[go: up one dir, main page]

JPWO2016088863A1 - Crystals of diazabicyclooctane derivatives and methods for producing stable lyophilized formulations - Google Patents

Crystals of diazabicyclooctane derivatives and methods for producing stable lyophilized formulations Download PDF

Info

Publication number
JPWO2016088863A1
JPWO2016088863A1 JP2016562689A JP2016562689A JPWO2016088863A1 JP WO2016088863 A1 JPWO2016088863 A1 JP WO2016088863A1 JP 2016562689 A JP2016562689 A JP 2016562689A JP 2016562689 A JP2016562689 A JP 2016562689A JP WO2016088863 A1 JPWO2016088863 A1 JP WO2016088863A1
Authority
JP
Japan
Prior art keywords
compound
inorganic salt
aqueous solution
crystals
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016562689A
Other languages
Japanese (ja)
Other versions
JP6779787B2 (en
Inventor
崇也 小河
崇也 小河
拓也 横山
拓也 横山
修佑 古山
修佑 古山
政人 市來
政人 市來
謙一 節原
謙一 節原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Seika Kaisha Ltd
Original Assignee
Meiji Seika Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Seika Kaisha Ltd filed Critical Meiji Seika Kaisha Ltd
Publication of JPWO2016088863A1 publication Critical patent/JPWO2016088863A1/en
Application granted granted Critical
Publication of JP6779787B2 publication Critical patent/JP6779787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/08Bridged systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/439Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom the ring forming part of a bridged ring system, e.g. quinuclidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Medicinal Preparation (AREA)

Abstract

本発明は、工業的スケールで、簡便に化合物(I)の結晶を製造することができる方法、及び化合物(I)の安定な凍結乾燥組成物を提供することを目的とする。化合物(I)と塩化ナトリウムなどの無機塩を含む水溶液を凍結乾燥することで、化合物(I)が結晶である保存安定性に優れた凍結乾燥組成物が得られること、また、凍結乾燥をしなくとも、当該水溶液から化合物(I)の結晶が得られることを見出した。An object of the present invention is to provide a method capable of easily producing crystals of compound (I) on an industrial scale, and a stable lyophilized composition of compound (I). By freeze-drying an aqueous solution containing Compound (I) and an inorganic salt such as sodium chloride, a freeze-dried composition having excellent storage stability in which Compound (I) is a crystal can be obtained. Even without this, it was found that crystals of compound (I) can be obtained from the aqueous solution.

Description

本発明は式(I)で示されるジアザビシクロオクタン誘導体の結晶の製造法、ならびに当該誘導体の組成物、凍結乾燥製剤およびその製造法に関するものである。   The present invention relates to a method for producing a crystal of a diazabicyclooctane derivative represented by the formula (I), a composition of the derivative, a lyophilized preparation, and a method for producing the same.

下記式(I)で示される新規なジアザビシクロオクタン誘導体:(2S,5R)−N−(2−アミノエトキシ)−7−オキソ−6−(スルホオキシ)−1,6−ジアザビシクロ[3.2.1]オクタン−2−カルボキサミド(以下「化合物(I)」ともいう)は、β−ラクタマーゼ阻害剤であり、WO2013/180197(特許文献1)に開示されている。   Novel diazabicyclooctane derivatives represented by the following formula (I): (2S, 5R) -N- (2-aminoethoxy) -7-oxo-6- (sulfooxy) -1,6-diazabicyclo [3.2 .1] Octane-2-carboxamide (hereinafter also referred to as “compound (I)”) is a β-lactamase inhibitor, and is disclosed in WO2013 / 180197 (Patent Document 1).

結晶性の凍結乾燥組成物を得るための方法としては、薬物水溶液を所定温度で凍結後、所定温度まで昇温し一定の温度で保持する方法(以下、熱処理工程と呼ぶ)が開示されている(特許文献2)。
特許文献3および特許文献4では、熱処理工程を含む凍結乾燥法において、薬液中に無機塩を添加できることが記載されている。
特許文献5では、炭素数1〜3のアルコールもしくはアセトンを2〜10%(V/V)含有する薬物水溶液を熱処理工程を含む凍結乾燥法により結晶性の凍結乾燥組成物として得る方法が開示されている。
特許文献6では、化合物(I)の結晶とその製造法が開示されている。
As a method for obtaining a crystalline lyophilized composition, a method in which an aqueous drug solution is frozen at a predetermined temperature and then heated to a predetermined temperature and held at a constant temperature (hereinafter referred to as a heat treatment step) is disclosed. (Patent Document 2).
Patent Document 3 and Patent Document 4 describe that an inorganic salt can be added to a chemical solution in a freeze-drying method including a heat treatment step.
Patent Document 5 discloses a method for obtaining an aqueous drug solution containing 2 to 10% (V / V) alcohol having 1 to 3 carbon atoms or acetone as a crystalline lyophilized composition by a lyophilization method including a heat treatment step. ing.
Patent Document 6 discloses a crystal of compound (I) and a production method thereof.

WO2013/180197WO2013 / 180197 特公平03−74643号公報Japanese Patent Publication No. 03-74643 特許第2843444号公報Japanese Patent No. 2844344 特許第2767171号公報Japanese Patent No. 2767171 特公昭60−19759号公報Japanese Patent Publication No. 60-19759 WO2015/053297WO2015 / 053297

凍結工程とそれに続く減圧乾燥工程を経る一般的な条件で化合物(I)を凍結乾燥した場合、化合物(I)は非晶質となり、その化学的安定性は結晶状態と比較して著しく低く、保存安定性に優れた凍結乾燥組成物を得ることは困難であることが我々の研究で確認された。製造、流通を考慮すると化合物(I)の安定な凍結乾燥組成物が強く求められていた。
しかしながら、化合物(I)の水溶液を特許文献2の方法で凍結乾燥しても、結晶性の凍結乾燥組成物を得ることはできなかった。特許文献3の実施例では無機塩添加の有無にかかわらず結晶性の凍結乾燥組成物を得られる事が示されており、結晶化における無機塩の添加は必須となっていない。さらに、熱処理工程を含まない通常の凍結乾燥条件の場合、無機塩の添加は非晶質部分の増加につながり、結晶化に悪影響を及ぼすことが開示されている。また、特許文献4では必ず熱処理工程が組み込まれており、無機塩を添加した実施例はない。特許文献5の方法は残留溶媒の懸念があることから工業的製法としては望ましくない。
このように、熱処理工程や有機溶媒の添加を含まない凍結乾燥条件で結晶性の凍結乾燥組成物を得る方法はいまだ見出されていない。
一方、特許文献6の方法では、化合物(I)を含む水溶液を、一旦、カラムなどで精製してからでないと、十分な結晶が得られなかった。
また、結晶多形をコントロールし、単一の結晶形、とりわけ、安定なI形にて取得することも課題の1つであった。
そのため、工業的スケールで、簡便に、化合物(I)の結晶を製造できる方法、さらには、化合物(I)の単一の結晶形、とりわけI形結晶を製造できる方法が強く求められていた。
When compound (I) is lyophilized under general conditions that undergo a freezing step followed by a vacuum drying step, compound (I) becomes amorphous and its chemical stability is significantly lower than its crystalline state, Our study confirmed that it was difficult to obtain a freeze-dried composition with excellent storage stability. Considering production and distribution, a stable lyophilized composition of Compound (I) has been strongly demanded.
However, even when the aqueous solution of Compound (I) was lyophilized by the method of Patent Document 2, a crystalline lyophilized composition could not be obtained. In the example of Patent Document 3, it is shown that a crystalline lyophilized composition can be obtained regardless of whether or not an inorganic salt is added, and the addition of an inorganic salt in crystallization is not essential. Furthermore, it is disclosed that in the case of normal lyophilization conditions that do not include a heat treatment step, the addition of an inorganic salt leads to an increase in the amorphous portion and adversely affects crystallization. In Patent Document 4, a heat treatment process is always incorporated, and there is no example in which an inorganic salt is added. The method of Patent Document 5 is not desirable as an industrial production method because of concern about residual solvent.
Thus, no method has yet been found for obtaining a crystalline lyophilized composition under lyophilization conditions that do not involve a heat treatment step or addition of an organic solvent.
On the other hand, in the method of Patent Document 6, sufficient crystals cannot be obtained unless the aqueous solution containing the compound (I) is once purified by a column or the like.
It was also an issue to obtain a single crystal form, particularly a stable form I, by controlling the crystal polymorph.
For this reason, there has been a strong demand for a method capable of easily producing a crystal of compound (I) on an industrial scale, and further a method capable of producing a single crystal form of compound (I), particularly an I-type crystal.

本発明は、工業的スケールで、簡便に化合物(I)の結晶、特に単一の結晶形、とりわけ安定なI形結晶を製造することができる方法、及び化合物(I)の安定な凍結乾燥組成物を提供することを目的とする。   The present invention relates to a method capable of producing crystals of compound (I), particularly a single crystal form, in particular, stable form I crystals, on an industrial scale, and a stable lyophilized composition of compound (I). The purpose is to provide goods.

そこで、発明者は、保存安定性に優れた化合物(I)の凍結乾燥組成物を開発すべく、鋭意検討した結果、化合物(I)と塩化ナトリウムなどの無機塩を含む水溶液を凍結乾燥することで、化合物(I)が結晶化されて、その結果、化合物(I)が結晶、特に単一の結晶形、とりわけ安定なI形結晶である保存安定性に優れた凍結乾燥組成物が得られることを見出し、また、凍結乾燥をしなくとも、当該水溶液から化合物(I)の結晶、特に単一の結晶形、とりわけ安定なI形結晶が得られることも見出し、本発明を完成するに至った。   In view of this, the inventors have intensively studied to develop a freeze-dried composition of Compound (I) having excellent storage stability, and as a result, freeze-drying an aqueous solution containing Compound (I) and an inorganic salt such as sodium chloride. Compound (I) is crystallized, and as a result, a freeze-dried composition having excellent storage stability in which Compound (I) is a crystal, particularly a single crystal form, particularly a stable Form I crystal, is obtained. Further, it was found that crystals of compound (I), particularly a single crystal form, particularly a stable form I crystal, can be obtained from the aqueous solution without lyophilization, and the present invention has been completed. It was.

すなわち本発明は、化合物(I)の結晶の製造方法であって、化合物(I)と塩化ナトリウムなどの無機塩とを含む水溶液から、化合物(I)を結晶化させることを含む、製造方法に関する。
また、本発明は、化合物(I)を含む凍結乾燥組成物の製造方法であって、前記化合物(I)の結晶の製造方法によって化合物(I)を結晶化させることを含む、製造方法;化合物(I)を含む凍結乾燥組成物の製造方法であって、化合物(I)と塩化ナトリウムなどの無機塩とを含む水溶液を凍結乾燥することによって化合物(I)を結晶化させることを含む、製造方法;ならびに化合物(I)の結晶と塩化ナトリウムなどの無機塩を含むことを特徴とする凍結乾燥組成物にも関する。本発明の凍結乾燥組成物は、前記本発明の凍結乾燥組成物の製造方法により製造され得る。
That is, the present invention relates to a method for producing a crystal of compound (I), which comprises crystallizing compound (I) from an aqueous solution containing compound (I) and an inorganic salt such as sodium chloride. .
The present invention also provides a method for producing a lyophilized composition containing compound (I), which comprises crystallizing compound (I) by the method for producing a crystal of compound (I); A method for producing a lyophilized composition comprising (I), comprising crystallization of compound (I) by lyophilizing an aqueous solution comprising compound (I) and an inorganic salt such as sodium chloride. And a freeze-dried composition characterized in that it comprises crystals of compound (I) and an inorganic salt such as sodium chloride. The lyophilized composition of the present invention can be produced by the method for producing the lyophilized composition of the present invention.

本発明では、例えば、化合物(I)と塩化ナトリウムなどの無機塩とを含む水溶液に、必要に応じて種晶を加えてから、貧溶媒を加えるなどの一般的な方法により、化合物(I)の結晶化を行う。あるいは、化合物(I)と塩化ナトリウムなどの無機塩とを含む水溶液を凍結乾燥させることにより化合物(I)の結晶化を行う。塩化ナトリウムなどの無機塩を含むことで、化合物(I)の結晶、特に特許文献6と同じI形結晶が得られ、非晶質状態と比較して保存安定性を劇的に向上させることができる。   In the present invention, for example, compound (I) is prepared by a general method such as adding a seed crystal to an aqueous solution containing compound (I) and an inorganic salt such as sodium chloride and then adding a poor solvent as necessary. Is crystallized. Alternatively, the compound (I) is crystallized by freeze-drying an aqueous solution containing the compound (I) and an inorganic salt such as sodium chloride. By including an inorganic salt such as sodium chloride, a crystal of compound (I), particularly the same type I crystal as in Patent Document 6, can be obtained, and the storage stability can be dramatically improved as compared with the amorphous state. it can.

本発明のI形結晶は、特許文献6のI形結晶と同じものであり、以下の表1又は図3に示すような特徴的な粉末X線回析のピークパターンを有する。なお、本発明では、粉末X線回析は試験例1に記載された方法で測定される。   The form I crystal of the present invention is the same as the form I crystal of Patent Document 6, and has a characteristic powder X-ray diffraction peak pattern as shown in Table 1 or FIG. In the present invention, powder X-ray diffraction is measured by the method described in Test Example 1.

また、本発明では、化合物(I)と塩化ナトリウムなどの無機塩とを含む水溶液を、凍結乾燥、例えば、凍結工程とそれに続く減圧乾燥工程を経る一般的な条件で凍結乾燥する。すなわち、本発明は、化合物(I)と塩化ナトリウムなどの無機塩とを含む水溶液を凍結工程に付すること、そして当該凍結工程で得られた凍結物を減圧乾燥工程に付することを含む、化合物(I)を含む凍結乾燥組成物の製造方法にも関する。塩化ナトリウムなどの無機塩を含むことで、化合物(I)が結晶化した、特にI形結晶に結晶化された凍結乾燥組成物が得られ、非晶質状態と比較して保存安定性を劇的に向上させることができる。   In the present invention, an aqueous solution containing compound (I) and an inorganic salt such as sodium chloride is freeze-dried, for example, freeze-dried under general conditions that undergo a freezing step followed by a reduced-pressure drying step. That is, the present invention includes subjecting an aqueous solution containing compound (I) and an inorganic salt such as sodium chloride to a freezing step, and subjecting the frozen product obtained in the freezing step to a vacuum drying step. The present invention also relates to a method for producing a lyophilized composition containing compound (I). By including an inorganic salt such as sodium chloride, a freeze-dried composition in which compound (I) is crystallized, in particular, crystallized into I-type crystal, is obtained, and the storage stability is drastically compared with the amorphous state. Can be improved.

本発明では、凍結工程と減圧乾燥工程の間に熱処理工程及び再凍結工程を含むことなく、化合物(I)が結晶化した凍結乾燥組成物を得ることができる。すなわち、本発明の凍結乾燥組成物の製造方法において、前記凍結工程で得られた凍結物の熱処理及び再凍結操作を実施しなくてもよい。一般的に、凍結乾燥は製造に長時間を要する製造法である。凍結工程と減圧乾燥工程の間に熱処理工程と再凍結工程を含むことで結晶性の凍結乾燥組成物を得る方法が知られているが、製造時間がさらに長くなり、生産性が低いことが課題である。本発明では、凍結工程と減圧乾燥工程の間に熱処理工程及び再凍結工程を含むことなく、化合物(I)が結晶化した凍結乾燥組成物を得ることができるため、従来の方法よりも生産性を高めることができる。   In the present invention, a freeze-dried composition in which compound (I) is crystallized can be obtained without including a heat treatment step and a refreezing step between the freezing step and the reduced-pressure drying step. That is, in the method for producing a lyophilized composition of the present invention, the heat treatment and refreezing operation of the frozen product obtained in the freezing step may not be performed. In general, lyophilization is a production method that requires a long time for production. A method for obtaining a crystalline lyophilized composition by including a heat treatment step and a refreezing step between the freezing step and the reduced-pressure drying step is known, but the problem is that the production time is further increased and the productivity is low. It is. In the present invention, a freeze-dried composition in which compound (I) is crystallized can be obtained without including a heat treatment step and a re-freezing step between the freezing step and the reduced-pressure drying step. Can be increased.

本発明では、凍結工程と減圧乾燥工程の間に熱処理工程と再凍結工程を組み込むこともできる。すなわち、本発明は、前記凍結工程で得られた凍結物を熱処理工程に付すること、当該熱処理工程で得られた熱処理物を再凍結工程に付すること、そして当該再凍結工程で得られた凍結物を前記減圧乾燥工程に付することをさらに含む、化合物(I)を含む凍結乾燥組成物の前記製造方法にも関する。熱処理工程を組み込むことで化合物(I)の結晶化効率をさらに向上させることができる。   In the present invention, a heat treatment step and a refreezing step can be incorporated between the freezing step and the vacuum drying step. That is, the present invention is obtained by subjecting the frozen material obtained in the freezing step to a heat treatment step, subjecting the heat treated material obtained in the heat treatment step to a refreezing step, and the refreezing step. The present invention also relates to the above-mentioned method for producing a lyophilized composition containing compound (I), which further comprises subjecting a frozen product to the vacuum drying step. By incorporating a heat treatment step, the crystallization efficiency of compound (I) can be further improved.

本発明は、化合物(I)と無機塩を含む水溶液から結晶化を行うことにより、化合物(I)を事前にカラムなどで精製しなくても、化合物(I)の結晶を得ることができるので、工業的スケールで、簡便に、化合物(I)の結晶を、特に単一の結晶形、とりわけ安定なI形結晶を優位に製造することができる。また、本発明は、化合物(I)と無機塩を含む水溶液から凍結乾燥を行うことにより、化合物(I)が結晶、特に単一の結晶形、とりわけI形結晶であることを特徴とする凍結乾燥組成物が得られ、保存安定性に優れた化合物(I)の凍結乾燥製剤を提供することができる。   In the present invention, by crystallizing from an aqueous solution containing compound (I) and an inorganic salt, crystals of compound (I) can be obtained without purifying compound (I) in advance using a column or the like. On the industrial scale, it is possible to easily produce crystals of compound (I), in particular, a single crystal form, in particular a stable form I crystal. Further, the present invention provides a freezing characterized in that the compound (I) is a crystal, particularly a single crystal form, particularly a form I crystal, by lyophilization from an aqueous solution containing the compound (I) and an inorganic salt. A dry composition is obtained, and a lyophilized preparation of compound (I) having excellent storage stability can be provided.

実施例1aで得た凍結乾燥組成物の粉末X線回折チャートを示す。The powder X-ray diffraction chart of the lyophilized composition obtained in Example 1a is shown. 実施例1bで得た凍結乾燥組成物の粉末X線回折チャートを示す。The powder X-ray-diffraction chart of the lyophilized composition obtained in Example 1b is shown. 実施例2bで得た結晶の粉末X線回折チャートを示す。The powder X-ray-diffraction chart of the crystal | crystallization obtained in Example 2b is shown. 比較例1で得た凍結乾燥組成物の粉末X線回折チャートを示す。The powder X-ray diffraction chart of the freeze-dried composition obtained in Comparative Example 1 is shown. 塩化ナトリウムの粉末X線回折チャートを示す。The powder X-ray-diffraction chart of sodium chloride is shown.

本発明で使用される無機塩は、注射剤に添加可能なものであれば特に制限はなく、塩化ナトリウム、塩化マグネシウム、塩化カルシウム、塩化カリウム、塩化アンモニウム、臭化ナトリウム、臭化カルシウム、臭化カリウム、臭化テトラブチルアンモニウム、硫酸マグネシウム、ヨウ化ナトリウム、ヨウ化カリウム、リン酸水素ナトリウム、酢酸ナトリウム、クエン酸ナトリウム、酒石酸ナトリウム、グルタミン酸ナトリウム、ロッシェル塩(酒石酸ナトリウムカリウム)などが例示される。結晶化効率の点において、好ましくは、塩化ナトリウム、塩化マグネシウム、硫酸マグネシウム、クエン酸ナトリウム、グルタミン酸ナトリウム、ロッシェル塩(酒石酸ナトリウムカリウム)が挙げられる。これら無機塩のいずれを使用しても化合物(I)のI形結晶が得られることを確認している。特に好ましくは塩化ナトリウムである。本発明の無機塩の凍結乾燥組成物や医薬製剤への配合量に特に制限はないが、好ましくは化合物(I)に対して0.1〜10モル当量であり、さらに好ましくは1〜2モル当量である。この理由としては、配合量が少ない場合も多い場合も結晶化効率が低下し、製剤の安定性に影響を及ぼすためである。
また、化合物(I)と無機塩を含む水溶液から結晶化を行う場合には、当該水溶液への無機塩の配合量に特に制限はないが、好ましくは化合物(I)に対して0.1〜10モル当量であり、さらに好ましくは0.5〜1.5モル当量である。
The inorganic salt used in the present invention is not particularly limited as long as it can be added to an injection. Sodium chloride, magnesium chloride, calcium chloride, potassium chloride, ammonium chloride, sodium bromide, calcium bromide, bromide Examples include potassium, tetrabutylammonium bromide, magnesium sulfate, sodium iodide, potassium iodide, sodium hydrogen phosphate, sodium acetate, sodium citrate, sodium tartrate, sodium glutamate, and Rochelle salt (sodium potassium tartrate). In view of crystallization efficiency, sodium chloride, magnesium chloride, magnesium sulfate, sodium citrate, sodium glutamate, and Rochelle salt (potassium sodium tartrate) are preferable. It has been confirmed that any of these inorganic salts can be used to obtain Form I crystals of Compound (I). Particularly preferred is sodium chloride. Although there is no restriction | limiting in particular in the compounding quantity to the freeze-dried composition and pharmaceutical formulation of the inorganic salt of this invention, Preferably it is 0.1-10 molar equivalent with respect to compound (I), More preferably, it is 1-2 mol Is equivalent. This is because the crystallization efficiency is lowered in both cases where the blending amount is small and large, which affects the stability of the preparation.
In addition, when crystallization is performed from an aqueous solution containing the compound (I) and an inorganic salt, the amount of the inorganic salt added to the aqueous solution is not particularly limited, but preferably 0.1 to 0.1% of the compound (I). 10 molar equivalents, more preferably 0.5 to 1.5 molar equivalents.

本発明において、結晶化前又は凍結乾燥前の水溶液中の化合物(I)の濃度は通常1%(W/W)〜40%(W/W)であり、好ましくは2.5%(W/W)〜20%(W/W)であり、さらに好ましくは7.5%(W/W)〜10%(W/W)である。この理由としては、当該濃度が低い場合は結晶化効率が低下し、製剤の安定性に影響を及ぼし、当該濃度が高い場合は過飽和溶液からの析出が生じやすいためである。   In the present invention, the concentration of the compound (I) in the aqueous solution before crystallization or before lyophilization is usually 1% (W / W) to 40% (W / W), preferably 2.5% (W / W W) to 20% (W / W), more preferably 7.5% (W / W) to 10% (W / W). This is because when the concentration is low, the crystallization efficiency is lowered, affecting the stability of the preparation, and when the concentration is high, precipitation from the supersaturated solution is likely to occur.

本発明の化合物(I)と無機塩とを含む水溶液は、化合物(I)と無機塩とを水に一緒に溶解させて調製してもよいし、あるいは、どちらか一方を先に水に溶解させて水溶液を得て、そこに残りの一方を溶解させて調製してもよい。   The aqueous solution containing the compound (I) of the present invention and the inorganic salt may be prepared by dissolving the compound (I) and the inorganic salt together in water, or one of them may be dissolved in water first. It is also possible to obtain an aqueous solution and dissolve the remaining one therein to prepare.

本発明では、例えば、化合物(I)と無機塩とを含む水溶液に、必要に応じて、種晶を加えてから、貧溶媒を加えることにより、化合物(I)を結晶化させる。
ここで、種晶は、化合物(I)の種晶を使うことができ、例えば、特許文献6のI形結晶を使用することができる。あるいは、化合物(I)と無機塩とを含む水溶液を凍結乾燥することで得られた凍結乾燥物を種晶として使用してもよい。種晶の量は0〜20wt%、好ましくは0.01〜2wt%用いられる。
In the present invention, for example, the compound (I) is crystallized by adding a seed crystal to an aqueous solution containing the compound (I) and an inorganic salt, if necessary, and then adding a poor solvent.
Here, as the seed crystal, the seed crystal of compound (I) can be used. For example, the I-type crystal of Patent Document 6 can be used. Alternatively, a freeze-dried product obtained by freeze-drying an aqueous solution containing compound (I) and an inorganic salt may be used as a seed crystal. The amount of the seed crystal is 0 to 20 wt%, preferably 0.01 to 2 wt%.

貧溶媒は、例えば、メタノール、エタノール、1−プロパノール及びイソプロパノールなどのアルコール、アセトン、アセトニトリル、ならびにテトラヒドロフランが挙げられるが、好ましくはアルコール、例えばメタノール、エタノール、1−プロパノール及びイソプロパノールが挙げられる。貧溶媒の量は、単離ロスが1%以下となるように溶解度から調整され、例えば、化合物(I)と無機塩とを含む水溶液の初期の液量に対して1〜10倍量、好ましくは、3〜7.5倍量、さらに好ましくは5〜7.5倍量用いられる。貧溶媒を添加するタイミングは、特に制限はされないが、例えば、I形結晶の場合は接種後の混合物がスラリー状態になってから滴下する。貧溶媒の添加に要する時間は、特に制限はされないが、例えば、30分以上、好ましくは1時間以上である。   Examples of the poor solvent include alcohols such as methanol, ethanol, 1-propanol, and isopropanol, acetone, acetonitrile, and tetrahydrofuran, and alcohols such as methanol, ethanol, 1-propanol, and isopropanol are preferable. The amount of the poor solvent is adjusted from the solubility so that the isolation loss is 1% or less, for example, 1 to 10 times the amount of the initial solution of the aqueous solution containing the compound (I) and the inorganic salt, preferably Is used in an amount of 3 to 7.5 times, more preferably 5 to 7.5 times. The timing of adding the poor solvent is not particularly limited. For example, in the case of I-type crystals, the mixture is added dropwise after the mixture after inoculation becomes a slurry. The time required for the addition of the poor solvent is not particularly limited, but is, for example, 30 minutes or longer, preferably 1 hour or longer.

本発明では、化合物(I)と無機塩とを含む水溶液の温度を調節してから、化合物(I)を結晶化させてもよい。
撹拌時間は析出速度に依存するが、1〜24時間、好ましくは1〜15時間撹拌する。
析出した結晶は通常の濾過、洗浄、通気乾燥、又は真空乾燥することにより、化合物(I)の結晶を得ることができる。溶媒和した結晶の場合は、品温、乾燥減量、加湿限定真空乾燥、加湿通気乾燥等の管理手段により過乾燥を回避する。
In the present invention, the compound (I) may be crystallized after adjusting the temperature of the aqueous solution containing the compound (I) and the inorganic salt.
The stirring time depends on the deposition rate, but is stirred for 1 to 24 hours, preferably 1 to 15 hours.
Crystals of compound (I) can be obtained by subjecting the precipitated crystals to normal filtration, washing, air drying, or vacuum drying. In the case of solvated crystals, overdrying is avoided by management means such as product temperature, loss on drying, humidified vacuum drying, humidified air drying.

本発明では、化合物(I)と無機塩とを含む水溶液を凍結乾燥させることによって化合物(I)を結晶化させてもよい。また、本発明は、化合物(I)を含む凍結乾燥組成物の製造法であって、化合物(I)と無機塩とを含む水溶液を凍結乾燥することによって化合物(I)を結晶化させることを含む製造法にも関する。   In the present invention, compound (I) may be crystallized by lyophilizing an aqueous solution containing compound (I) and an inorganic salt. The present invention also relates to a method for producing a freeze-dried composition containing compound (I), wherein the compound (I) is crystallized by freeze-drying an aqueous solution containing compound (I) and an inorganic salt. It also relates to the manufacturing method including.

本発明において、例えば、化合物(I)と無機塩を含む水溶液は凍結工程及び減圧乾燥工程を含む通常の凍結乾燥が行われる。当該水溶液を凍結させるための冷却温度は、化合物(I)の濃度または無機塩の濃度によって影響を受けるが、通常−60℃〜−10℃、好ましくは−50℃〜−10℃、より好ましくは−50℃〜−15℃である。冷却凍結させる際の速度に特に制限はないが、通常、0.25時間〜5時間かけて行われる。なお、冷凍凍結後、次の減圧乾燥工程に至るまでの間、凍結時の温度にて凍結工程で得られた凍結物を一定時間保持することもできる。   In the present invention, for example, an aqueous solution containing compound (I) and an inorganic salt is subjected to ordinary freeze-drying including a freezing step and a reduced-pressure drying step. The cooling temperature for freezing the aqueous solution is affected by the concentration of compound (I) or the concentration of the inorganic salt, but is usually −60 ° C. to −10 ° C., preferably −50 ° C. to −10 ° C., more preferably It is −50 ° C. to −15 ° C. Although there is no restriction | limiting in particular in the speed | rate at the time of carrying out cooling freezing, Usually, it carries out over 0.25 hours-5 hours. Note that the frozen material obtained in the freezing step can be held for a certain period of time at the freezing temperature until the next reduced-pressure drying step after freezing.

前記凍結工程で得られた凍結物が付される減圧乾燥工程は一次乾燥(昇華)工程と二次乾燥(脱湿)工程とに分けてもよい。一次乾燥工程は通常の減圧下で行い、温度は化合物(I)の濃度や無機塩の濃度に影響を受けるため特定できないが、品温が凍結物の崩壊温度を超えない条件に設定することが望ましい。時間は温度設定や製造スケールにより変動するため特定できないが、品温や真空度の推移を確認しながら通常2時間〜7日間、好ましくは5時間〜72時間行うことができる。二次乾燥工程は通常の減圧下で行い、温度は例えば10℃〜60℃、好ましくは25℃〜60℃で行うことができる。時間は温度設定や製造スケールにより変動するため特定できないが、品温や真空度の推移を確認しながら通常2時間〜72時間、好ましくは5時間〜20時間行うことができる。   The vacuum drying step to which the frozen product obtained in the freezing step is attached may be divided into a primary drying (sublimation) step and a secondary drying (dehumidification) step. The primary drying step is carried out under normal reduced pressure, and the temperature is affected by the concentration of compound (I) and the concentration of inorganic salt, but cannot be specified, but the product temperature may be set to a condition that does not exceed the collapse temperature of the frozen material. desirable. Although the time varies depending on the temperature setting and production scale, it cannot be specified, but it can be usually performed for 2 hours to 7 days, preferably 5 hours to 72 hours while confirming the transition of the product temperature and the degree of vacuum. The secondary drying step is performed under a normal reduced pressure, and the temperature can be, for example, 10 ° C to 60 ° C, preferably 25 ° C to 60 ° C. Although the time varies depending on the temperature setting and production scale, it cannot be specified, but it can usually be performed for 2 hours to 72 hours, preferably 5 hours to 20 hours while confirming the transition of the product temperature and the degree of vacuum.

本発明において、結晶化効率を上げるために、前記凍結工程と減圧乾燥工程の間に熱処理工程と再凍結工程を組み込むことができる。前記凍結工程で得られた凍結物の熱処理時の温度は化合物(I)の濃度や無機塩の濃度に影響を受けるが、凍結状態を維持できる温度で実施し、好ましくは−40〜0℃、さらに好ましくは−20〜−4℃である。熱処理の時間は設定温度や製造スケールにより変動するため特定できないが、通常0.5時間〜72時間、好ましくは1時間〜24時間行うことができる。前記熱処理工程で得られた熱処理物が付される再凍結工程での冷却温度は通常−60℃〜−10℃、好ましくは−50℃〜−10℃、より好ましくは−50℃〜−15℃である。冷却凍結させる際の速度に特に制限はないが、通常、0.25時間〜5時間かけて行われる。再凍結工程で得られた凍結物は、前記減圧乾燥工程に付される。   In the present invention, in order to increase the crystallization efficiency, a heat treatment step and a refreezing step can be incorporated between the freezing step and the vacuum drying step. Although the temperature at the time of heat treatment of the frozen material obtained in the freezing step is affected by the concentration of compound (I) and the concentration of inorganic salt, it is carried out at a temperature at which the frozen state can be maintained, preferably -40 to 0 ° C, More preferably, it is -20--4 degreeC. Although the heat treatment time varies depending on the set temperature and the production scale, it cannot be specified, but it can usually be carried out for 0.5 hour to 72 hours, preferably 1 hour to 24 hours. The cooling temperature in the refreezing step to which the heat-treated product obtained in the heat treatment step is attached is usually -60 ° C to -10 ° C, preferably -50 ° C to -10 ° C, more preferably -50 ° C to -15 ° C. It is. Although there is no restriction | limiting in particular in the speed | rate at the time of carrying out cooling freezing, Usually, it carries out over 0.25 hours-5 hours. The frozen product obtained in the refreezing step is subjected to the reduced-pressure drying step.

本発明の結晶及び凍結乾燥組成物は、医薬として使用する場合には、それ自体(原末のままで)投与してもよいが、慣用の医薬製剤として投与してもよい。当該医薬製剤は、本発明の効果を損なわない限り、賦形剤、滑沢剤、結合剤、崩壊剤、乳化剤、安定剤、矯味矯臭剤、希釈剤等の薬学的に許容される添加剤を含んでもよい。当該医薬製剤として、錠剤、カプセル剤、散剤、シロップ剤、顆粒剤、細粒剤、丸剤、縣濁剤、乳剤、経皮吸収剤、坐剤、軟膏剤、ローション、吸入剤、注射剤などが例示される。本発明の結晶及び凍結乾燥組成物ならびに当該医薬製剤は、経口又は非経口(静脈内投与、筋肉内投与、腹腔内投与、経皮投与、経気道投与、皮内投与、又は、皮下投与等)で投与することができる。   When used as a medicament, the crystal and lyophilized composition of the present invention may be administered per se (as is), or may be administered as a conventional pharmaceutical preparation. The pharmaceutical preparation contains pharmaceutically acceptable additives such as excipients, lubricants, binders, disintegrants, emulsifiers, stabilizers, flavoring agents, and diluents as long as the effects of the present invention are not impaired. May be included. Such pharmaceutical preparations include tablets, capsules, powders, syrups, granules, fine granules, pills, suspensions, emulsions, transdermal absorption agents, suppositories, ointments, lotions, inhalants, injections, etc. Is exemplified. The crystal and lyophilized composition of the present invention and the pharmaceutical preparation are orally or parenterally (intravenous administration, intramuscular administration, intraperitoneal administration, transdermal administration, airway administration, intradermal administration, subcutaneous administration, etc.) Can be administered.

本発明の前記医薬製剤にはβ−ラクタマーゼ阻害剤である化合物(I)に加え、β−ラクタム系抗生物質を配合することができる。たとえば、ピペラシリン、アンピシリン、ベンジルペニシリン、セフォペラゾン、セファゾリン、セファロチン、セフォチアム、セフミノクス、セフメタゾール、フロモキセフ、セフォジジム、セフォタキシム、セフトリアキソン、セフメノキシム、ラタモキセフ、セフタジジム、セフェピム、セファゾプラン、セフピロム、アズトレオナム、イミペネム、ドリペネム、パニペネム、ビアペネム、メロペネムならびにその薬理学的に許容される塩および溶媒和物などを配合可能である。   In addition to compound (I) which is a β-lactamase inhibitor, β-lactam antibiotics can be added to the pharmaceutical preparation of the present invention. For example, piperacillin, ampicillin, benzylpenicillin, cefoperazone, cefazolin, cephalotin, cefotiam, cefminox, cefmethazole, fromoxef, cefodizime, cefotaxime, ceftriaxone, cefmenoxime, ratamoxef, ceftazimepefemepenecemepefem Biapenem, meropenem, and pharmacologically acceptable salts and solvates thereof can be blended.

本発明の前記注射剤には、通常注射剤に加えることが可能な添加剤を適宜配合することができる。たとえば、pH調整の目的であれば、塩酸、リン酸などの無機酸またはその塩類、クエン酸、リンゴ酸、酒石酸、コハク酸などの有機酸またはその塩類、アルギニン、アラニン、アスパラギン酸、ヒスチジン、グリシンなどのアミノ酸類、水酸化ナトリウム、炭酸水素ナトリウムなどのアルカリ性物質などを配合可能である。浸透圧調整が目的であれば、ブドウ糖、マンニトール、キシリトール、ソルビトール、ショ糖、乳糖、マルトース、トレハロース、デキストランなどを配合可能である。また、溶解性改善が目的であれば、ポリエチレングリコール、グリセリンなどのポリオール類の他、ポリソルベート、セスキオレイン酸ソルビタン、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレン硬化ヒマシ油などの界面活性剤を配合することも可能である。   In the injection of the present invention, additives that can be added to normal injections can be appropriately blended. For example, for pH adjustment purposes, inorganic acids such as hydrochloric acid and phosphoric acid or salts thereof, citric acid, malic acid, tartaric acid, organic acids such as succinic acid or salts thereof, arginine, alanine, aspartic acid, histidine, glycine Etc., alkaline substances such as sodium hydroxide and sodium hydrogen carbonate can be blended. For the purpose of adjusting the osmotic pressure, glucose, mannitol, xylitol, sorbitol, sucrose, lactose, maltose, trehalose, dextran and the like can be blended. For the purpose of improving solubility, in addition to polyols such as polyethylene glycol and glycerin, surfactants such as polysorbate, sorbitan sesquioleate, polyoxyethylene polyoxypropylene glycol, and polyoxyethylene hydrogenated castor oil are added. It is also possible to do.

以下に実施例および比較例をもって、本発明を具体的に説明するが、本発明はこれらの例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

実施例1 化合物(I)の凍結乾燥組成物
実施例1a
700mgの化合物(I)と126.1mgの塩化ナトリウムを蒸留水に溶解し、全量を7gとした。薬液を孔径0.20μmのメンブランフィルター(MILLEX(登録商標)LG SLLGH13NH:Merck Millipore)で濾過し、5mLガラスバイアルに1gを充填した後、ゴム栓で半打栓した。薬液を充填したバイアルを凍結乾燥機(DFM−05B−S:アルバック)に入れ、凍結乾燥機の棚温度を5℃に設定し、常圧下1時間冷却した。その後、1時間かけて凍結乾燥機の棚温度を−40℃に冷却し薬液を凍結させ、3時間この温度を保持させた。続いて、凍結乾燥機内の圧力を約10 Paとし、6時間かけて凍結乾燥機の棚温度を−10℃に昇温させ、この状態を30時間保持させた。その後、凍結乾燥機内の圧力を10Pa以下とし、7時間かけて凍結乾燥機の棚温度を25℃に昇温させ、この状態を15時間保持させた。乾燥終了後、窒素ガスを用いて凍結乾燥機内を常圧に戻し、ゴム栓で打栓した。バイアルを凍結乾燥機内から取り出し、アルミキャップを巻き締めて化合物(I)がI形結晶である凍結乾燥組成物を得た。なお、塩化ナトリウムはナカライテスク社製試薬特級塩化ナトリウムを用いた。
Example 1 Lyophilized Composition of Compound (I) Example 1a
700 mg of compound (I) and 126.1 mg of sodium chloride were dissolved in distilled water to make a total amount of 7 g. The drug solution was filtered through a membrane filter (MILLEX (registered trademark) LG SLLGH13NH: Merck Millipore) having a pore size of 0.20 μm, filled in 1 g in a 5 mL glass vial, and then half-plugged with a rubber stopper. The vial filled with the drug solution was placed in a freeze dryer (DFM-05B-S: ULVAC), the shelf temperature of the freeze dryer was set to 5 ° C., and the vial was cooled under normal pressure for 1 hour. Thereafter, the shelf temperature of the freeze dryer was cooled to −40 ° C. over 1 hour to freeze the drug solution, and this temperature was maintained for 3 hours. Subsequently, the pressure in the freeze dryer was about 10 Pa, the shelf temperature of the freeze dryer was raised to −10 ° C. over 6 hours, and this state was maintained for 30 hours. Thereafter, the pressure in the freeze dryer was 10 Pa or less, the shelf temperature of the freeze dryer was raised to 25 ° C. over 7 hours, and this state was maintained for 15 hours. After the drying, the inside of the freeze dryer was returned to normal pressure using nitrogen gas and plugged with a rubber stopper. The vial was taken out from the lyophilizer and the aluminum cap was tightened to obtain a lyophilized composition in which Compound (I) was Form I crystals. As sodium chloride, reagent-grade sodium chloride manufactured by Nacalai Tesque was used.

実施例1b
600mgの化合物(I)と129.7mgの塩化ナトリウムを蒸留水に溶解し、全量を6gとした。薬液を孔径0.20μmのメンブランフィルター(MILLEX(登録商標)LG SLLGH13NH:Merck Millipore)で濾過し、5mLガラスバイアルに1gを充填した後、ゴム栓で半打栓した。薬液を充填したバイアルを凍結乾燥機(コンソール12−3−ST−CR:バーチス)に入れ、凍結乾燥機の棚温度を5℃に設定し、常圧下1時間冷却した。その後、2.5時間かけて凍結乾燥機の棚温度を−40℃に冷却し薬液を凍結させ、1時間この温度を保持させた。続いて、0.5時間かけて凍結乾燥機の棚温度を−4℃に昇温させ、15時間この温度を保持させた。その後、2時間かけて凍結乾燥機の棚温度を−40℃に冷却し薬液を再凍結させ、0.5時間この温度を保持させた。続いて、凍結乾燥機内の圧力を10Pa以下とし、0.5時間かけて凍結乾燥機の棚温度を−10℃に昇温させ、この状態を20時間保持させた。その後、0.5時間かけて凍結乾燥機の棚温度を25℃に昇温させ、この状態を3時間保持させた。乾燥終了後、凍結乾燥機内を常圧に戻し、ゴム栓で打栓した。バイアルを凍結乾燥機内から取り出し、アルミキャップを巻き締めて化合物(I)がI形結晶である凍結乾燥組成物を得た。
Example 1b
600 mg of compound (I) and 129.7 mg of sodium chloride were dissolved in distilled water to make a total amount of 6 g. The drug solution was filtered through a membrane filter (MILLEX (registered trademark) LG SLLGH13NH: Merck Millipore) having a pore size of 0.20 μm, filled in 1 g in a 5 mL glass vial, and then half-plugged with a rubber stopper. The vial filled with the chemical solution was put into a freeze dryer (console 12-3-ST-CR: Vertis), the shelf temperature of the freeze dryer was set to 5 ° C., and cooled under normal pressure for 1 hour. Thereafter, the shelf temperature of the freeze dryer was cooled to −40 ° C. over 2.5 hours to freeze the chemical solution, and this temperature was maintained for 1 hour. Subsequently, the shelf temperature of the freeze dryer was raised to −4 ° C. over 0.5 hours, and this temperature was maintained for 15 hours. Thereafter, the shelf temperature of the freeze dryer was cooled to −40 ° C. over 2 hours to refreeze the chemical solution, and this temperature was maintained for 0.5 hour. Subsequently, the pressure in the freeze dryer was set to 10 Pa or less, the shelf temperature of the freeze dryer was raised to −10 ° C. over 0.5 hours, and this state was maintained for 20 hours. Thereafter, the shelf temperature of the freeze dryer was raised to 25 ° C. over 0.5 hours, and this state was maintained for 3 hours. After completion of drying, the inside of the freeze dryer was returned to normal pressure and plugged with a rubber stopper. The vial was taken out from the freeze dryer and the aluminum cap was tightened to obtain a freeze-dried composition in which Compound (I) was Form I crystals.

実施例2 化合物(I)のI形結晶
実施例2a
化合物(I)のIII形結晶1.0gを脱イオン水10mLに溶解させた。得られた溶液に、室温で塩化ナトリウム0.18gを加え溶解させた。この溶液を0°Cまで冷却後、精密ろ過した。冷却したイソプロパノール45mLを1時間かけて滴下した後、終夜撹拌した。生じた結晶を分離し、室温で0.5時間減圧乾燥することにより、化合物(I)の結晶0.82g(収率82.0%、I形結晶)を得た。
Example 2 Form I crystal of compound (I) Example 2a
1.0 g of compound (I) Form III crystals was dissolved in 10 mL of deionized water. To the obtained solution, 0.18 g of sodium chloride was added and dissolved at room temperature. The solution was cooled to 0 ° C. and then microfiltered. After 45 mL of cooled isopropanol was added dropwise over 1 hour, the mixture was stirred overnight. The resulting crystals were separated and dried under reduced pressure at room temperature for 0.5 hours to obtain 0.82 g of compound (I) crystals (yield 82.0%, Form I crystals).

実施例2b
塩化ナトリウム1.71gを脱イオン水100mLに溶解させた後、室温で10gの化合物(I)を加え溶解させた。この溶液を0〜5°Cに冷却して精密ろ過した後、実施例2aで得た化合物(I)のI形結晶50mg(0.5wt%)を投入し、0〜5°Cで1時間撹拌した。冷却したイソプロパノール500mLを1時間以上かけて滴下して終夜撹拌した後、結晶を分離した。得られた結晶を室温下で0.5時間減圧乾燥し、化合物(I)の結晶9.53g(収率94.8%、I形結晶)を得た。
Example 2b
After 1.71 g of sodium chloride was dissolved in 100 mL of deionized water, 10 g of compound (I) was added and dissolved at room temperature. The solution was cooled to 0 to 5 ° C. and subjected to microfiltration, and then 50 mg (0.5 wt%) of Form I crystals of compound (I) obtained in Example 2a were added, and the mixture was heated at 0 to 5 ° C. for 1 hour. Stir. 500 mL of cooled isopropanol was added dropwise over 1 hour or more and stirred overnight, and then the crystals were separated. The obtained crystals were dried under reduced pressure at room temperature for 0.5 hours to obtain 9.53 g of compound (I) crystals (yield 94.8%, Form I crystals).

比較例1 化合物(I)の凍結乾燥組成物
塩化ナトリウムを配合していない点以外は、実施例1と同手順で実施した。すなわち、700mgの化合物(I)を蒸留水に溶解し、全量を7gとした。薬液を孔径0.20μmのメンブランフィルター(MILLEX(登録商標)LG SLLGH13NH:Merck Millipore)で濾過し、5mLガラスバイアルに1gを充填した後、ゴム栓で半打栓した。薬液を充填したバイアルを凍結乾燥機(DFM−05B−S:アルバック)に入れ、凍結乾燥機の棚温度を5℃に設定し、常圧下1時間冷却した。その後、1時間かけて凍結乾燥機の棚温度を−40℃に冷却し薬液を凍結させ、3時間この温度を保持させた。続いて、凍結乾燥機内の圧力を約10 Paとし、6時間かけて凍結乾燥機の棚温度を−10℃に昇温させ、この状態を30時間保持させた。その後、凍結乾燥機内の圧力を10 Pa以下とし、7時間かけて凍結乾燥機の棚温度を25℃に昇温させ、この状態を15時間保持させた。乾燥終了後、窒素ガスを用いて凍結乾燥機内を常圧に戻し、ゴム栓で打栓した。バイアルを凍結乾燥機内から取り出し、アルミキャップを巻き締めて化合物(I)が非晶質である凍結乾燥組成物を得た。
Comparative Example 1 Lyophilized composition of Compound (I) The same procedure as in Example 1 was performed, except that sodium chloride was not blended. That is, 700 mg of compound (I) was dissolved in distilled water to make the total amount 7 g. The drug solution was filtered through a membrane filter (MILLEX (registered trademark) LG SLLGH13NH: Merck Millipore) having a pore size of 0.20 μm, filled in 1 g in a 5 mL glass vial, and then half-plugged with a rubber stopper. The vial filled with the drug solution was placed in a freeze dryer (DFM-05B-S: ULVAC), the shelf temperature of the freeze dryer was set to 5 ° C., and the vial was cooled under normal pressure for 1 hour. Thereafter, the shelf temperature of the freeze dryer was cooled to −40 ° C. over 1 hour to freeze the drug solution, and this temperature was maintained for 3 hours. Subsequently, the pressure in the freeze dryer was about 10 Pa, the shelf temperature of the freeze dryer was raised to −10 ° C. over 6 hours, and this state was maintained for 30 hours. Thereafter, the pressure in the freeze dryer was set to 10 Pa or less, the shelf temperature of the freeze dryer was raised to 25 ° C. over 7 hours, and this state was maintained for 15 hours. After the drying, the inside of the freeze dryer was returned to normal pressure using nitrogen gas and plugged with a rubber stopper. The vial was taken out from the lyophilizer and the aluminum cap was tightened to obtain a lyophilized composition in which Compound (I) was amorphous.

比較例2 化合物(I)のI形結晶(オクタデシルシリカゲルまたはレジンカラム精製を使用した製造法)
比較例2a
0.5M酢酸緩衝液(pH5.5、35mL)を氷冷し、化合物(I)(36g)と冷却した5M水酸化ナトリウム水溶液を交互に加えてpHを5.5に調整し、オクタデシルシリカゲルカラムクロマトグラフィー(3.6L)に付し、水で溶出した。活性フラクションを集め、水浴温度35℃にて減圧濃縮し、析出した結晶を終夜真空乾燥した。得られた結晶2.10gを粉砕した後、氷冷下にてイソプロパノール/水(19/1、13mL)を加え、0℃にて1時間撹拌した。懸濁液を濾過し、冷イソプロパノール/水(19/1、80mL)にて洗浄し、得られた結晶を真空ポンプして乾燥後、化合物(I)のI形結晶1.68gを得た(収率80%)。DSC吸熱ピーク111℃。60%イソプロパノール水溶液への溶解度;0.44%(10℃)、0.48%(20℃)。
Comparative Example 2 Form I Crystal of Compound (I) (Production Method Using Octadecyl Silica Gel or Resin Column Purification)
Comparative Example 2a
0.5M acetic acid buffer (pH 5.5, 35 mL) is ice-cooled, compound (I) (36 g) and a cooled 5M aqueous sodium hydroxide solution are added alternately to adjust the pH to 5.5, and an octadecyl silica gel column. Chromatography (3.6 L) was eluted with water. The active fractions were collected and concentrated under reduced pressure at a water bath temperature of 35 ° C., and the precipitated crystals were vacuum-dried overnight. After pulverizing 2.10 g of the obtained crystals, isopropanol / water (19/1, 13 mL) was added under ice cooling, and the mixture was stirred at 0 ° C. for 1 hour. The suspension was filtered, washed with cold isopropanol / water (19/1, 80 mL), and the crystals obtained were dried by vacuum pumping to obtain 1.68 g of Form I crystals of Compound (I) ( Yield 80%). DSC endothermic peak 111 ° C. Solubility in 60% aqueous isopropanol; 0.44% (10 ° C), 0.48% (20 ° C).

比較例2b
化合物(I)(正味4.253g)を0.2M燐酸緩衝液(pH6.5、73mL)に溶解しpH5.5とし、水(20mL)で希釈した。混合物を130mLまで濃縮、レジン精製(SP207、260mL)に付し、水(238mL)、10%イソプロパノール水溶液(780mL)にて溶出した。活性フラクションを集め、30mLまで減圧濃縮し、活性炭(精製白鷺、87mg)を投入し室温にて30分撹拌した。活性炭をメンブランフィルターでろ過、ろ液を凍結乾燥に付し、非晶質形態の化合物(I)を4.07g得た(収率95.7%)。本非晶質形態の化合物(I)0.2gを水(0.8mL)に溶解し、室温でイソプロパノール(1.2mL)を加え、I形結晶(比較例2a、1mg)を接種して撹拌子で3時間撹拌、析出結晶を濾過、乾燥し、化合物(I)のI形結晶0.1gを得た(収率50%)。
Comparative Example 2b
Compound (I) (net 4.253 g) was dissolved in 0.2 M phosphate buffer (pH 6.5, 73 mL) to pH 5.5 and diluted with water (20 mL). The mixture was concentrated to 130 mL, subjected to resin purification (SP207, 260 mL), and eluted with water (238 mL) and 10% aqueous isopropanol (780 mL). The active fractions were collected, concentrated to 30 mL under reduced pressure, activated carbon (purified birch, 87 mg) was added, and the mixture was stirred at room temperature for 30 minutes. The activated carbon was filtered through a membrane filter, and the filtrate was freeze-dried to obtain 4.07 g of amorphous form of Compound (I) (yield 95.7%). Dissolve 0.2 g of this amorphous form of Compound (I) in water (0.8 mL), add isopropanol (1.2 mL) at room temperature, inoculate with Form I crystals (Comparative Example 2a, 1 mg) and stir. The mixture was stirred for 3 hours, and the precipitated crystals were filtered and dried to obtain 0.1 g of Compound I (I) crystals (yield 50%).

比較例2c
化合物(I)(正味2.113g)と0.2M燐酸緩衝液(pH6.5、73mL)を交互に加えpH4.6に調整し、水(27mL)で希釈した。混合物を80mLまで減圧濃縮後、0.2M燐酸緩衝液(pH6.5、16mL)でpH5.4とし、水(48mL)で希釈した。本混合物をレジン精製(SP207、240mL)に付し、水(276mL)、10%イソプロパノール水溶液(720mL)にて溶出した。活性フラクションを集め、12mLまで減圧濃縮し、活性炭(精製白鷺、40mg)を投入し室温にて30分撹拌した。活性炭をメンブランフィルターでろ過、水で14mLに希釈した。水溶液にI形結晶(比較例2b、6mg)を接種し、室温で撹拌子にて撹拌して得られた懸濁液にイソプロパノール(84mL)を1時間かけて滴下した。滴下終了後、3時間撹拌、析出結晶を濾過、乾燥し、化合物(I)のI形結晶1.834gを得た(収率86.8%)。水分:5.37%,脱水物換算含量95.3%,HPLCエリア面積比99.3%。
Comparative Example 2c
Compound (I) (net 2.113 g) and 0.2 M phosphate buffer (pH 6.5, 73 mL) were alternately added to adjust to pH 4.6, and diluted with water (27 mL). The mixture was concentrated to 80 mL under reduced pressure, adjusted to pH 5.4 with 0.2 M phosphate buffer (pH 6.5, 16 mL), and diluted with water (48 mL). The mixture was subjected to resin purification (SP207, 240 mL) and eluted with water (276 mL) and 10% aqueous isopropanol (720 mL). The active fractions were collected, concentrated under reduced pressure to 12 mL, activated carbon (purified birch, 40 mg) was added, and the mixture was stirred at room temperature for 30 minutes. The activated carbon was filtered through a membrane filter and diluted to 14 mL with water. Form I crystals (Comparative Example 2b, 6 mg) were inoculated into the aqueous solution, and isopropanol (84 mL) was added dropwise over 1 hour to the suspension obtained by stirring with a stirring bar at room temperature. After completion of the dropwise addition, the mixture was stirred for 3 hours, and the precipitated crystals were filtered and dried to obtain 1.834 g of Compound I (I) crystals (yield 86.8%). Moisture: 5.37%, dehydrated content 95.3%, HPLC area ratio 99.3%.

試験例1 粉末X線回折測定
実施例1a、実施例1bおよび比較例1で得られた凍結乾燥組成物、実施例2aおよび実施例2bで得られた結晶、比較例2a、比較例2bおよび比較例2cで得られた結晶、ならびに塩化ナトリウムについて、粉末X線回折装置(RINT2200:Rigaku)を用いて、下記に示す条件で粉末X線回折測定を実施した。
<測定条件>
X線 :Cu/40kV/40mA
試料回転数 :60rpm
発散スリット :0.5°
散乱スリット :0.5°
受光スリット :0.3mm
モノクロ受光スリット :0.8mm
サンプリング幅 :0.02°
検出器 :シンチレーションカウンター
スキャンスピード :1°/min
走査範囲 :5°〜40°
Test Example 1 Powder X-ray Diffraction Measurement Lyophilized composition obtained in Example 1a, Example 1b and Comparative Example 1, crystals obtained in Example 2a and Example 2b, Comparative Example 2a, Comparative Example 2b and Comparative The crystal obtained in Example 2c and sodium chloride were subjected to powder X-ray diffraction measurement under the conditions shown below using a powder X-ray diffractometer (RINT2200: Rigaku).
<Measurement conditions>
X-ray: Cu / 40kV / 40mA
Sample rotation speed: 60 rpm
Divergent slit: 0.5 °
Scattering slit: 0.5 °
Light receiving slit: 0.3 mm
Monochrome light receiving slit: 0.8mm
Sampling width: 0.02 °
Detector: Scintillation counter scan speed: 1 ° / min
Scanning range: 5 ° -40 °

実施例1a、実施例1b、実施例2b、比較例1、及び塩化ナトリウムのX線回折チャートをそれぞれ図1、図2、図3、図4、及び図5に示す。実施例1aおよび実施例1bで得られた凍結乾燥組成物は結晶であり、比較例1で得られた凍結乾燥組成物は非晶質であった。また、実施例2bの結晶は、そのX線回折チャートから、化合物(I)のI形結晶であることが確認できた。同様に、実施例2a及び比較例2a〜2cの結晶も、データは示さないが、そのX線回折チャートから、化合物(I)のI形結晶であることが確認できた。
実施例2a及び2bならびに比較例2a〜2cでは、いずれも同じ化合物(I)のI形結晶が得られたことから、塩化ナトリウムを含む水溶液から結晶化させることで、比較例2a〜2cで行われたオクタデシルシリカゲルカラムクロマトグラフィーやレジンによる精製を経ることなく、I形結晶を優位に製造できることが示された。
The X-ray diffraction charts of Example 1a, Example 1b, Example 2b, Comparative Example 1, and sodium chloride are shown in FIG. 1, FIG. 2, FIG. 3, FIG. The lyophilized composition obtained in Example 1a and Example 1b was crystalline, and the lyophilized composition obtained in Comparative Example 1 was amorphous. Further, from the X-ray diffraction chart, it was confirmed that the crystal of Example 2b was a Form I crystal of Compound (I). Similarly, the crystals of Example 2a and Comparative Examples 2a to 2c are not shown in the data, but from their X-ray diffraction charts, it was confirmed that they were Form I crystals of Compound (I).
In Examples 2a and 2b and Comparative Examples 2a to 2c, the same type I crystals of the compound (I) were obtained. Therefore, by performing crystallization from an aqueous solution containing sodium chloride, Comparative Examples 2a to 2c were conducted. It was shown that Form I crystals can be produced preferentially without going through the purification by octadecyl silica gel column chromatography or resin.

実施例1a及び1bのX線回折チャートには、31〜32°に実施例2bには存在しないピークがみられる。このピークは、塩化ナトリウムのX線回折チャートの31〜32°にピークが観測されることから(図5)、凍結乾燥組成物中に含まれる塩化ナトリウムに由来することがわかる。本発明では、化合物(I)と無機塩との水溶液を凍結乾燥させているから、得られた凍結乾燥組成物に無機塩が含まれるのは当然といえる。実施例1a及び1bのX線回折チャートから31〜32°のピークを除いたパターンは、実施例2bのパターンと一致することから、実施例1a及び1bで得られた結晶もI形結晶であることが確認できた。一方、実施例2bで得たI形結晶は、イオンクロマトグラフィーでナトリウムイオンと塩化物イオンの含有量を調べたところ、共に0.1%以下であった。本発明では、化合物(I)と無機塩を含む水溶液から化合物(I)の結晶化を行っているが、得られた化合物(I)の結晶には、無機塩は含まれていないことが確認できた。   In the X-ray diffraction charts of Examples 1a and 1b, a peak that does not exist in Example 2b is observed at 31 to 32 °. This peak is derived from sodium chloride contained in the lyophilized composition because the peak is observed at 31 to 32 ° on the X-ray diffraction chart of sodium chloride (FIG. 5). In the present invention, since the aqueous solution of the compound (I) and the inorganic salt is lyophilized, it can be said that the resulting lyophilized composition contains the inorganic salt. Since the pattern obtained by removing the 31-32 ° peak from the X-ray diffraction charts of Examples 1a and 1b coincides with the pattern of Example 2b, the crystals obtained in Examples 1a and 1b are also I-type crystals. I was able to confirm. On the other hand, when the content of sodium ion and chloride ion of the type I crystal obtained in Example 2b was examined by ion chromatography, it was 0.1% or less. In the present invention, the compound (I) is crystallized from an aqueous solution containing the compound (I) and an inorganic salt, but it is confirmed that the obtained compound (I) crystals do not contain an inorganic salt. did it.

試験例2 安定性評価
実施例1aおよび実施例1bで得られた結晶および比較例1で得られた非晶質凍結乾燥組成物について、恒温恒湿槽(LH20−12M:ナガノサイエンス)を用いて60℃での苛酷試験(2週間および1箇月間)を行い、類縁物質を以下の条件にてHPLC法で測定した。
<試験条件>
カラム:Warers Atlantis dC18、5μm、4.6×250mm
カラム温度:35℃付近の一定温度
注入量:5μL
検出器:紫外吸光光度計(測定波長:210nm)
移動相A:リン酸水素二アンモニウム1.32gを水900mLに溶かし、リン酸を加えてpH3.0に調整した後、水を加えて1000mLとする。
移動相B:液体クロマトグラフィー用アセトニトリル
勾配プログラム:移動相A及び移動相Bの混合比を次のように変えて制御する。
注入後の時間(分) 移動相A(vol%) 移動相B(vol%)
0〜5 100 0
5〜20 100→90 0→10
20〜30 90 10
流量:1.0mL/min
化合物(I)の保持時間:約6.5min
測定時間:30min
各試料の総類縁物質量の推移を表2に示す。結晶性の凍結乾燥組成物は非晶質の凍結乾燥組成物と比較して開始時の類縁物質量が少なかった。また、非晶質の凍結乾燥組成物では苛酷試験後に著しく類縁物質量が増加したのに対して、結晶性の凍結乾燥組成物は類縁物質量の増加が抑制されていた。以上の結果から、本発明の方法で化合物(I)を結晶性の凍結乾燥組成物とすることで、保存安定性を劇的に改善できることが確認された。
Test Example 2 Stability Evaluation About the crystals obtained in Example 1a and Example 1b and the amorphous lyophilized composition obtained in Comparative Example 1, using a thermo-hygrostat (LH20-12M: Nagano Science) A severe test (2 weeks and 1 month) at 60 ° C. was conducted, and related substances were measured by HPLC method under the following conditions.
<Test conditions>
Column: Warers Atlantis dC18, 5 μm, 4.6 × 250 mm
Column temperature: constant temperature around 35 ° C. Injection volume: 5 μL
Detector: UV absorption photometer (measurement wavelength: 210 nm)
Mobile phase A: Dissolve 1.32 g of diammonium hydrogen phosphate in 900 mL of water, add phosphoric acid to adjust the pH to 3.0, and then add water to make 1000 mL.
Mobile phase B: Acetonitrile gradient program for liquid chromatography: The mixing ratio of mobile phase A and mobile phase B is changed and controlled as follows.
Time after injection (minutes) Mobile phase A (vol%) Mobile phase B (vol%)
0-5 100 0
5-20 100 → 90 0 → 10
20-30 90 10
Flow rate: 1.0 mL / min
Retention time of compound (I): about 6.5 min
Measurement time: 30 min
Table 2 shows the transition of the total amount of related substances in each sample. The crystalline lyophilized composition had less starting material relative to the amorphous lyophilized composition. In addition, the amorphous lyophilized composition significantly increased the amount of the related substance after the severe test, whereas the crystalline lyophilized composition suppressed the increase in the amount of the related substance. From the above results, it was confirmed that the storage stability can be dramatically improved by using Compound (I) as a crystalline lyophilized composition by the method of the present invention.

参考例1 化合物(I)の製造方法
参考例1a
tert−ブチル {2−[({[(2S,5R)−6−ベンジルオキシ−7−オキソ−1,6−ジアザビシクロ[3.2.1]オクト−2−イル]カルボニル}アミノ)オキシ]エチル}カーバメート

(2S,5R)−6−(ベンジルオキシ)−7−オキソ−1,6−ジアザビシクロ[3.2.1]オクタン−2−カルボン酸(4.80kg、17.373mol)の脱水酢酸エチル(62L)溶液を−30℃に冷却し、クロロギ酸イソブチル(2.52kg)、トリエチルアミン(1.85kg)、を順次滴下し、−30℃にて15分間撹拌した。反応液にtert−ブチル 2−(アミノオキシ)エチルカーバメートの脱水酢酸エチル溶液(15wt%、23.45kg)を30分で加え(洗い込み脱水酢酸エチル2L)、0℃まで1時間かけて昇温した。混合物を8%クエン酸水溶液(65L)、5%重曹水(60L)、水(60L)で順次洗浄し、24Lまで濃縮した。濃縮液に酢酸エチル(24L)を加え24Lまで置換濃縮する操作を2回行い、得られた濃縮液に酢酸エチル(29L)、へキサン(72L)を加え、終夜撹拌した。混合物にヘキサン(82L)を滴下し2時間撹拌した。析出結晶をろ取、ヘキサンで洗浄、真空乾燥して標題化合物5.51kgを得た(収率76%)。
HPLC:COSMOSIL 5C18 MS−II 4.6×150mm,33.3mM phosphate buffer/MeCN=50/50,1.0mL/min,UV210nm,RT4.4min;HNMR(400MHz,CDCl)δ1.44(s,9H),1.56−1.70(m,1H),1.90−2.09(m,2H),2.25−2.38(m,1H),2.76(d,J=11.6Hz,1H),3.03(br.d.,J=11.6Hz,1H),3.24−3.47(m,3H),3.84−4.01(m,3H),4.90(d,J=11.6Hz,1H),5.05(d,J=11.6Hz,1H),5.44(br.s.,1H),7.34−7.48(m,5H),9.37(br.s.,1H);MS m/z 435[M+H]
Reference Example 1 Production Method of Compound (I) Reference Example 1a
tert-butyl {2-[({[(2S, 5R) -6-benzyloxy-7-oxo-1,6-diazabicyclo [3.2.1] oct-2-yl] carbonyl} amino) oxy] ethyl } Carbamate

(2S, 5R) -6- (Benzyloxy) -7-oxo-1,6-diazabicyclo [3.2.1] octane-2-carboxylic acid (4.80 kg, 17.373 mol) in dehydrated ethyl acetate (62 L ) The solution was cooled to −30 ° C., isobutyl chloroformate (2.52 kg) and triethylamine (1.85 kg) were successively added dropwise, and the mixture was stirred at −30 ° C. for 15 minutes. Dehydrated ethyl acetate solution of tert-butyl 2- (aminooxy) ethylcarbamate (15 wt%, 23.45 kg) was added to the reaction solution over 30 minutes (2 L of washed dehydrated ethyl acetate), and the temperature was raised to 0 ° C. over 1 hour. did. The mixture was washed successively with 8% aqueous citric acid solution (65 L), 5% aqueous sodium bicarbonate (60 L), and water (60 L), and concentrated to 24 L. The operation of adding ethyl acetate (24 L) to the concentrate and substituting and concentrating to 24 L was performed twice, and ethyl acetate (29 L) and hexane (72 L) were added to the resulting concentrate, and the mixture was stirred overnight. Hexane (82 L) was added dropwise to the mixture and stirred for 2 hours. The precipitated crystals were collected by filtration, washed with hexane, and dried under vacuum to obtain 5.51 kg of the title compound (yield 76%).
HPLC: COSMOSIL 5C18 MS-II 4.6 × 150 mm, 33.3 mM phosphate buffer / MeCN = 50/50, 1.0 mL / min, UV 210 nm, RT 4.4 min; 1 HNMR (400 MHz, CDCl 3 ) δ 1.44 (s , 9H), 1.56-1.70 (m, 1H), 1.90-2.09 (m, 2H), 2.25-2.38 (m, 1H), 2.76 (d, J = 11.6 Hz, 1H), 3.03 (br.d., J = 11.6 Hz, 1H), 3.24-3.47 (m, 3H), 3.84-4.01 (m, 3H) ), 4.90 (d, J = 11.6 Hz, 1H), 5.05 (d, J = 11.6 Hz, 1H), 5.44 (br.s., 1H), 7.34-7. 48 (m, 5H), 9.37 (br.s., 1H) ; MS m / z 435 [M + H] +.

参考例1b
tert−ブチル {2−[({[(2S,5R)−6−ヒドロキシ−7−オキソ−1,6−ジアザビシクロ[3.2.1]オクト−2−イル]カルボニル}アミノ)オキシ]エチル}カーバメート

tert−ブチル {2−[({[(2S,5R)−6−ベンジルオキシ−7−オキソ−1,6−ジアザビシクロ[3.2.1]オクト−2−イル]カルボニル}アミノ)オキシ]エチル}カーバメート (5.52kg、12.705mol)のメタノール溶液(85L)に、10%パラジウム炭素触媒(50%含水、0.55kg)を加え、水素加圧(0.1MPa)下、1時間撹拌した。触媒を濾過し、固体をメタノール(25L)で洗浄した。ろ液を併せて、液温10℃以下で39Lまで減圧濃縮した。濃縮液にアセトニトリル(44L)を加えて液温10℃以下で39Lまで置換濃縮する操作を2回行い、混合物を0℃に冷却して終夜撹拌した。析出結晶をろ取、アセトニトリル(24L)で洗浄、真空乾燥して標題化合物を3.63kg得た(収率83%)。
HPLC:COSMOSIL 5C18 MS−II 4.6×150mm,33.3mM phosphate buffer/MeCN=75/25,1.0mL/min,UV210nm,RT3.9min;HNMR(400MHz,CDOD)δ1.44(s,9H),1.73−1.83(m,1H),1.86−1.99(m,1H),2.01−2.12(m,1H),2.22(br.dd.,J=15.0,7.0Hz,1H),3.03(d,J=12.0Hz,1H),3.12(br.d.,J=12.0Hz,1H),3.25−3.35(m,2H),3.68−3.71(m,1H),3.82−3.91(m,3H);MS m/z 345[M+H]
Reference Example 1b
tert-butyl {2-[({[(2S, 5R) -6-hydroxy-7-oxo-1,6-diazabicyclo [3.2.1] oct-2-yl] carbonyl} amino) oxy] ethyl} Carbamate

tert-butyl {2-[({[(2S, 5R) -6-benzyloxy-7-oxo-1,6-diazabicyclo [3.2.1] oct-2-yl] carbonyl} amino) oxy] ethyl } To a methanol solution (85 L) of carbamate (5.52 kg, 12.705 mol), 10% palladium carbon catalyst (50% water content, 0.55 kg) was added and stirred for 1 hour under hydrogen pressure (0.1 MPa). . The catalyst was filtered and the solid was washed with methanol (25 L). The filtrates were combined and concentrated under reduced pressure to 39 L at a liquid temperature of 10 ° C. or lower. The operation of adding acetonitrile (44 L) to the concentrated liquid and substituting and concentrating to 39 L at a liquid temperature of 10 ° C. or lower was performed twice, and the mixture was cooled to 0 ° C. and stirred overnight. The precipitated crystals were collected by filtration, washed with acetonitrile (24 L), and dried under vacuum to obtain 3.63 kg of the title compound (yield 83%).
HPLC: COSMOSIL 5C18 MS-II 4.6 × 150 mm, 33.3 mM phosphate buffer / MeCN = 75/25, 1.0 mL / min, UV 210 nm, RT 3.9 min; 1 HNMR (400 MHz, CD 3 OD) δ1.44 ( s, 9H), 1.73-1.83 (m, 1H), 1.86-1.99 (m, 1H), 2.01-2.12 (m, 1H), 2.22 (br. dd., J = 15.0, 7.0 Hz, 1H), 3.03 (d, J = 12.0 Hz, 1H), 3.12 (br.d., J = 12.0 Hz, 1H), 3 .25-3.35 (m, 2H), 3.68-3.71 (m, 1H), 3.82-3.91 (m, 3H); MS m / z 345 [M + H] + .

参考例1c
テトラブチルアンモニウム tert−ブチル {2−[({[(2S,5R)−7−オキソ−6−(スルホオキシ)−1,6−ジアザビシクロ[3.2.1]オクト−2−イル]カルボニル}アミノ)オキシ]エチル}カーバメート

アセトニトリル(51L)に、水(51mL)、tert−ブチル {2−[({[(2S,5R)−6−ヒドロキシ−7−オキソ−1,6−ジアザビシクロ[3.2.1]オクト−2−イル]カルボニル}アミノ)オキシ]エチル}カーバメート(3.53kg、10.251mol)、三酸化イオウ−ピリジン錯体(3.95kg)、2,6−ルチジン(2.21kg)を順次加え、35〜45℃で終夜撹拌した。混合物をろ過して不溶物を除き、固体をアセトニトリル(11L)で洗浄、ろ液を併せて17Lまで濃縮した。濃縮液を10℃以下に冷却し、9%燐酸二水素ナトリウム水溶液(60L)、酢酸エチル(113L)で分層し、有機層を再度9%燐酸二水素ナトリウム水溶液(11L)で抽出した。得られた水層に酢酸エチル(113L)、30%硫酸水素テトラブチルアンモニウムの水溶液(12.87kg)、37%燐酸二水素ナトリウム水溶液(56.5kg)を加え、15分間撹拌した。有機層を分層し、20%燐酸2水素ナトリウム水溶液(60L)で洗浄、無水硫酸マグネシウム(2.5kg)にて乾燥、濾過後、減圧濃縮した。濃縮液中に析出した標題化合物の結晶は酢酸エチルで溶解して全液量を20Lに調整し、標題化合物の酢酸エチル溶液32.55kgを得た(正味6.25kg、収率92%)。本溶液はさらに精製することなく次工程に付した。
Reference Example 1c
Tetrabutylammonium tert-butyl {2-[({[(2S, 5R) -7-oxo-6- (sulfooxy) -1,6-diazabicyclo [3.2.1] oct-2-yl] carbonyl} amino ) Oxy] ethyl} carbamate

To acetonitrile (51 L), water (51 mL), tert-butyl {2-[({[(2S, 5R) -6-hydroxy-7-oxo-1,6-diazabicyclo [3.2.1] oct-2 -Yl] carbonyl} amino) oxy] ethyl} carbamate (3.53 kg, 10.251 mol), sulfur trioxide-pyridine complex (3.95 kg), 2,6-lutidine (2.21 kg) were added in that order. Stir at 45 ° C. overnight. The mixture was filtered to remove insolubles, the solid was washed with acetonitrile (11 L), and the filtrate was combined and concentrated to 17 L. The concentrated solution was cooled to 10 ° C. or lower, separated into 9% sodium dihydrogen phosphate aqueous solution (60 L) and ethyl acetate (113 L), and the organic layer was extracted again with 9% sodium dihydrogen phosphate aqueous solution (11 L). Ethyl acetate (113 L), 30% tetrabutylammonium hydrogensulfate aqueous solution (12.87 kg), and 37% sodium dihydrogenphosphate aqueous solution (56.5 kg) were added to the obtained aqueous layer, and the mixture was stirred for 15 minutes. The organic layer was separated, washed with 20% aqueous sodium dihydrogen phosphate (60 L), dried over anhydrous magnesium sulfate (2.5 kg), filtered, and concentrated under reduced pressure. The crystals of the title compound precipitated in the concentrate were dissolved in ethyl acetate to adjust the total liquid volume to 20 L to obtain 32.55 kg of the ethyl acetate solution of the title compound (net 6.25 kg, yield 92%). This solution was subjected to the next step without further purification.

参考例1d 化合物(I)の粗生成物

テトラブチルアンモニウム tert−ブチル {2−[({[(2S,5R)−7−オキソ−6−(スルホオキシ)−1,6−ジアザビシクロ[3.2.1]オクト−2−イル]カルボニル}アミノ)オキシ]エチル}カーバメート(788g、正味467.1g、0.701mol)のジクロロメタン(934mL)溶液を窒素気流下にて−20℃に冷却し、トリフルオロ酢酸(934mL)を15分間で滴下、0℃に昇温して1時間撹拌した。反応液を−20℃に冷却しジイソプロピルエーテル(4.17L)を滴下し、混合物を−6℃に昇温して1時間撹拌した。沈殿をろ過、ジイソプロピルエーテル(2x1L)にて懸濁洗浄、湿固体を真空乾燥して標題化合物342.08gを得た(正味222.35g、収率98%、HPLCエリア面積比96.1%、CE/TFA27mol%)。
Reference Example 1d Crude product of compound (I)

Tetrabutylammonium tert-butyl {2-[({[(2S, 5R) -7-oxo-6- (sulfooxy) -1,6-diazabicyclo [3.2.1] oct-2-yl] carbonyl} amino )] Oxy] ethyl} carbamate (788 g, net 467.1 g, 0.701 mol) in dichloromethane (934 mL) was cooled to −20 ° C. under a stream of nitrogen and trifluoroacetic acid (934 mL) was added dropwise over 15 minutes. The temperature was raised to ° C. and stirred for 1 hour. The reaction solution was cooled to −20 ° C., diisopropyl ether (4.17 L) was added dropwise, and the mixture was heated to −6 ° C. and stirred for 1 hour. The precipitate was filtered, suspended and washed with diisopropyl ether (2 × 1 L), and the wet solid was dried in vacuo to give 342.08 g of the title compound (net 222.35 g, yield 98%, HPLC area ratio 96.1%, CE / TFA 27 mol%).

参考例1e
0.2M燐酸緩衝液(pH6.5、7.2L)を10℃以下に冷却し、撹拌しながら(2S,5R)−N−(2−アミノエトキシ)−7−オキソ−6−(スルホオキシ)−1,6−ジアザビシクロ[3.2.1]オクタン−2−カルボキサミド (参考例1d 化合物(I)の粗生成物、正味1.2kg)と氷冷した0.2M 燐酸緩衝液(pH6.5、3.5L)を交互に少量ずつ加えてpHが4.2〜4.8の間でpHを調整、最終的にpH4.6に調整した。混合物を水(19.3L)で希釈(全量30L)、液温18℃以下で24Lまで減圧濃縮した。濃縮液のpHを0.2M 燐酸緩衝液(pH6.5、2.4L)でpH5.4に調整し、水で43.2Lに希釈、レジン(セパビーズSP207、75L)精製に付し、水(83L)と10%イソプロパノール水溶液で溶出して活性フラクションを集めた。活性フラクションを併せ(33L)、液温15℃以下で7.2Lまで濃縮し、活性炭(24g)を加えて30分間撹拌した。活性炭をメンブランフィルターでろ過、水(0.4Lx2)で洗浄した。ろ液を併せ、液温を20〜25℃に調整、特許文献6の実施例7aに記載の方法に従い得たIII形結晶(3.6g)を接種した。混合物にイソプロパノール(50.4L)を1時間かけて滴下し、終夜撹拌した。析出した結晶をろ取、イソプロパノール(4.8L)で洗浄、湿結晶の品温が20℃になるまで真空乾燥し化合物(I)のIII形結晶1.17kgを得た(収率90%)。
Reference Example 1e
A 0.2M phosphate buffer (pH 6.5, 7.2 L) was cooled to 10 ° C. or lower and stirred with (2S, 5R) -N- (2-aminoethoxy) -7-oxo-6- (sulfooxy). -1,6-diazabicyclo [3.2.1] octane-2-carboxamide (Reference Example 1d Crude product of compound (I), net 1.2 kg) and ice-cooled 0.2 M phosphate buffer (pH 6.5) , 3.5 L) was alternately added little by little to adjust the pH between 4.2 and 4.8, and finally to pH 4.6. The mixture was diluted with water (19.3 L) (total amount: 30 L), and concentrated under reduced pressure to 24 L at a liquid temperature of 18 ° C. or lower. The pH of the concentrate is adjusted to pH 5.4 with 0.2 M phosphate buffer (pH 6.5, 2.4 L), diluted to 43.2 L with water, subjected to purification of the resin (Separbeads SP207, 75 L), and water ( 83 L) and 10% aqueous isopropanol to collect active fractions. The active fractions were combined (33 L), concentrated to 7.2 L at a liquid temperature of 15 ° C. or lower, activated carbon (24 g) was added, and the mixture was stirred for 30 minutes. The activated carbon was filtered through a membrane filter and washed with water (0.4 L × 2). The filtrate was combined, the liquid temperature was adjusted to 20 to 25 ° C., and the type III crystal (3.6 g) obtained according to the method described in Example 7a of Patent Document 6 was inoculated. Isopropanol (50.4 L) was added dropwise to the mixture over 1 hour and stirred overnight. The precipitated crystals were collected by filtration, washed with isopropanol (4.8 L), and dried in vacuo until the product temperature of the wet crystals reached 20 ° C. to obtain 1.17 kg of compound III (III) crystals (yield 90%). .

本発明によれば、工業的スケールで、簡便に、化合物(I)の結晶、特に単一の結晶形、とりわけ安定なI形結晶を製造することができ、また、保存安定性に優れた化合物(I)、特にその単一の結晶形、とりわけI形結晶の凍結乾燥組成物を提供することもできるので、化合物(I)の注射剤などの有益な製法を提供する。   According to the present invention, a crystal of compound (I), particularly a single crystal form, particularly a stable form I crystal, can be easily produced on an industrial scale, and a compound having excellent storage stability. It is also possible to provide a lyophilized composition of (I), in particular its single crystal form, in particular of the I form crystal, thus providing a useful process such as an injection of compound (I).

Claims (15)

下記式(I):

で表される化合物の結晶の製造方法であって、前記化合物と無機塩とを含む水溶液から、前記化合物を結晶化させることを含む、製造方法。
The following formula (I):

A method for producing a crystal of a compound represented by the formula: wherein the compound is crystallized from an aqueous solution containing the compound and an inorganic salt.
粉末X線回析図形において面間隔(d)7.34、5.66、5.53、5.30、5.02、4.66、4.37、4.28、4.06、3.68、3.62、3.47、3.36、3.30、3.16、3.11、3.03、2.99、及び2.50Åに特徴的なピークを有する前記化合物のI形結晶が製造される、請求項1記載の製造方法。   Surface spacing (d) in powder X-ray diffraction pattern 7.34, 5.66, 5.53, 5.30, 5.02, 4.66, 4.37, 4.28, 4.06, 3. Form I of said compound with characteristic peaks at 68, 3.62, 3.47, 3.36, 3.30, 3.16, 3.11, 3.03, 2.99, and 2.50Å The manufacturing method of Claim 1 with which a crystal | crystallization is manufactured. 前記化合物と無機塩とを含む水溶液が、前記化合物の水溶液に前記無機塩を溶解することにより得られる、請求項1又は2記載の製造方法。   The production method according to claim 1 or 2, wherein an aqueous solution containing the compound and an inorganic salt is obtained by dissolving the inorganic salt in an aqueous solution of the compound. 前記化合物と無機塩とを含む水溶液に貧溶媒を加えることにより前記化合物が結晶化される、請求項1〜3のいずれか1項記載の製造方法。   The manufacturing method of any one of Claims 1-3 by which the said compound is crystallized by adding a poor solvent to the aqueous solution containing the said compound and inorganic salt. 前記貧溶媒がアルコールである、請求項4記載の製造方法。   The manufacturing method of Claim 4 whose said poor solvent is alcohol. 前記化合物と無機塩とを含む水溶液を凍結乾燥させることにより前記化合物が結晶化される、請求項1〜3のいずれか1項記載の製造方法。   The manufacturing method of any one of Claims 1-3 by which the said compound is crystallized by freeze-drying the aqueous solution containing the said compound and inorganic salt. 下記式(I):

で表される化合物を含む凍結乾燥組成物の製造方法であって、請求項1記載の方法によって前記化合物を結晶化させることを含む、製造方法。
The following formula (I):

A method for producing a lyophilized composition comprising a compound represented by the formula: wherein the compound is crystallized by the method of claim 1.
下記式(I):

で表される化合物を含む凍結乾燥組成物の製造方法であって、前記化合物と無機塩とを含む水溶液を凍結乾燥することによって前記化合物を結晶化させることを含む、製造方法。
The following formula (I):

A method for producing a lyophilized composition comprising a compound represented by the formula: wherein the compound is crystallized by lyophilizing an aqueous solution comprising the compound and an inorganic salt.
前記化合物が、粉末X線回析図形において面間隔(d)7.34、5.66、5.53、5.30、5.02、4.66、4.37、4.28、4.06、3.68、3.62、3.47、3.36、3.30、3.16、3.11、3.03、2.99、及び2.50Åに特徴的なピークを有するI形結晶に結晶化される、請求項7又は8記載の製造方法。   In the powder X-ray diffraction pattern, the compound has an interplanar spacing (d) of 7.34, 5.66, 5.53, 5.30, 5.02, 4.66, 4.37, 4.28, 4. I with characteristic peaks at 06, 3.68, 3.62, 3.47, 3.36, 3.30, 3.16, 3.11, 3.03, 2.99, and 2.50 Å The manufacturing method of Claim 7 or 8 crystallized to a shape crystal. 前記化合物と無機塩とを含む水溶液が、前記化合物の水溶液に前記無機塩を溶解することにより得られる、請求項7〜9のいずれか1項記載の製造方法。   The manufacturing method according to any one of claims 7 to 9, wherein an aqueous solution containing the compound and an inorganic salt is obtained by dissolving the inorganic salt in an aqueous solution of the compound. 凍結物の熱処理及び再凍結操作を実施しないことを特徴とする請求項6〜10のいずれか1項記載の製造方法。   The manufacturing method according to any one of claims 6 to 10, wherein the heat treatment and refreezing operation of the frozen product are not performed. 前記無機塩が塩化ナトリウムである、請求項1〜11のいずれか1項記載の製造方法。   The manufacturing method of any one of Claims 1-11 whose said inorganic salt is sodium chloride. 下記式(I)で表される化合物の結晶と無機塩を含むことを特徴とする凍結乾燥組成物。
A freeze-dried composition comprising crystals of a compound represented by the following formula (I) and an inorganic salt.
前記化合物の結晶が、粉末X線回析図形において面間隔(d)7.34、5.66、5.53、5.30、5.02、4.66、4.37、4.28、4.06、3.68、3.62、3.47、3.36、3.30、3.16、3.11、3.03、2.99、及び2.50Åに特徴的なピークを有するI形結晶である、請求項13記載の凍結乾燥組成物。   The crystal of the compound has an interplanar spacing (d) of 7.34, 5.66, 5.53, 5.30, 5.02, 4.66, 4.37, 4.28 in a powder X-ray diffraction pattern. Characteristic peaks at 4.06, 3.68, 3.62, 3.47, 3.36, 3.30, 3.16, 3.11, 3.03, 2.99, and 2.50 Å 14. The lyophilized composition according to claim 13, wherein the composition is a form I crystal. 前記無機塩が塩化ナトリウムである、請求項13〜14のいずれか1項記載の凍結乾燥組成物。

The lyophilized composition according to any one of claims 13 to 14, wherein the inorganic salt is sodium chloride.

JP2016562689A 2014-12-05 2015-12-04 Method for producing crystals of diazabicyclooctane derivative and stable lyophilized preparation Active JP6779787B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014246425 2014-12-05
JP2014246425 2014-12-05
PCT/JP2015/084094 WO2016088863A1 (en) 2014-12-05 2015-12-04 Method for producing crystals of diazabicyclooctane derivative and stable lyophilized preparation

Publications (2)

Publication Number Publication Date
JPWO2016088863A1 true JPWO2016088863A1 (en) 2017-09-14
JP6779787B2 JP6779787B2 (en) 2020-11-04

Family

ID=56091802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016562689A Active JP6779787B2 (en) 2014-12-05 2015-12-04 Method for producing crystals of diazabicyclooctane derivative and stable lyophilized preparation

Country Status (18)

Country Link
US (2) US10294224B2 (en)
EP (1) EP3228620B1 (en)
JP (1) JP6779787B2 (en)
KR (1) KR102555657B1 (en)
CN (1) CN107001366B (en)
AR (1) AR102915A1 (en)
AU (1) AU2015355970B2 (en)
BR (1) BR112017010445B8 (en)
CA (1) CA2969192C (en)
ES (1) ES2821826T3 (en)
IL (1) IL252691B (en)
MX (1) MX2017007191A (en)
MY (1) MY190283A (en)
RU (1) RU2732129C2 (en)
SG (1) SG11201704576SA (en)
TW (1) TWI691499B (en)
WO (1) WO2016088863A1 (en)
ZA (1) ZA201704063B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2857401T3 (en) 2012-05-30 2020-02-28 Meiji Seika Pharma Co., Ltd. Novel -lactamase inhibitor and method for producing same
SG11201602723RA (en) 2013-10-08 2016-05-30 Meiji Seika Pharma Co Ltd Crystals of diazabicyclooctane derivative and production method for crystals of diazabicyclooctane derivative
EP3228620B1 (en) 2014-12-05 2020-09-02 Meiji Seika Pharma Co., Ltd. Method for producing crystals of diazabicyclooctane derivative and stable lyophilized preparation
US10584123B2 (en) 2017-09-27 2020-03-10 Fedora Pharmaceuticals Inc. Pharmaceutical forms of diazabicyclooctane derivatives and manufacturing method thereof
JP7179058B2 (en) * 2017-09-27 2022-11-28 Meiji Seikaファルマ株式会社 Dosage form of diazabicyclooctane derivative and its production process
US10759800B2 (en) 2017-09-27 2020-09-01 Fedora Pharmaceuticals Inc. Crystalline forms of diazabicyclooctane derivatives and production process thereof
JP6375463B1 (en) * 2018-02-28 2018-08-15 日本曹達株式会社 Method for producing bis (fluorosulfonyl) amide alkali metal salt powder
CN110314163A (en) * 2018-03-30 2019-10-11 杭州森泽医药科技有限公司 A kind of latamoxef sodium pharmaceutical composition and application
JP7638693B2 (en) 2020-12-15 2025-03-04 大阪瓦斯株式会社 Method for producing hydroxyalkanoic acid crystals and crystalline polymorphs of hydroxyalkanoic acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029913A1 (en) * 1994-05-02 1995-11-09 Shionogi & Co., Ltd. Crystal of pyrrolidylthiocarbapenem derivative, lyophilized preparation containing said crystal, and process for producing the same
WO2013180197A1 (en) * 2012-05-30 2013-12-05 Meiji Seikaファルマ株式会社 NOVEL β-LACTAMASE INHIBITOR AND METHOD FOR PRODUCING SAME
WO2015053297A1 (en) * 2013-10-08 2015-04-16 Meiji Seikaファルマ株式会社 Crystals of diazabicyclooctane derivative and production method for crystals of diazabicyclooctane derivative
JP6453222B2 (en) * 2013-09-24 2019-01-16 Meiji Seikaファルマ株式会社 Preparation of diazabicyclooctane derivatives and their intermediates

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1589317A (en) * 1977-11-24 1981-05-13 Lilly Co Eli Freeze drying cephalothin sodium
JPS6019759B2 (en) 1977-11-24 1985-05-17 イ−ライ・リリ−・アンド・カンパニ− For parenteral administration 11115152139199 2-3-13 Kyobashi, Chuo-ku, Tokyo
JPS6019759A (en) 1983-07-15 1985-01-31 Nippon Soda Co Ltd Formamidoxime derivative, its preparation and agricultural and horticultural fungicide
JPS60255723A (en) 1984-05-31 1985-12-17 Ono Pharmaceut Co Ltd Freeze-dried crystalline preparation of gabexate mesylate, and its production
JPH07117533B2 (en) 1985-08-28 1995-12-18 株式会社生体科学研究所 Transferrin and its uses
PL157979B1 (en) 1989-02-14 1992-07-31 Spring with two states of fixed equilibrium
US20030220521A1 (en) 1989-07-27 2003-11-27 G.D. Searle & Co. Renal-selective prodrugs for control of renal sympathetic nerve activity in the treatment of hypertension
TW264475B (en) 1991-09-20 1995-12-01 Takeda Pharm Industry Co Ltd
JP2843444B2 (en) 1994-05-02 1999-01-06 塩野義製薬株式会社 Crystal of pyrrolidylthiocarbapenem derivative, freeze-dried preparation containing the crystal, and method for producing the same
DE19531874C1 (en) 1995-08-30 1996-10-02 Daimler Benz Ag Side wall sub assembly
TWI233805B (en) * 1999-07-01 2005-06-11 Fujisawa Pharmaceutical Co Stabilized pharmaceutical composition in lyophilized form as antifungal agent
FR2812635B1 (en) 2000-08-01 2002-10-11 Aventis Pharma Sa NOVEL HETEROCYCLIC COMPOUNDS, PREPARATION AND USE AS MEDICAMENTS IN PARTICULAR AS ANTI-BACTERIALS
FR2825705B1 (en) 2001-06-08 2005-05-20 Aventis Pharma Sa NOVEL HETEROCYCLIC COMPOUNDS, THEIR PREPARATION AND THEIR USE AS MEDICAMENTS, IN PARTICULAR AS ANTI-BACTERIANS
FR2835186B1 (en) 2002-01-28 2006-10-20 Aventis Pharma Sa NOVEL HETEROCYCLIC COMPOUNDS ACTIVE AS BETA-LACTAMASES INHIBITORS
FR2921060B1 (en) 2007-09-14 2012-06-15 Novexel NOVEL PROCESS FOR PREPARING DISUBSIDED PIPERIDINE AND NOVEL INTERMEDIATES
UA101966C2 (en) 2008-01-18 2013-05-27 Мерк Шарп Енд Доме Корп. Beta-lactamase inhibitors
FR2930553B1 (en) 2008-04-29 2010-05-21 Novexel AZABICYCLIC COMPOUNDS, THEIR PREPARATION AND THEIR USE AS MEDICAMENTS, IN PARTICULAR BETA-LACTAMASES INHIBITORS
FR2936798B1 (en) 2008-10-03 2012-09-28 Novexel NOVEL HETEROCYCLIC NITROGEN COMPOUNDS, THEIR PREPARATION AND THEIR USE AS ANTIBACTERIAL MEDICINES.
US20120053350A1 (en) 2009-04-30 2012-03-01 Ian Mangion Preparation of alkyl esters of n-protected oxo-azacycloalkylcarboxylic acids
FR2951171A1 (en) 2009-10-09 2011-04-15 Novexel NOVEL SODIUM SALT OF A CRYSTALLIZED ENANTIOMER AZABICYCLIC COMPOUND AND NOVEL POLYMORPHIC AND PSEUDOPOLYMORPHIC FORMS AND THEIR PREPARATION
SI2657234T1 (en) 2010-12-22 2017-06-30 Meiji Seika Pharma Co., Ltd. Optically-active diazabicyclooctane derivative and method for manufacturing same
US8772490B2 (en) 2010-12-22 2014-07-08 Meiji Seika Pharma Co., Ltd. Optically active diazabicyclooctane derivatives and process for preparing the same
CA2780403C (en) 2011-06-17 2020-04-21 Forest Laboratories Holdings Ltd. Processes for preparing heterocyclic compounds including trans-7-oxo-6-(sulphooxy)-1,6-diazabicyclo[3,2,1]octane-2-carboxamide and salts thereof
ES2603198T3 (en) 2011-08-27 2017-02-24 Wockhardt Limited 1,6-diazabicyclo [3,2,1] octan-7-one derivatives and their use in the treatment of bacterial infections
BR112013032974A2 (en) 2011-08-30 2016-09-06 Wockhardt Ltd "1,6-diazabicyclo [3,2,1] -octan-7-one derivatives, their uses, and pharmaceutical compositions".
AU2012310136B2 (en) 2011-09-13 2016-07-07 Wockhardt Limited Nitrogen containing compounds and their use
US9505761B2 (en) 2011-12-02 2016-11-29 Fedora Pharmaceuticals Inc. Bicyclic compounds and their use as antibacterial agents and beta-lactamase inhibitors
US8796257B2 (en) 2011-12-02 2014-08-05 Naeja Pharmaceutical Inc. Bicyclic compounds and their use as antibacterial agents and β-lactamase inhibitors
EP3228620B1 (en) 2014-12-05 2020-09-02 Meiji Seika Pharma Co., Ltd. Method for producing crystals of diazabicyclooctane derivative and stable lyophilized preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995029913A1 (en) * 1994-05-02 1995-11-09 Shionogi & Co., Ltd. Crystal of pyrrolidylthiocarbapenem derivative, lyophilized preparation containing said crystal, and process for producing the same
WO2013180197A1 (en) * 2012-05-30 2013-12-05 Meiji Seikaファルマ株式会社 NOVEL β-LACTAMASE INHIBITOR AND METHOD FOR PRODUCING SAME
JP6453222B2 (en) * 2013-09-24 2019-01-16 Meiji Seikaファルマ株式会社 Preparation of diazabicyclooctane derivatives and their intermediates
WO2015053297A1 (en) * 2013-10-08 2015-04-16 Meiji Seikaファルマ株式会社 Crystals of diazabicyclooctane derivative and production method for crystals of diazabicyclooctane derivative

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KOREY,D.J. ET AL: "Effects of excipients on the crystallization of pharmaceutical compounds during lyophilization", JOURNAL OF PARENTERAL SCIENCE AND TECHNOLOGY, vol. 43, no. 2, JPN6019044654, 1989, pages 80 - 3, XP000569040, ISSN: 0004339657 *
平山令明編, 有機化合物結晶作製ハンドブック −原理とノウハウ−, JPN6011053065, 25 July 2008 (2008-07-25), pages 57 - 84, ISSN: 0004339656 *
平山令明編著, 有機化合物結晶作製ハンドブック−原理とノウハウ−, JPN6014035600, 25 July 2008 (2008-07-25), pages 17 - 23, ISSN: 0004339658 *

Also Published As

Publication number Publication date
BR112017010445B1 (en) 2024-01-30
ES2821826T3 (en) 2021-04-27
US11117895B2 (en) 2021-09-14
EP3228620B1 (en) 2020-09-02
NZ732214A (en) 2021-10-29
EP3228620A1 (en) 2017-10-11
JP6779787B2 (en) 2020-11-04
MY190283A (en) 2022-04-12
SG11201704576SA (en) 2017-07-28
MX2017007191A (en) 2017-08-28
ZA201704063B (en) 2021-10-27
KR102555657B1 (en) 2023-07-18
RU2017123112A3 (en) 2019-06-25
US20170327499A1 (en) 2017-11-16
RU2017123112A (en) 2019-01-09
IL252691B (en) 2020-08-31
EP3228620A4 (en) 2018-05-02
WO2016088863A1 (en) 2016-06-09
US10294224B2 (en) 2019-05-21
TW201629062A (en) 2016-08-16
RU2732129C2 (en) 2020-09-11
KR20170094272A (en) 2017-08-17
BR112017010445B8 (en) 2024-02-27
TWI691499B (en) 2020-04-21
CN107001366B (en) 2020-08-28
BR112017010445A2 (en) 2017-12-26
US20190202831A1 (en) 2019-07-04
AR102915A1 (en) 2017-04-05
CN107001366A (en) 2017-08-01
CA2969192A1 (en) 2016-06-09
AU2015355970B2 (en) 2020-05-21
IL252691A0 (en) 2017-08-31
AU2015355970A1 (en) 2017-06-15
CA2969192C (en) 2023-02-28

Similar Documents

Publication Publication Date Title
WO2016088863A1 (en) Method for producing crystals of diazabicyclooctane derivative and stable lyophilized preparation
RU2603345C2 (en) High purity cyclopeptide compound as well as preparation method and use thereof
ES2528202T3 (en) A crystalline form of tigecycline and processes for its preparation
JP3493341B2 (en) Crystal Form of EtO2C-CH2- (R) Cgl-Aze-Pab-OH
ES2340184T3 (en) CRYSTAL SODIUM MYCOPHENOLATE.
US20050080255A1 (en) Crystalline cefdinir potassium dihydrate
KR20020022761A (en) Crystalline 1-methylcarbapenem compounds
TW200530186A (en) Crystal form of quinoline compound and process for its production
JP6091597B2 (en) Hydrates of cyclopeptide compounds and their production and use
WO2001081331A1 (en) Hydrates and crystals of a neuraminic acid compound
JP7346485B2 (en) Crystalline β-lactamase inhibitor
JP2015166347A (en) Process for isolating tigecycline
JP4060794B2 (en) Crystals of tetrapeptide derivatives
NZ732214B2 (en) Production process of crystals of diazabicyclooctane derivative and stable lyophilized preparation
IE902755A1 (en) Method of resolving cis¹3-amino-4-[2-(2-furyl)eth-1-yl]-1-methoxycarbonylmethyl-¹azetidin-2-one
US11542279B2 (en) Solid forms of ceftolozane and processes for preparing
AU2013204129C1 (en) Crystal Form of Quinoline Compound and Process for its Production
JP2003201235A (en) Medicine containing neuraminic acid compound
BR112016010282B1 (en) PHARMACEUTICAL COMPOSITION COMPRISING A CRYSTALLINE BETAL-ACTAMASE INHIBITOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201014

R150 Certificate of patent or registration of utility model

Ref document number: 6779787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250