[go: up one dir, main page]

JPWO2009001710A1 - Spherical copper fine powder and method for producing the same - Google Patents

Spherical copper fine powder and method for producing the same Download PDF

Info

Publication number
JPWO2009001710A1
JPWO2009001710A1 JP2009520481A JP2009520481A JPWO2009001710A1 JP WO2009001710 A1 JPWO2009001710 A1 JP WO2009001710A1 JP 2009520481 A JP2009520481 A JP 2009520481A JP 2009520481 A JP2009520481 A JP 2009520481A JP WO2009001710 A1 JPWO2009001710 A1 JP WO2009001710A1
Authority
JP
Japan
Prior art keywords
fine powder
copper fine
copper
slurry
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009520481A
Other languages
Japanese (ja)
Other versions
JP5235193B2 (en
Inventor
隆宏 芳賀
隆宏 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2009520481A priority Critical patent/JP5235193B2/en
Publication of JPWO2009001710A1 publication Critical patent/JPWO2009001710A1/en
Application granted granted Critical
Publication of JP5235193B2 publication Critical patent/JP5235193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

銅微粉の平均粒径が0.05μm以上、0.25μm以下であることを特徴とする球状銅微粉。天然樹脂、多糖類又はその誘導体の添加剤を含む水性媒体中に、亜酸化銅を添加してスラリーを作製し、このスラリーに5〜50%酸水溶液を15分以内に一度に添加して、不均化反応を行うことを特徴とする不均化反応による球状銅微粉の製造方法。制御された粒形あるいは粒度の金属銅粒子、特により微細な銅微粉を迅速に効率良く、かつ安定して製造できる銅微粉の製造方法を提供することを目的とする。A spherical copper fine powder, wherein the copper fine powder has an average particle size of 0.05 μm or more and 0.25 μm or less. In an aqueous medium containing an additive of a natural resin, a polysaccharide or a derivative thereof, cuprous oxide is added to make a slurry, and a 5-50% aqueous acid solution is added to the slurry at once within 15 minutes, A method for producing spherical copper fine powder by disproportionation reaction, characterized by carrying out a disproportionation reaction. It is an object of the present invention to provide a copper fine powder production method capable of producing metal copper particles having a controlled particle shape or particle size, particularly finer copper fine powder, quickly, efficiently and stably.

Description

この発明は、制御された粒形あるいは粒度の球状金属銅粒子、特により微細な球状銅微粉を迅速に効率良く、かつ安定して製造できる球状銅微粉の製造方法とそれによって得られた球状銅微粉に関する。   The present invention relates to a method for producing a spherical copper fine powder capable of quickly and efficiently producing a spherical metal copper particle having a controlled particle shape or particle size, particularly finer spherical copper fine powder, and a spherical copper obtained thereby. Concerning fine powder.

銅粉の製造方法には、古くから電解法およびアトマイズ法がある。これらの方法によって製造された銅粉は含油軸受、電刷子などの粉末冶金用用途には良いが、近年需要増大が見込まれている塗料、ぺースト、樹脂などの導電フィラー用には、より微粒子で粒度粒形の制御されたものが望まれている。
これらの用途に適合するより微細な金属銅粒子の製造方法としては、
(1) 銅塩水溶液の水素加圧還元法
(2) 銅塩水溶液の化学薬品添加還元法
(3) 有機銅塩の熱分解法
などがあるが、設備費および運転費が高価である問題があり、また所定の粒形粒度に制御するには、歩留りがわるく、表面酸化を起こしやすい、あるいは薬品代が高価であるなどの欠点があって、満足すべき方法はない。
There are an electrolytic method and an atomizing method for a long time in the manufacturing method of copper powder. Copper powder produced by these methods is good for powder metallurgy applications such as oil-impregnated bearings and electrobrushes, but finer particles for conductive fillers such as paints, pastes and resins, for which demand is expected to increase in recent years. Therefore, a controlled particle size and particle shape is desired.
As a manufacturing method of finer metal copper particles suitable for these applications,
(1) Hydrogen pressure reduction method of copper salt aqueous solution (2) Chemical addition reduction method of copper salt aqueous solution (3) Thermal decomposition method of organic copper salt, etc., but there is a problem that equipment cost and operation cost are expensive In addition, there is no satisfactory method for controlling the particle size to a predetermined particle size because there are disadvantages such as poor yield, easy surface oxidation, and high chemical costs.

このようなことから、亜酸化銅粒子と酸を反応させる方法が、生成する金属銅粒子の粒形と粒度を好適に制御することができ、またpH、温度、平均滞留時間などの反応条件を管理することによって、所定の粒形粒度を調整し、高純度の金属銅微粒子を製造することができることが分った。
また、反応条件を選ぶことによって鎖状などの凝集連結粉を得ることもできるようになった(例えば、特許文献1参照)。
Therefore, the method of reacting the cuprous oxide particles with the acid can suitably control the particle shape and particle size of the metal copper particles to be produced, and the reaction conditions such as pH, temperature, and average residence time can be controlled. It has been found that, by controlling, a predetermined particle size can be adjusted and high-purity metallic copper fine particles can be produced.
Moreover, it became possible to obtain aggregated and linked powders such as chains by selecting the reaction conditions (see, for example, Patent Document 1).

この特許文献は、昭和60年に公開されたもので、当時の銅粉製造技術としては最も高いレベルの技術であった。
この技術の内容は、1)亜酸化銅粒子と酸を反応させることによって銅塩水溶液と金属銅粒子を生成させ、固液分離することによって金属銅粒子を回収する方法において反応槽に希酸溶液を生産すべき金属銅粒子の目標粒度に対応する所定の平均滞留時間を得るような流量で連続的に流入させつつ、亜酸化銅粒子を反応槽のpHを所定の値に維持するような添加速度で添加し、液温50°C以下において反応させ、生成する金属銅粒子スラリーを前記溶液流入量に応じた速度で排出させ、こうして排出された金属銅粒子スラリーから固液分離手段を経て金属銅粒子を回収することにより、制御された粒度の金属銅粒子を製造することを特徴とする金属銅粒子の製造方法、2)亜酸化銅粒子と酸を反応させることによって銅塩水溶液と金属銅粒子を生成させ、固液分離することによって金属銅粒子を回収する方法において所定の粒子形状および粒度を得るべき液温を維持しつつ反応を行わせることを特徴とする金属銅粒子の製造方法というものである。
This patent document was published in 1985, and was the highest level technology as copper powder manufacturing technology at that time.
The contents of this technology are as follows: 1) A copper salt aqueous solution and metal copper particles are produced by reacting cuprous oxide particles with an acid, and a solution containing metal copper particles is recovered by solid-liquid separation. Addition of cuprous oxide particles to maintain the pH of the reaction vessel at a predetermined value while continuously flowing in at a flow rate to obtain a predetermined average residence time corresponding to the target particle size of the metal copper particles to be produced Added at a rate, reacted at a liquid temperature of 50 ° C. or less, and generated metal copper particle slurry is discharged at a rate corresponding to the amount of the solution inflow, and the metal copper particle slurry thus discharged is subjected to solid-liquid separation means through metal-liquid separation means A method for producing metallic copper particles characterized by producing metallic copper particles having a controlled particle size by collecting copper particles, 2) a copper salt aqueous solution and metallic copper by reacting cuprous oxide particles with an acid grain A process for recovering metallic copper particles by solid-liquid separation, wherein the reaction is carried out while maintaining the liquid temperature to obtain a predetermined particle shape and particle size. It is.

しかし、最近ではこのような銅粉を、より微粉化しかつ均一化を図ることが要請され、また迅速な製造技術が求められている。このようなことから、本発明者は、亜酸化銅を、天然樹脂、多糖類又はその誘導体の添加剤を含む水性媒体中で、酸による不均化反応を行って銅微粉を製造する際に、不均化反応開始温度を10°C以下とすることを特徴とする銅微粉の製造方法を提案した(特許文献2参照)。
この方法は、微細な銅微粉を迅速に製造する方法で、極めて有効な方法である。しかし、これは銅微粉の平均粒径は0.5μm〜3.0μmレベルであり、さらに微細化する手法を探索していた。
特開昭60−33304号公報 特開2005−256012号公報
However, recently, it has been demanded to make the copper powder finer and more uniform, and a rapid manufacturing technique is required. For this reason, the present inventor conducted a disproportionation reaction with acid in an aqueous medium containing additives of natural resins, polysaccharides or derivatives thereof to produce copper fine powder. In addition, a method for producing a copper fine powder characterized by setting the disproportionation reaction start temperature to 10 ° C. or less has been proposed (see Patent Document 2).
This method is a very effective method for rapidly producing fine copper fine powder. However, the average particle diameter of the copper fine powder is at a level of 0.5 μm to 3.0 μm, and a method for further refinement has been searched.
JP-A-60-33304 Japanese Patent Laid-Open No. 2005-256012

本発明は、制御された粒形あるいは粒度の球状金属銅粒子、特により微細な銅微粉を迅速に効率良く、かつ安定して製造できる球状銅微粉の製造方法と、それによって得られた球状銅微粉を提供することを目的とする。   The present invention relates to a method of producing spherical copper fine powder capable of producing spherical metal copper particles having a controlled particle shape or particle size, particularly finer copper fine powder, quickly and efficiently and stably, and the spherical copper obtained thereby. The purpose is to provide fine powder.

本発明は、
1)銅微粉の平均粒径が0.05μm以上、0.25μm以下であることを特徴とする球状銅微粉
2)銅微粉の比表面積(BET)が2.5m/g以上、15.0m/g以下であることを特徴とする前記1)記載の球状銅微粉を提供する。
ここで球状とは、個々の銅粒子の短径と長径との比が150%以下、特に120%以下であるものを言う。したがって、短径と長径との比が150%を超えるものは、扁平な形状を有しており、これを球状とは言わない。
本願発明は、扁平の銅微粉が混入している場合でも、その量は全体の20%以下、好ましくは10%以下、さらに5%以下である。実質的に、このような扁平の銅微粉を含有しないことが良い。
The present invention
1) A spherical copper fine powder characterized in that the average particle diameter of the copper fine powder is 0.05 μm or more and 0.25 μm or less. 2) The specific surface area (BET) of the copper fine powder is 2.5 m 2 / g or more, 15.0 m. The spherical copper fine powder according to 1) above, which is 2 / g or less.
Here, the spherical shape means that the ratio of the short diameter to the long diameter of each copper particle is 150% or less, particularly 120% or less. Therefore, those having a ratio of the minor axis to the major axis exceeding 150% have a flat shape and are not called spherical.
In the present invention, even when flat copper fine powder is mixed, the amount is 20% or less of the whole, preferably 10% or less, and further 5% or less. It is preferable that substantially no flat copper fine powder is contained.

また、本発明は、
3)天然樹脂、多糖類又はその誘導体の添加剤を含む水性媒体中に、亜酸化銅を添加してスラリーを作製し、このスラリーに5〜50%酸水溶液を15分以内に一度に添加して、不均化反応を行う不均化反応による銅微粉の製造方法を提供する。
添加剤としては、天然ゴム類又はゼラチン類を使用することができる。この添加剤の具体的なものとして、松脂、ゼラチン、にかわ、カルボキシメチルセルロース(CMC)、デンプン、デキストリン、アラビアゴム、カゼインが有効である。
前記亜酸化銅のスラリー濃度は500g/L以下が適当であるが、通常300g/L以下で実施する。このスラリー濃度は適宜選択でき、特に制限はない。亜酸化銅のスラリー濃度を極端に低濃度にすると、反応が進まないので、コスト高になるだけである。
モル比(酸の規定数/スラリーのモル数)については、1.00〜2.00で実施するのが望ましい。モル比は等量(1.0)以上であれば反応に問題ない。過剰に加えてもそれほど効果が上がる訳ではない。逆に、酸濃度が濃過ぎる場合は、亜酸化銅スラリーに酸を添加する際に発熱量が大きくなり、反応系の温度が上昇し、微粉化に不利になると予想されるので、コスト的に不利となる虞がある。
一方、酸濃度が薄い場合は結果的に反応速度が低下することになるので、微粉化に不利となる。以上から、モル比(酸の規定数/スラリーのモル数)については、1.00〜2.00とするのが望ましいと言える。
The present invention also provides:
3) A slurry is prepared by adding cuprous oxide into an aqueous medium containing an additive of a natural resin, polysaccharide or derivative thereof, and a 5-50% aqueous acid solution is added to the slurry at once within 15 minutes. Thus, a method for producing fine copper powder by a disproportionation reaction for carrying out a disproportionation reaction is provided.
As additives, natural rubbers or gelatins can be used. Specific examples of the additive include rosin, gelatin, glue, carboxymethyl cellulose (CMC), starch, dextrin, gum arabic and casein.
The slurry concentration of the cuprous oxide is suitably 500 g / L or less, but is usually 300 g / L or less. The slurry concentration can be appropriately selected and is not particularly limited. If the slurry concentration of cuprous oxide is extremely low, the reaction does not proceed, and only the cost is increased.
The molar ratio (specified number of acids / number of moles of slurry) is preferably 1.00 to 2.00. If the molar ratio is equal (1.0) or more, there is no problem in the reaction. Adding too much does not mean that it will be effective. Conversely, if the acid concentration is too high, the amount of heat generated when adding acid to the cuprous oxide slurry will increase, the temperature of the reaction system will rise, and it will be disadvantageous for pulverization. There may be a disadvantage.
On the other hand, when the acid concentration is low, the reaction rate is consequently reduced, which is disadvantageous for pulverization. From the above, it can be said that the molar ratio (specified number of acids / number of moles of slurry) is preferably 1.00 to 2.00.

水性媒体中で、酸による不均化反応を行って銅微粉を製造する際に、不均化反応開始温度を10°C以下とすることが望ましい。これは、微細な銅微粉を形成するのに有効である。
さらに、この酸水溶液は、一括して添加することが非常に重要である。すなわち、15分以内に一度に添加する。これによって、平均粒径0.25μm以下の球状銅微粉を得ることができる。この迅速な添加による不均化反応が微細な球状銅粉を達成できる。この短時間の一度の添加が銅微粉の製造に有効である理由は必ずしも明確ではない。
しかし、この短時間の不均化反応は、銅粒子の成長を抑制する作用を行っていると考えられる。したがって、微細化のためには、短時間の一括添加は有効である。酸水溶液の添加時間は、好ましくは3分以内の短時間であること、特に好ましくは1分以内であることが望ましい。
When producing a copper fine powder by performing a disproportionation reaction with an acid in an aqueous medium, it is desirable to set the disproportionation reaction start temperature to 10 ° C or lower. This is effective for forming fine copper fine powder.
Furthermore, it is very important that the acid aqueous solution is added all at once. That is, add all at once within 15 minutes. Thereby, spherical copper fine powder having an average particle size of 0.25 μm or less can be obtained. The disproportionation reaction by this rapid addition can achieve a fine spherical copper powder. The reason why this short-time addition is effective for the production of copper fine powder is not necessarily clear.
However, this short-term disproportionation reaction is considered to have an effect of suppressing the growth of copper particles. Therefore, short-time batch addition is effective for miniaturization. The addition time of the acid aqueous solution is preferably a short time of 3 minutes or less, particularly preferably 1 minute or less.

さらに、本発明は、
4)不均化反応後に得られた銅微粉スラリーの固液分離と水洗浄を行い、これをアルカリ溶液による還元処理を行い、さらに得られた微粉スラリーの固液分離と水洗浄を繰り返して銅粉を得る前記3)記載の銅微粉の製造方法、を提供する。このアルカリ溶液による還元処理は、得られた銅微粉に残る酸化物と未反応の亜酸化銅を還元することにより、銅粒子の化学組成の均一化に効果がある。
5)前記微粉スラリーの固液分離と水洗浄を繰り返す途中において、酸による酸性化処理を行う前記3)又は4)記載の銅微粉の製造方法、を提供する。
この酸による酸性化処理は、防錆処理を行う場合に、防錆効果をより高めることができる。
6)最終的に水洗浄処理した後、銅粉をろ過し、さらにこれを真空乾燥して銅粉を得る前記3)〜5)のいずれかに記載の銅微粉の製造方法
7)銅微粉の平均粒径が0.05μm以上、0.25μm以下である前記3)〜6)のいずれかに記載の銅微粉の製造方法
8)銅微粉の比表面積(BET)が2.5m/g以上、15m/g以下である前記3)〜7)のいずれかに記載の銅微粉の製造方法、を提供する。
Furthermore, the present invention provides
4) Solid-liquid separation of the copper fine powder slurry obtained after the disproportionation reaction and washing with water, reduction treatment with an alkaline solution, and repeated solid-liquid separation and water washing of the obtained fine powder slurry were repeated. The method for producing a copper fine powder as described in 3) above, wherein a powder is obtained. This reduction treatment with an alkaline solution is effective in homogenizing the chemical composition of the copper particles by reducing the oxide remaining in the obtained copper fine powder and unreacted cuprous oxide.
5) The method for producing copper fine powder according to 3) or 4), wherein acidification treatment with an acid is performed in the middle of repeating solid-liquid separation and water washing of the fine powder slurry.
This acidification treatment with an acid can further enhance the rust prevention effect when performing the rust prevention treatment.
6) After finally washing with water, the copper powder is filtered and further dried under vacuum to obtain a copper powder 7) The copper fine powder production method according to any one of 3) to 5) above. The method for producing copper fine powder according to any one of 3) to 6), wherein the average particle size is 0.05 μm or more and 0.25 μm or less 8) The specific surface area (BET) of the copper fine powder is 2.5 m 2 / g or more. The method for producing a copper fine powder according to any one of 3) to 7), which is 15 m 2 / g or less.

本発明の銅微粉の製造方法は、粒形を球状とし粒度を任意に制御でき、より微細な銅微粉を迅速に効率良く、かつ安定して製造できるという優れた効果を有する。   The method for producing copper fine powder of the present invention has an excellent effect that the particle shape can be made spherical and the particle size can be controlled arbitrarily, and finer copper fine powder can be produced quickly, efficiently and stably.

球状銅微粉の製造フローの概要を示す図である。It is a figure which shows the outline | summary of the manufacturing flow of spherical copper fine powder. 球状銅微粉のFE−SEM写真である。It is a FE-SEM photograph of spherical copper fine powder.

亜酸化銅粒子は、銅塩水溶液から塩化第一銅を経由するなどの公知の方法で製造されたもので良い。すなわち、用いる亜酸化銅粒子の粒度と本発明の方法によって得られる金属銅粒子の粒度の間には直接的な関係がないので、粗粒の亜酸化銅粒子を用いることもできる。
酸は、通常硫酸を使用するが、硝酸、りん酸、酢酸を用いることもできる。特に酸の種類を特定する必要はない。硫酸を使用した場合、不均化反応は次の反応式により、硫酸銅水溶液と金属銅粒子が生成する。
CuO+HSO=Cu↓+CuSO+H
The cuprous oxide particles may be produced by a known method such as passing through cuprous chloride from an aqueous copper salt solution. That is, since there is no direct relationship between the particle size of the cuprous oxide particles used and the particle size of the metallic copper particles obtained by the method of the present invention, coarse cuprous oxide particles can also be used.
As the acid, sulfuric acid is usually used, but nitric acid, phosphoric acid, and acetic acid can also be used. It is not particularly necessary to specify the type of acid. When sulfuric acid is used, the disproportionation reaction generates an aqueous copper sulfate solution and metallic copper particles according to the following reaction formula.
Cu 2 O + H 2 SO 4 = Cu ↓ + CuSO 4 + H 2 O

亜酸化銅に対する酸の添加比率を大きくすれば反応系のpHが低くなり、逆の場合にはpHが高くなるので、酸又は亜酸化銅の添加比率により、pHを制御することができる。
反応中に不純物沈殿が生成するのを避け、また、亜酸化銅が残留せず反応を迅速に進行させるためにはpHを2.5以下に、望ましくは1.0付近に維持する。
このような、亜酸化銅の不均化反応による銅微粉の製造に際し、天然樹脂、多糖類又はその誘導体の添加剤(保護コロイド)を含む水性媒体中で、酸による不均化反応を行う。これが本発明の大きな特徴の一つである。
この添加剤(保護コロイド)は、粒子成長を抑制する働きがあり、また粒子同志の接触頻度を低減する作用を行う。したがって、微細粒子の製造に有効である。
If the addition ratio of the acid to the cuprous oxide is increased, the pH of the reaction system is lowered, and in the opposite case, the pH is increased. Therefore, the pH can be controlled by the addition ratio of the acid or the cuprous oxide.
In order to avoid the formation of impurity precipitates during the reaction and to allow the cuprous oxide to remain without causing the reaction to proceed rapidly, the pH is maintained at 2.5 or lower, preferably around 1.0.
In the production of copper fine powder by such a disproportionation reaction of cuprous oxide, an acid disproportionation reaction is performed in an aqueous medium containing an additive (protective colloid) of a natural resin, a polysaccharide or a derivative thereof. This is one of the major features of the present invention.
This additive (protective colloid) has a function of suppressing particle growth and an effect of reducing the contact frequency between particles. Therefore, it is effective for producing fine particles.

前記添加剤としては、特に天然ゴム類又はゼラチン類が有効である。さらに具体的には、添加剤として、松脂、ゼラチン、にかわ、カルボキシメチルセルロース(CMC)、デンプン、デキストリン、アラビアゴム、カゼインを使用することができる。特に、にかわを使用した場合は、平均粒径を0.25μm以下の微粉化が可能であり、凝集抑制効果を有する。
反応中の液温は、金属銅微粒子を製造する場合には、30°C以下、好ましくは10°C以下とする。液温が30°Cを超える場合、金属銅微粒子同志が凝集連結する傾向があるからである。特に、微細化を図るためには、不均化反応開始温度を10°C以下とすることが望ましい。この反応温度を低下させることにより、粒子成長を効果的に抑制することができ、より微粉化が可能となる。
As the additive, natural rubbers or gelatins are particularly effective. More specifically, pine resin, gelatin, glue, carboxymethyl cellulose (CMC), starch, dextrin, gum arabic, and casein can be used as additives. In particular, when glue is used, it can be pulverized with an average particle size of 0.25 μm or less, and has an aggregation suppressing effect.
The liquid temperature during the reaction is 30 ° C. or lower, preferably 10 ° C. or lower, in the case of producing metallic copper fine particles. This is because when the liquid temperature exceeds 30 ° C., metal copper fine particles tend to aggregate and connect. In particular, in order to achieve miniaturization, it is desirable to set the disproportionation reaction start temperature to 10 ° C. or less. By lowering the reaction temperature, particle growth can be effectively suppressed, and finer pulverization becomes possible.

この10°C以下の温度は、可能ならば反応終了まで持続させると、より効果的である。反応温度が30°Cを越える温度にすることも可能である。この場合は、金属銅粒子同志が凝集連結する事実に着目し、特殊な粒形のものを得ようとするものである。このように、反応温度により、生成する金属銅粒子の粒形および粒度を制御することができる。本発明は、このような温度コントロールの全てを包含する。   This temperature of 10 ° C. or lower is more effective if it is maintained until the end of the reaction if possible. The reaction temperature may be higher than 30 ° C. In this case, focusing on the fact that the metal copper particles are coherently connected, a special particle shape is to be obtained. Thus, the particle shape and particle size of the produced metal copper particles can be controlled by the reaction temperature. The present invention encompasses all such temperature controls.

また、本発明は、亜酸化銅の酸による不均化反応を行って銅微粉を製造する際に、この酸水溶液は、一括して添加することが非常に重要である。すなわち、15分以内、好ましくは3分以内、さらに好ましくは1分以内に一度に添加する。これによって、平均粒径0.25μm以下の球状銅微粉を得ることができる。
この迅速な添加による不均化反応が微細な球状銅粉を達成できる。すなわち、酸の添加速度を速めることにより、核発生を粒子成長よりも優勢にし、銅粉をより微細化させる。
この短時間の不均化反応は、銅粒子の成長を抑制する作用を行っていると考えられる。微細化のためには、短時間の一括添加は必要不可欠である。
In addition, in the present invention, it is very important that the acid aqueous solution is added all at once when a copper fine powder is produced by performing a disproportionation reaction of cuprous oxide with an acid. That is, it is added at once within 15 minutes, preferably within 3 minutes, more preferably within 1 minute. Thereby, spherical copper fine powder having an average particle size of 0.25 μm or less can be obtained.
The disproportionation reaction by this rapid addition can achieve a fine spherical copper powder. That is, by increasing the acid addition rate, nucleation is more dominant than particle growth, and the copper powder is made finer.
This short-time disproportionation reaction is considered to have an effect of suppressing the growth of copper particles. For miniaturization, short-time batch addition is indispensable.

本願発明の平均粒径は、より小さな値をとることが望ましいが、平均粒径(D50)より小さな値となるD10の実績値は0.06μmであり、粒度分布の最小値であるDminはさらに小さくなる。しかし、湿式反応である不均化法では、0.05μmが製造可能な下限値であることから、平均粒径は0.05μmに設定した。
粒度分布の最小値であるDminはさらに小さいので、より微細な銅微粉が含まれる。これから、湿式反応である不均化法では0.05μm程度が製造可能な下限と推測されるので、平均粒径の下限を0.05μmとした。
The average particle diameter of the present invention is desirably a smaller value, but the actual value of D 10 that is smaller than the average particle diameter (D 50 ) is 0.06 μm, and D is the minimum value of the particle size distribution. min becomes even smaller. However, in the disproportionation method which is a wet reaction, since 0.05 μm is the lower limit value that can be produced, the average particle size was set to 0.05 μm.
Since D min which is the minimum value of the particle size distribution is even smaller, finer copper fine powder is included. From this, it is estimated that in the disproportionation method, which is a wet reaction, about 0.05 μm is the lower limit for production, so the lower limit of the average particle size was set to 0.05 μm.

一方、平均粒径が細かくなる程、比表面積はより大きくなる傾向があるが、必ずしも比例するものではない。また、比表面積の実測値と理論値では異なる。
銅微粉を真球状と仮定し、銅の真密度8.93g/cm、平均粒径(D50)を直径として、体積、表面積、質量から比表面積を算出すると、D50=0.05μmで、理論比表面積は13.44m/gとなる。
しかし、平均粒径(D50)と比表面積の関係については、平均粒径が小さくなるほど、理論値と実測値の値に差がなくなる傾向がある。これは、平均粒径が大きいと表面状態(最表面の凹凸など)が比表面積に大きな影響を与えるが、小さくなると表面状態よりもサイズそのものの影響が大きくなり、理論値と実測値に差がなくなると考えられるからである。
以上を綜合すると、D50の下限値を0.05μmとすると、比表面積の上限は15.0m/g程度となることが予想できる。したがって、BET比表面積の上限は15.0m/gとした。
On the other hand, the smaller the average particle diameter, the larger the specific surface area tends to be, but it is not necessarily proportional. Moreover, the measured value and the theoretical value of the specific surface area are different.
Assuming that the copper fine powder is a spherical shape, the specific surface area is calculated from the volume, surface area, and mass with the true density of copper being 8.93 g / cm 3 and the average particle diameter (D 50 ) as the diameter, and D 50 = 0.05 μm. The theoretical specific surface area is 13.44 m 2 / g.
However, regarding the relationship between the average particle size (D 50 ) and the specific surface area, the smaller the average particle size, the more the difference between the theoretical value and the measured value tends to disappear. If the average particle size is large, the surface condition (such as irregularities on the outermost surface) has a large effect on the specific surface area. However, if the average particle size is small, the influence of the size itself is greater than the surface condition, and there is a difference between the theoretical value and the actual measurement value. Because it is thought that it will disappear.
Combining the above, when the lower limit value of D 50 is 0.05 μm, the upper limit of the specific surface area can be expected to be about 15.0 m 2 / g. Therefore, the upper limit of the BET specific surface area is 15.0 m 2 / g.

このようにして得られた超微細球状銅粉は、空気中又は液体中で凝集する可能性がある。しかし、この凝集体は、水溶液中での超音波を印加するなどの手段により、再度分散させることは可能である。それは、あくまで初期の粒子が、平均粒径0.25μm以下の球状銅微粉であることが前提であることは理解されるべきことである。粉砕の手段で、微細化することによっては、球状の微細銅粉は得られないからである。
回分式に反応を行わせる場合には、亜酸化銅粒子スラリーに酸を添加してもよく、逆に酸溶液に亜酸化銅粒子あるいは亜酸化銅粒子スラリーを添加しても良い。
いずれの場合も、得られる金属銅粒子は高純度であり、かつ表面活性に富んでいる。従って、固液分離によって得られた金属銅粒子に対しては、適当な防錆処理を施してから乾燥する。図1に球状銅微粉の製造フローの概要を示す。
この図1に示すように、添加剤の溶解→スラリー化(添加剤を含む水性媒体中に亜酸化銅を添加してスラリーを作製する工程)→不均化反応(酸水溶液の添加)→洗浄→防錆→ろ過→乾燥→解砕→分級の工程を経て製造される。
The ultrafine spherical copper powder obtained in this way may aggregate in the air or liquid. However, this aggregate can be dispersed again by means such as applying ultrasonic waves in an aqueous solution. It should be understood that the initial particles are premised on spherical copper fine powder having an average particle size of 0.25 μm or less. This is because a spherical fine copper powder cannot be obtained by miniaturization by means of pulverization.
When the reaction is carried out batchwise, an acid may be added to the cuprous oxide particle slurry, and conversely, the cuprous oxide particles or the cuprous oxide particle slurry may be added to the acid solution.
In any case, the obtained metallic copper particles are highly pure and rich in surface activity. Therefore, the metal copper particles obtained by solid-liquid separation are dried after being subjected to an appropriate rust prevention treatment. FIG. 1 shows an outline of the manufacturing flow of spherical copper fine powder.
As shown in FIG. 1, dissolution of an additive → slurry (a step of making a slurry by adding cuprous oxide into an aqueous medium containing the additive) → disproportionation reaction (addition of an acid aqueous solution) → washing → Produced through rust prevention → filtration → drying → crushing → classification process.

次に、本発明の実施例について説明する。なお、本実施例はあくまで一例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲内で、実施例以外の態様あるいは変形を全て包含するものである。   Next, examples of the present invention will be described. In addition, a present Example is an example to the last, and is not restrict | limited to this example. That is, all aspects or modifications other than the embodiments are included within the scope of the technical idea of the present invention.

(実施例1)
7リッターの純水に、にかわを8g溶解させ、攪拌しつつ亜酸化銅1000gを添加して懸濁させ、亜酸化銅スラリーを7°Cまで冷却した。スラリー中の亜酸化銅量は約143g/Lである。
次いで7°Cに冷却した希硫酸(濃度24%:9N、モル比(酸水溶液/スラリー):1.5)2000ccを、1分で添加した。生成した銅微粉を洗浄防錆処理した後乾燥し、420gの銅微粉を得た。
反応は添加後、約1分間で終了した。このようにして得られた球状銅微粉のFE−SEM写真を図2に示す。図2に示すように、銅微粉の平均粒径は0.09μmであった。冷却した希硫酸の1分での添加は、銅微粉化に極めて有効であることが分かる。比表面積BETは6.66m/gであった。この実施例1は、他の実施例の条件の中でも、特に好適な例である。
Example 1
8 g of glue was dissolved in 7 liters of pure water, 1000 g of cuprous oxide was added and suspended while stirring, and the cuprous oxide slurry was cooled to 7 ° C. The amount of cuprous oxide in the slurry is about 143 g / L.
Next, 2000 cc of dilute sulfuric acid (concentration 24%: 9 N, molar ratio (acid aqueous solution / slurry): 1.5) cooled to 7 ° C. was added in 1 minute. The produced copper fine powder was washed and rust-proofed and then dried to obtain 420 g of copper fine powder.
The reaction was completed in about 1 minute after the addition. An FE-SEM photograph of the spherical copper fine powder thus obtained is shown in FIG. As shown in FIG. 2, the average particle diameter of the copper fine powder was 0.09 μm. It can be seen that the addition of cooled dilute sulfuric acid in 1 minute is extremely effective for copper fines. The specific surface area BET was 6.66 m 2 / g. This Example 1 is a particularly preferable example among the conditions of other Examples.

(実施例2〜8)
添加剤として、松脂、ゼラチン、カルボキシメチルセルロース(CMC)、デンプン、デキストリン、アラビアゴム、カゼインを使用した場合の実施例を示す。この場合、添加剤を替えた以外は、全て実施例1と同一の条件で銅粉を生成させた。この結果、上記の添加剤は、全て有効であるが、実施例1の「にかわ」の添加が最も良い結果となった。
(Examples 2 to 8)
Examples when rosin, gelatin, carboxymethylcellulose (CMC), starch, dextrin, gum arabic, and casein are used as additives are shown. In this case, copper powder was produced under the same conditions as in Example 1 except that the additive was changed. As a result, all of the above additives were effective, but the addition of “Niwa” in Example 1 gave the best results.

(比較例1〜2)
添加剤として、ポリエチレングリコール(PEG)を選択した場合、及び無添加の場合について、銅微粉化を調べた。その結果を比較例1〜2に示す。この場合、他の条件は、全て実施例1と同一の条件で銅粉を生成させた。この結果、比較例1の添加剤は有効ではなく、また無添加の場合も、銅粉の粒径が大きくなり、またBET比表面積も低い銅粉が得られ、悪い結果となった。
上述の実施例及び比較例に係る球状銅微粉に関し、その平均粒径及び比表面積を測定した。平均粒径はレーザー回折散乱式粒度分布測定法によるもので、重量累積粒径D50の値を採用した。比表面積はBET法により測定した。
以上の実施例1〜8及び比較例1〜2の結果を、表1に示す。
(Comparative Examples 1-2)
Copper polyethylene pulverization was investigated when polyethylene glycol (PEG) was selected as an additive and when it was not added. The results are shown in Comparative Examples 1-2. In this case, copper powder was generated under the same conditions as in Example 1 for all other conditions. As a result, the additive of Comparative Example 1 was not effective, and when it was not added, a copper powder having a large particle size and a low BET specific surface area was obtained, resulting in a bad result.
The average particle diameter and specific surface area of the spherical copper fine powder according to the above-described Examples and Comparative Examples were measured. The average particle size is due to a laser diffraction scattering particle size distribution measuring method was adopted the value of the weight-cumulative particle diameter D 50. The specific surface area was measured by the BET method.
The results of Examples 1 to 8 and Comparative Examples 1 and 2 are shown in Table 1.

(実施例9〜12、16)
次に、代表的な実施例1を基準にして、酸添加時間を変化させた場合の結果を実施例9〜12に示す。この場合、酸添加時間を5秒から15分に変化させた。この場合、酸添加時間を替えた以外は、全て実施例1と同一の条件で銅粉を生成させた。この結果、酸添加時間を短くした方が、より銅粉の粒径が小さく、BET比表面積も低い銅粉が得られた。酸添加時間も粒径の大きさとBET比表面積に影響するので、酸添加時間は、極力短時間の方が望ましい。時間をかけて添加することはないが、およそ15分以内で添加するのが望ましい。この結果は、松脂、ゼラチン、カルボキシメチルセルロース(CMC)、デンプン、デキストリン、アラビアゴム、カゼインの添加剤を使用した場合でも、同様であった。
(Examples 9-12, 16)
Next, the results when the acid addition time is changed based on the representative Example 1 are shown in Examples 9 to 12. In this case, the acid addition time was changed from 5 seconds to 15 minutes. In this case, copper powder was produced under the same conditions as in Example 1 except that the acid addition time was changed. As a result, a copper powder having a smaller particle size and a lower BET specific surface area was obtained when the acid addition time was shortened. Since the acid addition time also affects the size of the particle size and the BET specific surface area, the acid addition time is preferably as short as possible. It is not added over time, but it is desirable to add it within approximately 15 minutes. This result was the same even when additives of pine resin, gelatin, carboxymethylcellulose (CMC), starch, dextrin, gum arabic, and casein were used.

(比較例3〜4)
次に、酸添加時間が本発明の条件を外れる16分、80分で行った場合の例を比較例3、比較例4に示す。この場合、酸添加時間を替えた以外は、全て実施例1と同一の条件で銅粉を生成させた。いずれも、銅粉の粒径が大きくなり、またBET比表面積も低い銅粉が得られ、悪い結果となった。
実施例9〜12及び比較例3〜4の結果を、表2に示す。
(Comparative Examples 3-4)
Next, Comparative Examples 3 and 4 show examples in which the acid addition time is 16 minutes and 80 minutes outside the conditions of the present invention. In this case, copper powder was produced under the same conditions as in Example 1 except that the acid addition time was changed. In any case, copper powder having a large particle size and a low BET specific surface area was obtained, resulting in poor results.
Table 2 shows the results of Examples 9 to 12 and Comparative Examples 3 to 4.

(実施例13〜17)
次に、代表的な実施例1を基準にして、反応開始温度を変化させた場合の結果を実施例13〜17に示す。この場合、反応開始温度を0〜30°C変化させた。この場合、反応開始温度を替えた以外は、全て実施例1と同一の条件で銅粉を生成させた。
この結果、反応開始温度を低くした方が、より銅粉の粒径が小さく、BET比表面積が大きい銅粉が得られた。この結果は、松脂、ゼラチン、カルボキシメチルセルロース(CMC)、デンプン、デキストリン、アラビアゴム、カゼインの添加剤を使用した場合でも、同様であった。
(Examples 13 to 17)
Next, the results when the reaction start temperature is changed based on the representative Example 1 are shown in Examples 13 to 17. In this case, the reaction start temperature was changed by 0 to 30 ° C. In this case, copper powder was produced under the same conditions as in Example 1 except that the reaction start temperature was changed.
As a result, a copper powder having a smaller particle size and a larger BET specific surface area was obtained when the reaction start temperature was lowered. This result was the same even when additives of pine resin, gelatin, carboxymethylcellulose (CMC), starch, dextrin, gum arabic, and casein were used.

(比較例5)
次に、反応開始温度が本発明の条件を外れる50°Cで行った場合の例を、比較例5に示す。この場合、反応開始温度を替えた以外は、全て実施例1と同一の条件で銅粉を生成させた。その結果、銅粉の粒径が大きくなり、またBET比表面積も低い銅粉が得られ、悪い結果となった。
実施例13〜17及び比較例5の結果を、表3に示す。
(Comparative Example 5)
Next, Comparative Example 5 shows an example in which the reaction start temperature is 50 ° C. outside the conditions of the present invention. In this case, copper powder was produced under the same conditions as in Example 1 except that the reaction start temperature was changed. As a result, a copper powder having a large particle diameter and a copper powder having a low BET specific surface area was obtained, resulting in a bad result.
The results of Examples 13 to 17 and Comparative Example 5 are shown in Table 3.

上記に示す通り、本発明の条件、すなわち天然樹脂、多糖類又はその誘導体の添加剤を含む水性媒体中に、亜酸化銅を添加して亜酸化銅10〜300g/Lを含有するスラリーを作製し、このスラリーに、モル比(酸の規定数/スラリーのモル数)1.00〜2.00で、5〜50%酸水溶液を3分以内に一度に添加して、不均化反応を行うことより、好適な球状銅微粉を得ることが可能となる。
そして、微粉の平均粒径が0.25μm以下である球状銅微粉を得ることができる。さらに、これらの球状銅微粉は、銅微粉の比表面積(BET)が4.0m/g以上を達成することが可能となる。
As shown above, the conditions of the present invention, that is, a slurry containing 10 to 300 g / L of cuprous oxide by adding cuprous oxide in an aqueous medium containing additives of natural resins, polysaccharides or derivatives thereof. Then, a 5-50% aqueous acid solution was added to the slurry at a molar ratio (specified number of acids / number of moles of slurry) of 1.00 to 2.00 within 3 minutes to carry out a disproportionation reaction. By performing, it becomes possible to obtain a suitable spherical copper fine powder.
And the spherical copper fine powder whose average particle diameter of fine powder is 0.25 micrometer or less can be obtained. Furthermore, these spherical copper fine powders can achieve a specific surface area (BET) of the copper fine powders of 4.0 m 2 / g or more.

本発明によって製造された球状銅微粉は、粉末の粒径が小さく均一であり、含油軸受や電刷子用の粉末だけでなく、塗料、ペースト、樹脂などの導電性フィラーとして有用である。   The spherical copper fine powder produced according to the present invention has a small and uniform powder particle size, and is useful not only as a powder for oil-impregnated bearings and electric brushes but also as a conductive filler for paints, pastes, resins, and the like.

Claims (8)

銅微粉の平均粒径が0.05μm以上、0.25μm以下であることを特徴とする球状銅微粉。   A spherical copper fine powder, wherein the copper fine powder has an average particle size of 0.05 μm or more and 0.25 μm or less. 銅微粉の比表面積(BET)が2.5m/g以上、15.0m/g以下であることを特徴とする請求項1記載の球状銅微粉。 2. The spherical copper fine powder according to claim 1, wherein the copper fine powder has a specific surface area (BET) of 2.5 m 2 / g or more and 15.0 m 2 / g or less. 天然樹脂、多糖類又はその誘導体の添加剤を含む水性媒体中に、亜酸化銅を添加してスラリーを作製し、このスラリーに5〜50%酸水溶液を15分以内に一度に添加して、不均化反応を行うことを特徴とする不均化反応による球状銅微粉の製造方法。   In an aqueous medium containing an additive of a natural resin, a polysaccharide or a derivative thereof, cuprous oxide is added to make a slurry, and a 5-50% aqueous acid solution is added to the slurry at once within 15 minutes, A method for producing spherical copper fine powder by disproportionation reaction, characterized by carrying out a disproportionation reaction. 不均化反応後に得られた銅微粉スラリーの固液分離と水洗浄を行い、これをアルカリ溶液による還元処理を行い、さらに得られた微粉スラリーの固液分離と水洗浄を繰り返して銅粉を得ることを特徴とする請求項3記載の球状銅微粉の製造方法。   The copper fine powder slurry obtained after the disproportionation reaction is subjected to solid-liquid separation and water washing, and this is subjected to a reduction treatment with an alkaline solution. Further, solid-liquid separation and water washing of the obtained fine powder slurry are repeated to obtain copper powder. The method for producing spherical copper fine powder according to claim 3, which is obtained. 前記微粉スラリーの固液分離と水洗浄を繰り返す途中において、酸による酸性化処理を行うことを特徴とする請求項3又は4記載の球状銅微粉の製造方法。   The method for producing spherical copper fine powder according to claim 3 or 4, wherein acidification treatment with an acid is performed in the middle of repeating solid-liquid separation and water washing of the fine powder slurry. 最終的に水洗浄処理した後、銅粉をろ過し、さらにこれを真空乾燥して銅粉を得ることを特徴とする請求項3〜5のいずれかに記載の球状銅微粉の製造方法。   6. The method of producing spherical copper fine powder according to claim 3, wherein after finally washing with water, the copper powder is filtered and further dried under vacuum to obtain copper powder. 銅微粉の平均粒径が0.05μm以上、0.25μm以下であることを特徴とする請求項3〜6のいずれかに記載の球状銅微粉の製造方法。   The average particle diameter of copper fine powder is 0.05 micrometer or more and 0.25 micrometer or less, The manufacturing method of the spherical copper fine powder in any one of Claims 3-6 characterized by the above-mentioned. 銅微粉の比表面積(BET)が2.5m/g以上、15.0m/g以下であることを特徴とする請求項3〜7のいずれかに記載の球状銅微粉の製造方法。The method for producing a spherical copper fine powder according to any one of claims 3 to 7, wherein the specific surface area (BET) of the copper fine powder is 2.5 m 2 / g or more and 15.0 m 2 / g or less.
JP2009520481A 2007-06-28 2008-06-17 Spherical copper fine powder and method for producing the same Active JP5235193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009520481A JP5235193B2 (en) 2007-06-28 2008-06-17 Spherical copper fine powder and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007169869 2007-06-28
JP2007169869 2007-06-28
JP2009520481A JP5235193B2 (en) 2007-06-28 2008-06-17 Spherical copper fine powder and method for producing the same
PCT/JP2008/061033 WO2009001710A1 (en) 2007-06-28 2008-06-17 Spherical copper fine powder and process for production of the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012246457A Division JP2013057128A (en) 2007-06-28 2012-11-08 Spherical copper fine powder and process for production of the same

Publications (2)

Publication Number Publication Date
JPWO2009001710A1 true JPWO2009001710A1 (en) 2010-08-26
JP5235193B2 JP5235193B2 (en) 2013-07-10

Family

ID=40185528

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009520481A Active JP5235193B2 (en) 2007-06-28 2008-06-17 Spherical copper fine powder and method for producing the same
JP2012246457A Pending JP2013057128A (en) 2007-06-28 2012-11-08 Spherical copper fine powder and process for production of the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012246457A Pending JP2013057128A (en) 2007-06-28 2012-11-08 Spherical copper fine powder and process for production of the same

Country Status (6)

Country Link
US (1) US20100192728A1 (en)
JP (2) JP5235193B2 (en)
KR (2) KR20100024431A (en)
CN (1) CN101687253A (en)
TW (1) TW200914166A (en)
WO (1) WO2009001710A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2462189B (en) 2008-08-01 2013-05-29 Lab Impex Systems Ltd Method and apparatus for measuring radioactivity
JP2011174144A (en) * 2010-02-25 2011-09-08 Jx Nippon Mining & Metals Corp Fine powder of copper and method for producing the same
JP5571435B2 (en) * 2010-03-31 2014-08-13 Jx日鉱日石金属株式会社 Method for producing silver-plated copper fine powder
JP5820202B2 (en) * 2010-09-30 2015-11-24 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for producing the same
JP6031571B2 (en) * 2010-09-30 2016-11-24 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for producing the same
JP2012126942A (en) * 2010-12-14 2012-07-05 Jx Nippon Mining & Metals Corp Fine spherical copper powder and method for producing the same
JP2014034697A (en) * 2012-08-08 2014-02-24 Furukawa Co Ltd Method for producing copper fine particle, conductive paste and method for producing conductive paste
JP5960543B2 (en) * 2012-08-08 2016-08-02 古河機械金属株式会社 Method for producing copper fine particles, and method for producing conductive paste
KR102118308B1 (en) * 2012-11-26 2020-06-03 미쓰이금속광업주식회사 Copper powder and method for producing same
JP2014129609A (en) * 2014-03-07 2014-07-10 Hokkaido Univ Method for producing copper fine particle
CN107921532B (en) * 2015-09-03 2020-05-08 同和电子科技有限公司 Phosphorus-containing copper powder and method for producing same
JP6561100B2 (en) * 2017-10-04 2019-08-14 Jx金属株式会社 Method for producing surface-treated copper fine particles
JP6549298B1 (en) 2018-09-21 2019-07-24 Jx金属株式会社 Pulverizable copper powder and method for producing the same
WO2023126830A1 (en) 2021-12-27 2023-07-06 Tata Steel Limited A method of producing spherical copper powder and a product thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100743844B1 (en) * 1999-12-01 2007-08-02 도와 마이닝 가부시끼가이샤 Copper powder and process for producing copper powder
JP4701426B2 (en) * 1999-12-01 2011-06-15 Dowaエレクトロニクス株式会社 Copper powder and copper powder manufacturing method
JP4185267B2 (en) * 2001-07-25 2008-11-26 三井金属鉱業株式会社 Copper powder, method for producing the copper powder, copper paste using the copper powder, and printed wiring board using the copper paste
JP4204849B2 (en) * 2002-11-12 2009-01-07 Dowaエレクトロニクス株式会社 Production method of fine copper powder
JP4242176B2 (en) * 2003-02-25 2009-03-18 石原産業株式会社 Copper fine particles and method for producing the same
JP2005023417A (en) * 2003-07-04 2005-01-27 Fukuda Metal Foil & Powder Co Ltd Production method of ultra-fine copper powder
JP4085049B2 (en) * 2003-08-21 2008-04-30 Jfeミネラル株式会社 Copper alloy powder for conductive paste, method for producing copper alloy powder for conductive paste excellent in oxidation resistance, copper alloy powder for inkjet, and method for producing the same
JP4868329B2 (en) * 2004-03-09 2012-02-01 Jx日鉱日石金属株式会社 Method for producing copper fine powder
JP4662760B2 (en) * 2004-12-22 2011-03-30 三井金属鉱業株式会社 Ultrafine copper powder, ultrafine copper powder slurry, and method for producing ultrafine copper powder slurry
JP4687599B2 (en) * 2006-07-26 2011-05-25 住友金属鉱山株式会社 Copper fine powder, method for producing the same, and conductive paste

Also Published As

Publication number Publication date
TW200914166A (en) 2009-04-01
KR20120116013A (en) 2012-10-19
KR20100024431A (en) 2010-03-05
CN101687253A (en) 2010-03-31
JP2013057128A (en) 2013-03-28
TWI370033B (en) 2012-08-11
JP5235193B2 (en) 2013-07-10
US20100192728A1 (en) 2010-08-05
WO2009001710A1 (en) 2008-12-31

Similar Documents

Publication Publication Date Title
JP5235193B2 (en) Spherical copper fine powder and method for producing the same
JP5373032B2 (en) Copper fine particles and method for producing the same
JP5032005B2 (en) High crystal silver powder and method for producing the high crystal silver powder
JP5392884B2 (en) Method for producing copper powder
JP2012126942A (en) Fine spherical copper powder and method for producing the same
JP5571435B2 (en) Method for producing silver-plated copper fine powder
JP4178374B2 (en) Silver coated flake copper powder, method for producing the silver coated flake copper powder, and conductive paste using the silver coated flake copper powder
TWI825594B (en) copper powder
JP2016011448A (en) Fine particle, method for producing fine particle, and fine particle dispersion solution
JP6213584B2 (en) Method for producing copper powder and method for producing conductive paste
JP4868329B2 (en) Method for producing copper fine powder
JP5163843B2 (en) Method for producing silver fine particles
JP5376109B2 (en) Method for producing silver fine particles
JP7075262B2 (en) Core-shell particles and their use
JP2008223096A (en) Method for manufacturing flaky silver powder
JP2020139178A (en) Silver powder and method for producing the same
JP2017039990A (en) Copper powder, method for producing the same, and conductive paste using the same
JP5912663B2 (en) Cobalt-plated copper fine powder, conductive paste produced using cobalt-plated copper fine powder, and method for producing cobalt-plated copper fine powder
JP2010222706A (en) Method for producing copper fine powder
JP2009052146A (en) Copper powder and its manufacturing method
JP4074637B2 (en) Method for producing fine silver powder
CN103752841A (en) Preparing method for nano-copper powder
TWI866937B (en) Method for producing monodispersed ag powder
JPS6217002B2 (en)
JP2005082818A (en) Method for producing nickel powder

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R150 Certificate of patent or registration of utility model

Ref document number: 5235193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250