。さらに、ゴム状添加物の微細粉砕にも有効である。
寒冷源としては、例えば液化窒素式冷凍機が用いられる。また、寒冷源は回転式のロータを用いた乾式除湿装置(低温度低露点空気発生装置)などを用いてもよい。
The pulverization in this step may be performed at a low temperature of 10 ° C. or lower or in a frozen atmosphere. The temperature range may be −30 to 10 ° C., 20 to 5 ° C., or −10 to 0 ° C. By crushing in such a low temperature / freezing atmosphere, the sealing molding material becomes embrittled at low temperature, so that agglomerates such as fine inorganic fillers or gel-like substances generated in the manufacturing process are easily crushed. Will be done. Furthermore, it is also effective for finely pulverizing rubber-like additives.
As the cold source, for example, a liquefied nitrogen refrigerator is used. Further, as the cold source, a dry dehumidifier using a rotary rotor (low temperature low dew point air generator) or the like may be used.

上記粉砕によって得られた粉砕物を篩い分級及びエアー分級によって粒度100μm以下の粉砕物に分級する。
篩い分級に用いられる篩目の開きは、60〜100μmであってもよく、60〜80μmであってもよい。
The pulverized product obtained by the above pulverization is classified into a pulverized product having a particle size of 100 μm or less by sieve classification and air classification.
The mesh size used for sieving classification may be 60 to 100 μm or 60 to 80 μm.

また、本工程は、粉砕対象物の粉砕と、粉砕した粉砕物の分級とを同時に行ってもよい。粉砕及び分級を同時に行える装置としては、粉砕対象物を粉砕する粉砕部と、粉砕物を分級する分級部とを備えた分級機内蔵型粉砕機が挙げられる。分級機内蔵型粉砕機は特に限定されないが、例えば、冷却気体と共に粉砕対象物が装置内に投入され、回転軸に支持され外側面に複数の凹凸より成る粉砕刃を有するリング状の粉砕ロータと、固定配置されるライナとの間を粉砕対象物が通過する際、これら両部材の間で粉砕対象物の衝突が繰り返されて粉砕されるように構成されている冷凍粉砕装置を用いてもよい。このような冷凍粉砕装置は、例えば特公昭57−60060号公報、特開2017−912号公報等に記載されている。 Further, in this step, the crushing of the crushed object and the classification of the crushed crushed product may be performed at the same time. Examples of the device capable of crushing and classifying at the same time include a crusher with a built-in classifier having a crushing unit for crushing the crushed object and a classifying unit for classifying the crushed material. The crusher with a built-in classifier is not particularly limited. When the crushing object passes between the liner and the fixedly arranged liner, a refrigerating crushing device configured to repeatedly collide with the crushing object between both members may be used. .. Such a freezing and crushing apparatus is described in, for example, Japanese Patent Application Laid-Open No. 57-60060, Japanese Patent Application Laid-Open No. 2017-912, and the like.

分級機内蔵型粉砕機の回転数は、粉砕対象物を効率的に粉砕する観点から、1000〜8000rpmであってもよく、2000〜6000rpmであってもよく、2000〜5000rpmであってもよい。 From the viewpoint of efficiently crushing the object to be crushed, the rotation speed of the crusher with a built-in classifier may be 1000 to 8000 rpm, 2000 to 6000 rpm, or 2000 to 5000 rpm.

前記工程を経て得られた半導体封止用成形材料は、大きさ100μm超の凝集物及び/又はゲル状物質の含有率が50ppm以下であり、30ppm以下であってもよく、10ppm以下であってもよく、0ppmであってもよい。 The molding material for semiconductor encapsulation obtained through the above steps has a content of agglomerates and / or gel-like substances having a size of more than 100 μm of 50 ppm or less, may be 30 ppm or less, and may be 10 ppm or less. It may be 0 ppm.

前記工程を経て得られた半導体封止用成形材料を用いることにより、チップ上樹脂厚さが100μm以下になっても出っ張り・外観不良、スタック、チップの割れが少なく、またワイヤ変形が小さく信頼性に優れた半導体装置が得られる。 By using the semiconductor encapsulation molding material obtained through the above steps, even if the resin thickness on the chip is 100 μm or less, there are few protrusions / appearance defects, stacks, and chip cracks, and wire deformation is small and reliability is small. An excellent semiconductor device can be obtained.

本開示の第二の実施形態の半導体封止用成形材料の製造方法(以下、単に第二の実施形態ともいう)は、エポキシ樹脂、硬化剤及び無機充填剤を含む原材料を混合する混合工程と、前記混合工程で得られた混合物を混練して混練物とする混練工程と、前記混練工程で得られた混練物を圧延ロールでシート状組成物に圧延する第1の圧延工程と、前記第1の圧延工程で圧延したシート状組成物を冷却コンベアにて搬送しながら、気体中で冷却する第1の冷却工程と、前記第1の冷却工程で冷却したシート状組成物を粉砕機にて粉砕する第1の粉砕工程と、前記第1の粉砕工程で得られた粉砕物を粒度100μm以下に粉砕・分級する粉砕・分級工程と、前記粉砕・分級工程で得られた粉砕物を圧延ロールでシート状に圧延する第2の圧延工程と、前記第2の圧延工程で圧延したシート状組成物を冷却コンベアにて搬送しながら、気体中で冷却する第2の冷却工程と、前記第2の冷却工程で冷却したシート状組成物を粉砕機にて粉砕する第2の粉砕工程と、を有する。 The method for producing a molding material for semiconductor encapsulation according to the second embodiment of the present disclosure (hereinafter, also simply referred to as the second embodiment) includes a mixing step of mixing raw materials including an epoxy resin, a curing agent and an inorganic filler. A kneading step of kneading the mixture obtained in the mixing step to obtain a kneaded product, a first rolling step of rolling the kneaded product obtained in the kneading step into a sheet-like composition with a rolling roll, and the first rolling step. A first cooling step of cooling in a gas while transporting the sheet-like composition rolled in the rolling step 1 on a cooling conveyor and a sheet-like composition cooled in the first cooling step are carried out by a crusher. A first crushing step of crushing, a crushing / classification step of crushing / classifying the crushed product obtained in the first crushing step to a particle size of 100 μm or less, and a rolling roll of the crushed product obtained in the crushing / classification step. A second rolling step of rolling into a sheet shape, a second cooling step of cooling the sheet-like composition rolled in the second rolling step in a gas while being conveyed by a cooling conveyor, and the second cooling step. It has a second pulverization step of pulverizing the sheet-like composition cooled in the cooling step of the above with a pulverizer.

第二の実施形態では、混合工程、混練工程、第1の圧延工程、第1の冷却工程、第1の粉砕工程の後に、粉砕・分級工程を行い、さらに、第2の圧延工程、第2の冷却工程、第2の粉砕工程を行う。これにより、半導体封止用成型材料の大きさを所望のサイズに加工することができる。
以下、各工程を順番に説明する。
In the second embodiment, after the mixing step, the kneading step, the first rolling step, the first cooling step, and the first crushing step, the crushing / classification step is performed, and further, the second rolling step and the second. The cooling step and the second crushing step of the above are performed. Thereby, the size of the semiconductor encapsulation molding material can be processed to a desired size.
Hereinafter, each step will be described in order.

第二の実施形態における混合工程、混練工程、第1の圧延工程、第1の冷却工程、及び第1の粉砕工程は、それぞれ第一の実施形態の混合工程、混練工程、圧延工程、冷却工程、粉砕工程と同じであるので詳細な説明は省略する。 The mixing step, kneading step, first rolling step, first cooling step, and first crushing step in the second embodiment are the mixing step, kneading step, rolling step, and cooling step of the first embodiment, respectively. Since it is the same as the crushing process, detailed description thereof will be omitted.

(粉砕・分級工程)
第二の実施形態における粉砕・分級工程は、第1の粉砕工程の後に行う。これにより、半導体封止用成型材料の大きさを所望のサイズに加工することができる。
粉砕・分級工程では、第1の粉砕工程で得られた粉砕物を粒度100μm以下に粉砕し、次いで粒度100μm以下の粉砕物に分級する。粉砕方法及び分級方法は、第一の実施形態の粉砕・分級工程と同じであるので詳細な説明は省略する。また、粉砕装置及び分級装置は第一の実施形態の(粉砕・分級工程)の項で例示した装置を用いることができる。
(Crushing / classification process)
The crushing / classifying step in the second embodiment is performed after the first crushing step. Thereby, the size of the semiconductor encapsulation molding material can be processed to a desired size.
In the pulverization / classification step, the pulverized product obtained in the first pulverization step is pulverized to a particle size of 100 μm or less, and then classified into a pulverized product having a particle size of 100 μm or less. Since the pulverization method and the classification method are the same as the pulverization / classification step of the first embodiment, detailed description thereof will be omitted. Further, as the crushing device and the classifying device, the devices exemplified in the section (crushing / classifying step) of the first embodiment can be used.

(第2の圧延工程)
第2の圧延工程は、前記粉砕・分級工程で得られた粉砕物を、第1の圧延工程と同様にして、圧延ロールを用いてシート状に圧延する工程である。ここで、シート状組成物の厚みは第1の圧延工程と同様に、1mm以上5mm以下であってもよく、冷却効率を上げる観点から1mm以上3mm以下であってもよい。
また、圧延ロール温度は、通常10〜60℃であり、10〜50℃であってもよい。
(Second rolling process)
The second rolling step is a step of rolling the crushed product obtained in the crushing / classification step into a sheet using a rolling roll in the same manner as in the first rolling step. Here, the thickness of the sheet-like composition may be 1 mm or more and 5 mm or less, and may be 1 mm or more and 3 mm or less from the viewpoint of improving the cooling efficiency, as in the first rolling step.
The rolling roll temperature is usually 10 to 60 ° C, and may be 10 to 50 ° C.

(第2の冷却工程)
第2の冷却工程は、前記第2の圧延工程で得られたシート状組成物を、第1の冷却工程と同様にして、冷却コンベアにて搬送しながら、気体中で冷却する工程である。
(Second cooling step)
The second cooling step is a step of cooling the sheet-like composition obtained in the second rolling step in a gas while being conveyed by a cooling conveyor in the same manner as in the first cooling step.

(第2の粉砕工程)
第2の粉砕工程は、第2の冷却工程で冷却されたシート状組成物を、第1の粉砕工程と同様にして、粉砕機にて粉砕する工程である。粉砕装置は、第一の実施形態の(粉砕工程)の項で例示した装置を用いることができる。
(Second crushing step)
The second pulverization step is a step of pulverizing the sheet-like composition cooled in the second cooling step with a pulverizer in the same manner as in the first pulverization step. As the crushing device, the device exemplified in the section (grinding step) of the first embodiment can be used.

さらに、第2の粉砕工程で得られた粉砕物は、篩い分級及びエアー分級を行ってもよい。 Further, the pulverized product obtained in the second pulverization step may be subjected to sieve classification and air classification.

前記工程を経て得られた半導体封止用成形材料は、大きさ100μm超の凝集物及び/又はゲル状物質の含有率が50ppm以下であり、30ppm以下であってもよく、10ppm以下であってもよく、0ppmであってもよい。 The molding material for semiconductor encapsulation obtained through the above steps has a content of agglomerates and / or gel-like substances having a size of more than 100 μm of 50 ppm or less, may be 30 ppm or less, and may be 10 ppm or less. It may be 0 ppm.

前記工程を経て得られた半導体封止用成形材料は、例えば、低温雰囲気中の保管庫に保管してもよい。なお、低温雰囲気中の保管庫の温度は、−5〜5℃であってもよく、−5〜3℃であってもよい。 The semiconductor encapsulation molding material obtained through the above steps may be stored, for example, in a storage in a low temperature atmosphere. The temperature of the storage in the low temperature atmosphere may be −5 to 5 ° C. or −5 to 3 ° C.

また、前記工程を経て得られた粉粒状の半導体封止用成形材料は、公知のタブレット成形機を用いてトランスファ成形用に、適切な寸法及び質量のタブレットに加工して、タブレット状の半導体封止用成形材料としてもよい。 Further, the powder-granular semiconductor encapsulation molding material obtained through the above steps is processed into a tablet having an appropriate size and mass for transfer molding using a known tablet molding machine, and a tablet-shaped semiconductor seal is used. It may be used as a molding material for stopping.

<半導体装置>
本開示の半導体装置は、半導体素子を、前述の半導体封止用成形材料で封止してなる。具体的には、リードフレーム、テープキャリア、配線板、シリコンウエハ等の支持部材に、半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子等の素子を搭載し、必要な部分を本開示の半導体封止用成形材料で封止した半導体装置が挙げられる。
<Semiconductor device>
The semiconductor device of the present disclosure comprises a semiconductor element sealed with the above-mentioned molding material for semiconductor encapsulation. Specifically, active elements such as semiconductor chips, transistors, diodes, and thyristers, and passive elements such as capacitors, resistors, and coils are mounted on support members such as lead frames, tape carriers, wiring boards, and silicon wafers. However, a semiconductor device in which a necessary portion is sealed with the semiconductor encapsulation molding material of the present disclosure can be mentioned.

本開示の半導体封止用成形材料を用いて半導体素子を封止する方法としては、特に限定されず、トランスファ成形法、インジェクション成形法、圧縮成形法等が挙げられる。 The method for sealing a semiconductor element using the semiconductor encapsulation molding material of the present disclosure is not particularly limited, and examples thereof include a transfer molding method, an injection molding method, and a compression molding method.

次に実施例により、本開示を具体的に説明するが、本開示は、これらの例によってなんら限定されるものではない。 Next, the present disclosure will be specifically described with reference to Examples, but the present disclosure is not limited to these examples.

(実施例1)
封止用成形材料の原料として、エポキシ樹脂 YL−6121H(商品名、三菱化学株式会社製)を5.64質量部、硬化剤として、フェノール樹脂 MEH−7500(商品名、明和化成株式会社製)3.36質量部、無機充填剤として、球状シリカ混合物 FB−105FC(商品名、電気化学工業株式会社製、平均粒径:12μm)89質量部、カルナバワックス 0.3質量部、硬化促進剤として、2MZ−P(商品名、四国化成株式会社製)0.1質量部、シランカップリング剤として、γ−グリシドキシプロピルトリエトキシシラン 0.4質量部、カーボンブラック 0.2質量部、1mm以上2mm以下の球状シリカとカップリング剤の凝集物0.05質量部(封止用成形材料中の含有率505ppm)を準備し、図1に示す各工程により処理し封止用成形材料を得た。
(Example 1)
5.64 parts by mass of epoxy resin YL-6121H (trade name, manufactured by Mitsubishi Chemical Co., Ltd.) as a raw material for sealing molding material, and phenol resin MEH-7500 (trade name, manufactured by Meiwa Kasei Co., Ltd.) as a curing agent. 3.36 parts by mass, as an inorganic filler, spherical silica mixture FB-105FC (trade name, manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size: 12 μm) 89 parts by mass, carnauba wax 0.3 parts by mass, as a curing accelerator , 2MZ-P (trade name, manufactured by Shikoku Kasei Co., Ltd.) 0.1 parts by mass, as a silane coupling agent, γ-glycidoxypropyltriethoxysilane 0.4 parts by mass, carbon black 0.2 parts by mass, 1 mm Prepare 0.05 parts by mass of agglomerates of spherical silica having a size of 2 mm or less and a coupling agent (content in the sealing molding material: 505 ppm) and treat them by each step shown in FIG. 1 to obtain a sealing molding material. rice field.

上記原料をミキサー(日本コークス工業株式会社製、商品名:FMミキサ)に投入し、3分間混合した(混合工程)。 The above raw materials were put into a mixer (manufactured by Nippon Coke Industries Co., Ltd., trade name: FM mixer) and mixed for 3 minutes (mixing step).

混合工程で得られた混合物を2軸混練機(株式会社栗本鐵工所製、商品名:KRC−T−2)に投入し、混練温度:100℃、混練時間:5分間の条件で、混練した(混練工程)。 The mixture obtained in the mixing step is put into a twin-screw kneader (manufactured by Kurimoto, Ltd., trade name: KRC-T-2) and kneaded under the conditions of kneading temperature: 100 ° C. and kneading time: 5 minutes. (Kneading process).

混練工程で得られた混練物を表面温度15℃のプレスロールを用いて1mm厚さに圧延し、シート状組成物を得た(圧延工程)。 The kneaded product obtained in the kneading step was rolled to a thickness of 1 mm using a press roll having a surface temperature of 15 ° C. to obtain a sheet-like composition (rolling step).

圧延工程で得られたシート状組成物をスチールベルトコンベア上で搬送し、15℃以下の冷風を当てて冷却した(冷却工程)。 The sheet-like composition obtained in the rolling step was conveyed on a steel belt conveyor and cooled by applying cold air of 15 ° C. or lower (cooling step).

冷却工程で冷却したシート状組成物をスピードミル(有限会社五橋製作所製)に投入し、温度8℃で2mmメッシュパスになるまで粉砕した(粉砕工程)。 The sheet-like composition cooled in the cooling step was put into a speed mill (manufactured by Gohashi Seisakusho Co., Ltd.) and crushed at a temperature of 8 ° C. until a 2 mm mesh pass was obtained (crushing step).

粉砕工程で得られた粉砕物を分級機内蔵型粉砕機(ホソカワミクロン株式会社製、商品名:リンレックスミルLX)に投入し、温度8℃で、粉砕ディスク3000rpm、分級ロータ2300rpm、供給量100kg/時間の条件で粉砕し、粒度100μm以下の粉砕物を分級し、当該粉砕物のみ次工程へ搬送した(粉砕・分級工程)。 The crushed product obtained in the crushing process is put into a crusher with a built-in classifier (manufactured by Hosokawa Micron Co., Ltd., trade name: Linlex Mill LX), and at a temperature of 8 ° C., the crushing disk is 3000 rpm, the classifying rotor is 2300 rpm, and the supply amount is 100 kg /. It was crushed under the condition of time, pulverized products having a particle size of 100 μm or less were classified, and only the pulverized products were transported to the next step (crushing / classification step).

粉砕・分級工程で得られた粒度100μm以下の粉砕物を、強圧打錠機(株式会社菊水製作所製、商品名:BARPRESS)にて、直径14mm、高さ20mmの円柱状タブレットに加工してトランスファ成型用タブレット(封止用成形材料)を得た(タブレット成形工程)。 A crushed product with a particle size of 100 μm or less obtained in the crushing / classification process is processed into a columnar tablet with a diameter of 14 mm and a height of 20 mm using a high-pressure tableting machine (manufactured by Kikusui Seisakusho Co., Ltd., trade name: BARPRESS) and transferred. A tablet for molding (molding material for sealing) was obtained (tablet molding process).

(実施例2)
封止用成形材料の原料として、エポキシ樹脂 YL−6121H(商品名、三菱化学株式会社製)を5.64質量部、硬化剤として、フェノール樹脂 MEH−7500(商品名、明和化成株式会社製)3.36質量部、無機充填剤として、球状シリカ混合物 FB−105FC(商品名、電気化学工業株式会社製、平均粒径:12μm)89質量部、カルナバワックス 0.3質量部、硬化促進剤として、2MZ−P(商品名、四国化成株式会社製)0.1質量部、シランカップリング剤として、γ−グリシドキシプロピルトリエトキシシラン 0.4質量部、カーボンブラック 0.2質量部、1mm以上2mm以下の球状シリカとカップリング剤の凝集物0.05質量部(封止用成形材料中の含有率505ppm)を準備し、図2に示す各工程により処理し封止用成形材料を得た。
(Example 2)
5.64 parts by mass of epoxy resin YL-6121H (trade name, manufactured by Mitsubishi Chemical Co., Ltd.) as a raw material for sealing molding material, and phenol resin MEH-7500 (trade name, manufactured by Meiwa Kasei Co., Ltd.) as a curing agent. 3.36 parts by mass, as an inorganic filler, spherical silica mixture FB-105FC (trade name, manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size: 12 μm) 89 parts by mass, carnauba wax 0.3 parts by mass, as a curing accelerator , 2MZ-P (trade name, manufactured by Shikoku Kasei Co., Ltd.) 0.1 parts by mass, as a silane coupling agent, γ-glycidoxypropyltriethoxysilane 0.4 parts by mass, carbon black 0.2 parts by mass, 1 mm 0.05 parts by mass of agglomerates of spherical silica having a size of 2 mm or less and a coupling agent (content in the sealing molding material: 505 ppm) are prepared and processed by each step shown in FIG. 2 to obtain a sealing molding material. rice field.

上記原料をミキサー(日本コークス工業株式会社製、商品名:FMミキサ)に投入し、3分間混合した(混合工程)。 The above raw materials were put into a mixer (manufactured by Nippon Coke Industries Co., Ltd., trade name: FM mixer) and mixed for 3 minutes (mixing step).

混合工程で得られた混合物を2軸混練機(株式会社栗本鐵工所製、商品名:KRC−T−2)に投入し、混練温度:100℃、混練時間:5分間の条件で、混練した(混練工程)。 The mixture obtained in the mixing step is put into a twin-screw kneader (manufactured by Kurimoto, Ltd., trade name: KRC-T-2) and kneaded under the conditions of kneading temperature: 100 ° C. and kneading time: 5 minutes. (Kneading process).

混練工程で得られた混練物を表面温度15℃のプレスロールを用いて1mm厚さに圧延し、シート状組成物を得た(第1の圧延工程)。 The kneaded product obtained in the kneading step was rolled to a thickness of 1 mm using a press roll having a surface temperature of 15 ° C. to obtain a sheet-like composition (first rolling step).

第1の圧延工程で得られたシート状組成物をスチールベルトコンベア上で搬送し、15℃以下の冷風を当てて冷却した(第1の冷却工程)。 The sheet-like composition obtained in the first rolling step was conveyed on a steel belt conveyor and cooled by applying cold air of 15 ° C. or lower (first cooling step).

第1の冷却工程で冷却したシート状組成物をスピードミル(有限会社五橋製作所製)に投入し、温度8℃で2mmメッシュパスになるまで粉砕した(第1の粉砕工程)。 The sheet-like composition cooled in the first cooling step was put into a speed mill (manufactured by Gohashi Seisakusho Co., Ltd.) and crushed at a temperature of 8 ° C. until a 2 mm mesh pass was obtained (first crushing step).

第1の粉砕工程で得られた粉砕物を分級機内蔵型粉砕機(ホソカワミクロン株式会社製、商品名:リンレックスミルLX)に投入し、温度8℃で、粉砕ディスク3000rpm、分級ロータ2300rpm、供給量100kg/時間の条件で粉砕し、粒度100μm以下の粉砕物を分級し、当該粉砕物のみ次工程へ搬送した(粉砕・分級工程)。 The crushed product obtained in the first crushing step is put into a crusher with a built-in classifier (manufactured by Hosokawa Micron Co., Ltd., trade name: Linlex Mill LX), and supplied at a temperature of 8 ° C. with a crushing disk of 3000 rpm and a classifying rotor of 2300 rpm. The pulverized product was pulverized under the condition of an amount of 100 kg / hour, a pulverized product having a particle size of 100 μm or less was classified, and only the pulverized product was transported to the next step (crushing / classification step).

粉砕・分級工程で得られた粒度100μm以下の粉砕物を表面温度40℃のプレスロールを用いて1mm厚さに圧延し、シート状組成物を得た(第2の圧延工程)。 The pulverized product having a particle size of 100 μm or less obtained in the pulverization / classification step was rolled to a thickness of 1 mm using a press roll having a surface temperature of 40 ° C. to obtain a sheet-like composition (second rolling step).

第2の圧延工程で得られたシート状組成物をスチールベルトコンベア上で搬送し、15℃以下の冷風を当てて冷却した(第2の冷却工程)。 The sheet-like composition obtained in the second rolling step was conveyed on a steel belt conveyor and cooled by applying cold air of 15 ° C. or lower (second cooling step).

第2の冷却工程で冷却したシート状組成物をスピードミル(有限会社五橋製作所製)に投入し、温度8℃で2mmメッシュパスになるまで粉砕した(第2の粉砕工程)。 The sheet-like composition cooled in the second cooling step was put into a speed mill (manufactured by Gohashi Seisakusho Co., Ltd.) and crushed at a temperature of 8 ° C. until a 2 mm mesh pass was obtained (second crushing step).

第2の粉砕工程で得られて粉砕物を目開き0.2〜2.0mmの篩を用いて篩分けした(篩分け工程)。 The pulverized product obtained in the second pulverization step was sieved using a sieve having an opening of 0.2 to 2.0 mm (sieving step).

(比較例1)
実施例2において、第1の圧延工程、第1の冷却工程、第1の粉砕工程、粉砕・分級工程を行わなかったこと以外は実施例2と同様にして比較例1の封止用成形材料を得た。
(Comparative Example 1)
The sealing molding material of Comparative Example 1 in the same manner as in Example 2 except that the first rolling step, the first cooling step, the first crushing step, and the crushing / classifying step were not performed in Example 2. Got

(評価方法)
[封止用成形材料中の凝集物及び/又はゲル状物質除去性評価]
実施例1、2及び比較例1で得られた封止用成形材料をそれぞれ150g秤量し、アセトン200ccに分散させ、30分間撹拌した。その後、公称目開き106μmの篩を用いてろ過し、大きさ106μmより大きい凝集物及びゲル状物質の残さの重量を測定し、封止用成形材料中に含まれる大きさ106μm超の凝集物及び/又はゲル状物質の含有率を算出し、下記判定基準により評価した。
A:10ppm以下
B:10ppm超、50ppm以下
C:50ppm超
(Evaluation method)
[Evaluation of agglutinating and / or gel-like substance removability in molding material for sealing]
150 g of each of the sealing molding materials obtained in Examples 1 and 2 and Comparative Example 1 was weighed, dispersed in 200 cc of acetone, and stirred for 30 minutes. Then, it is filtered using a sieve having a nominal opening of 106 μm, and the weight of the agglomerates larger than 106 μm and the residue of the gel-like substance is measured. / Or the content of the gel-like substance was calculated and evaluated according to the following criteria.
A: 10ppm or less B: Over 10ppm, 50ppm or less C: Over 50ppm

[半導体装置の成形後外観評価]
前記封止用成形材料を用いて、チップ上樹脂厚さが100μmとなるように設定したFBGA(50mm×50mm×0.54mm)を、175℃で、2分間成形した後、成形品表面を目視観察し、下記判定基準により評価した。
A:突起の発生なし
C:突起の発生あり
[Evaluation of appearance of semiconductor devices after molding]
Using the sealing molding material, FBGA (50 mm × 50 mm × 0.54 mm) set so that the resin thickness on the chip is 100 μm was molded at 175 ° C. for 2 minutes, and then the surface of the molded product was visually observed. It was observed and evaluated according to the following criteria.
A: No protrusions C: With protrusions

Figure 2020129885
Figure 2020129885

Claims (5)

大きさ100μm超の凝集物及び/又はゲル状物質の含有率が50ppm以下である半導体封止用成形材料。 A molding material for semiconductor encapsulation in which the content of agglomerates and / or gel-like substances having a size of more than 100 μm is 50 ppm or less. エポキシ樹脂、硬化剤及び無機充填剤を含む原材料を混合する混合工程と、
前記混合工程で得られた混合物を混練して混練物とする混練工程と、
前記混練工程で得られた混練物を圧延ロールでシート状組成物に圧延する圧延工程と、
前記圧延工程で圧延したシート状組成物を冷却コンベアにて搬送しながら、気体中で冷却する冷却工程と、
前記冷却工程で冷却したシート状組成物を粉砕機にて粉砕する粉砕工程と、
を有する半導体封止用成形材料の製造方法であって、
さらに粉砕対象物を粒度100μm以下に粉砕・分級する粉砕・分級工程を有することを特徴とする請求項1に記載の半導体封止用成形材料の製造方法。
A mixing step of mixing raw materials including epoxy resin, curing agent and inorganic filler, and
A kneading step of kneading the mixture obtained in the mixing step to obtain a kneaded product, and
A rolling step of rolling the kneaded product obtained in the kneading step into a sheet-like composition with a rolling roll, and a rolling step.
A cooling step in which the sheet-like composition rolled in the rolling step is cooled in a gas while being conveyed by a cooling conveyor, and a cooling step.
A crushing step of crushing the sheet-like composition cooled in the cooling step with a crusher, and a crushing step.
It is a manufacturing method of a molding material for semiconductor encapsulation having
The method for producing a molding material for semiconductor encapsulation according to claim 1, further comprising a pulverization / classification step of pulverizing / classifying the object to be pulverized to a particle size of 100 μm or less.
エポキシ樹脂、硬化剤及び無機充填剤を含む原材料を混合する混合工程と、
前記混合工程で得られた混合物を混練して混練物とする混練工程と、
前記混練工程で得られた混練物を圧延ロールでシート状組成物に圧延する第1の圧延工程と、
前記第1の圧延工程で圧延したシート状組成物を冷却コンベアにて搬送しながら、気体中で冷却する第1の冷却工程と、
前記第1の冷却工程で冷却したシート状組成物を粉砕機にて粉砕する第1の粉砕工程と、
前記第1の粉砕工程で得られた粉砕物を粒度100μm以下に粉砕・分級する粉砕・分級工程と、
前記粉砕・分級工程で得られた粉砕物を圧延ロールでシート状に圧延する第2の圧延工程と、
前記第2の圧延工程で圧延したシート状組成物を冷却コンベアにて搬送しながら、気体中で冷却する第2の冷却工程と、
前記第2の冷却工程で冷却したシート状組成物を粉砕機にて粉砕する第2の粉砕工程と、を有する請求項1に記載の半導体封止用成形材料の製造方法。
A mixing step of mixing raw materials including epoxy resin, curing agent and inorganic filler, and
A kneading step of kneading the mixture obtained in the mixing step to obtain a kneaded product, and
The first rolling step of rolling the kneaded product obtained in the kneading step into a sheet-like composition with a rolling roll, and
A first cooling step in which the sheet-like composition rolled in the first rolling step is cooled in a gas while being conveyed by a cooling conveyor, and a first cooling step.
The first pulverization step of pulverizing the sheet-like composition cooled in the first cooling step with a pulverizer, and
A pulverization / classification step of pulverizing / classifying the pulverized product obtained in the first pulverization step to a particle size of 100 μm or less.
A second rolling step of rolling the crushed product obtained in the crushing / classification step into a sheet with a rolling roll, and
A second cooling step in which the sheet-like composition rolled in the second rolling step is cooled in a gas while being conveyed by a cooling conveyor, and a second cooling step.
The method for producing a semiconductor encapsulating molding material according to claim 1, further comprising a second pulverization step of pulverizing the sheet-like composition cooled in the second cooling step with a pulverizer.
前記粉砕・分級工程において、粉砕・分級を10℃以下の低温雰囲気で行う請求項2又は3に記載の半導体封止用成形材料の製造方法。 The method for producing a molding material for semiconductor encapsulation according to claim 2 or 3, wherein in the pulverization / classification step, pulverization / classification is performed in a low temperature atmosphere of 10 ° C. or lower. 半導体素子を、請求項1に記載の半導体封止用成形材料で封止してなる半導体装置。

A semiconductor device in which a semiconductor element is sealed with the molding material for semiconductor encapsulation according to claim 1.

JP2020561403A 2018-12-21 2019-12-16 Manufacturing method of molding material for semiconductor encapsulation Active JP7270645B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018240147 2018-12-21
JP2018240147 2018-12-21
PCT/JP2019/049133 WO2020129885A1 (en) 2018-12-21 2019-12-16 Molding material for semiconductor encapsulation, production method of molding material for semiconductor encapsulation, and semiconductor device using this

Publications (2)

Publication Number Publication Date
JPWO2020129885A1 true JPWO2020129885A1 (en) 2021-11-04
JP7270645B2 JP7270645B2 (en) 2023-05-10

Family

ID=71101289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020561403A Active JP7270645B2 (en) 2018-12-21 2019-12-16 Manufacturing method of molding material for semiconductor encapsulation

Country Status (5)

Country Link
JP (1) JP7270645B2 (en)
KR (1) KR102577534B1 (en)
CN (1) CN113227217B (en)
TW (1) TWI743632B (en)
WO (1) WO2020129885A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6989044B1 (en) * 2021-03-31 2022-01-05 住友ベークライト株式会社 Manufacturing method of sealed structure and tablet
JP2023111897A (en) * 2022-01-31 2023-08-10 京セラ株式会社 semiconductor equipment
KR102625669B1 (en) * 2023-01-12 2024-01-15 동우 화인켐 주식회사 Resin composition for encapsulating electronic device and electronic device fabricated using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222539A (en) * 1992-02-13 1993-08-31 Ibiden Co Ltd Prepreg for circuit board, production of printed circuit board using the same and printed circuit board
JP2003012763A (en) * 2001-06-27 2003-01-15 Toto Kasei Co Ltd Epoxy resin, epoxy resin composition including the same, and cured product of the composition
JP2007186721A (en) * 2002-07-19 2007-07-26 Nippon Shokubai Co Ltd Method for producing crosslinked amino-resin particle
JP2008184544A (en) * 2007-01-30 2008-08-14 Nitto Denko Corp Resin composition for sealing semiconductor and semiconductor device obtained using the same
JP2013091253A (en) * 2011-10-26 2013-05-16 Kyocera Chemical Corp Method of manufacturing epoxy resin molding material for sealing semiconductor, epoxy resin molding material for sealing semiconductor, and electronic component device
JP2018012822A (en) * 2016-07-22 2018-01-25 日本ゼオン株式会社 Composite particles for heat conductive sheet and method for manufacturing the same, method for manufacturing heat conductive primary sheet and heat conductive secondary sheet, method for manufacturing heat generating element with heat conductive primary sheet, and method for manufacturing heat generating element with laminated sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935715B2 (en) * 1975-08-14 1984-08-30 株式会社東芝 metal welding method
JP3560161B1 (en) * 2003-01-30 2004-09-02 日立化成工業株式会社 Method for producing epoxy resin composition for semiconductor encapsulation
US20040265596A1 (en) * 2003-04-28 2004-12-30 Sumitomo Bakelite Co., Ltd. Epoxy resin composition for semiconductor sealing and semiconductor device
JP5222539B2 (en) * 2007-11-26 2013-06-26 花王株式会社 Three-dimensional composite sheet manufacturing equipment
US8124471B2 (en) 2008-03-11 2012-02-28 Intel Corporation Method of post-mold grinding a semiconductor package
CN102246296B (en) 2008-12-10 2014-02-05 住友电木株式会社 Semiconductor-sealing resin composition, method for producing semiconductor device, and semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222539A (en) * 1992-02-13 1993-08-31 Ibiden Co Ltd Prepreg for circuit board, production of printed circuit board using the same and printed circuit board
JP2003012763A (en) * 2001-06-27 2003-01-15 Toto Kasei Co Ltd Epoxy resin, epoxy resin composition including the same, and cured product of the composition
JP2007186721A (en) * 2002-07-19 2007-07-26 Nippon Shokubai Co Ltd Method for producing crosslinked amino-resin particle
JP2008184544A (en) * 2007-01-30 2008-08-14 Nitto Denko Corp Resin composition for sealing semiconductor and semiconductor device obtained using the same
JP2013091253A (en) * 2011-10-26 2013-05-16 Kyocera Chemical Corp Method of manufacturing epoxy resin molding material for sealing semiconductor, epoxy resin molding material for sealing semiconductor, and electronic component device
JP2018012822A (en) * 2016-07-22 2018-01-25 日本ゼオン株式会社 Composite particles for heat conductive sheet and method for manufacturing the same, method for manufacturing heat conductive primary sheet and heat conductive secondary sheet, method for manufacturing heat generating element with heat conductive primary sheet, and method for manufacturing heat generating element with laminated sheet

Also Published As

Publication number Publication date
KR20210091238A (en) 2021-07-21
JP7270645B2 (en) 2023-05-10
CN113227217B (en) 2024-02-09
TWI743632B (en) 2021-10-21
CN113227217A (en) 2021-08-06
WO2020129885A1 (en) 2020-06-25
KR102577534B1 (en) 2023-09-13
TW202039687A (en) 2020-11-01

Similar Documents

Publication Publication Date Title
KR101712216B1 (en) Resin composition for encapsulating semiconductor, method for producing semiconductor device and semiconductor device
JP6032197B2 (en) Manufacturing method of semiconductor device
WO2020129885A1 (en) Molding material for semiconductor encapsulation, production method of molding material for semiconductor encapsulation, and semiconductor device using this
JP2013091253A (en) Method of manufacturing epoxy resin molding material for sealing semiconductor, epoxy resin molding material for sealing semiconductor, and electronic component device
KR101829085B1 (en) Resin molded product and process for producing same, resin composition and process for producing same, and electronic component device
WO2021192822A1 (en) Resin composition for semiconductor encapsulation, and semiconductor device
JP6520779B2 (en) Method of manufacturing epoxy resin granular material for semiconductor encapsulation, and method of manufacturing semiconductor device
JP4662133B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation
JP2020132800A (en) Molding materials for semiconductor encapsulation, manufacturing methods for molding materials for semiconductor encapsulation, and semiconductor devices using them
JP6070529B2 (en) Method for producing granular semiconductor sealing resin composition and semiconductor device
JP5277569B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP4569296B2 (en) Manufacturing method of resin tablet for semiconductor sealing and manufacturing method of resin molding
JP2007077333A (en) Manufacturing method of epoxy resin molding material for sealing, epoxy resin molding material for sealing and electronic part unit
JP4973325B2 (en) Manufacturing method of epoxy resin composition for semiconductor encapsulation and manufacturing method of semiconductor device
JP6555000B2 (en) Manufacturing method of epoxy resin granular body for semiconductor sealing, and manufacturing method of semiconductor device
JP2008303368A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP2022019065A (en) Resin composition for semiconductor sealing and semiconductor device
WO2019155950A1 (en) Resin composition for semiconductor sealing use, semiconductor device, and method for producing resin composition for semiconductor sealing use
JP2005048173A (en) Manufacturing method for tablet for sealing semiconductor, tablet for sealing semiconductor obtained thereby, and semiconductor device using the same
JP2005097350A (en) Manufacturing method of epoxy resin molding material for sealing, epoxy resin molding material for sealing, and electronic component device
TWI411594B (en) Ceramic powder and its use
TWI507471B (en) Resin molded body and method for producing the same, resin composition and method for producing the same, and electronic part device
JP2001072743A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using same
JP2000290378A (en) Production of granular epoxy resin sealing medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221223

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230106

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230425

R150 Certificate of patent or registration of utility model

Ref document number: 7270645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150