[go: up one dir, main page]

JP4074637B2 - Method for producing fine silver powder - Google Patents

Method for producing fine silver powder Download PDF

Info

Publication number
JP4074637B2
JP4074637B2 JP2006022938A JP2006022938A JP4074637B2 JP 4074637 B2 JP4074637 B2 JP 4074637B2 JP 2006022938 A JP2006022938 A JP 2006022938A JP 2006022938 A JP2006022938 A JP 2006022938A JP 4074637 B2 JP4074637 B2 JP 4074637B2
Authority
JP
Japan
Prior art keywords
silver
silver powder
solution
complex salt
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006022938A
Other languages
Japanese (ja)
Other versions
JP2007204795A (en
Inventor
慎太郎 和地
昌宏 三輪
隆 藤原
尚男 林
克彦 吉丸
邦朗 中原
宏之 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2006022938A priority Critical patent/JP4074637B2/en
Publication of JP2007204795A publication Critical patent/JP2007204795A/en
Application granted granted Critical
Publication of JP4074637B2 publication Critical patent/JP4074637B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明は、電解法によって微粒銀粉を製造する方法に関する。   The present invention relates to a method for producing fine silver powder by an electrolytic method.

銀粉は、積層コンデンサの内部電極、回路基板の導体パターン、プラズマディスプレイパネル用基板の電極など、各種電子部品の電極や回路形成に使用されている。近年、電子部品の小型化、高密度化、高精度化に伴い、銀粉にも微粒子化及び均質化が求められている。   Silver powder is used for forming electrodes and circuits of various electronic parts such as internal electrodes of multilayer capacitors, conductor patterns of circuit boards, and electrodes of substrates for plasma display panels. In recent years, with the miniaturization, high density, and high precision of electronic parts, silver powder is also required to be finely divided and homogenized.

銀粉の製造方法としては、銀イオンを含む電解液を電解して銀粒子を電極に析出させる電解法(特許文献1参照)のほか、特許文献2に開示されているように、硝酸銀溶液とアンモニア水とで銀アンミン錯体水溶液を製造し、これに有機還元剤を添加する湿式還元プロセスによって高分散性球状銀粉末を得る方法、さらには、特許文献3に開示されているように、例えば、硫酸銀水溶液に還元剤としてホスフィン酸ナトリウム、ホルムアルデヒド、ハイドロキノンのうちの1種とポリビニルピロリドンを用いて反応を行う化学還元法を利用した方法などが知られている。   As a method for producing silver powder, in addition to an electrolytic method (see Patent Document 1) in which an electrolytic solution containing silver ions is electrolyzed to deposit silver particles on an electrode, as disclosed in Patent Document 2, a silver nitrate solution and ammonia are used. A method of obtaining a highly dispersible spherical silver powder by a wet reduction process in which an aqueous silver ammine complex solution is produced with water and an organic reducing agent is added thereto. Furthermore, as disclosed in Patent Document 3, for example, sulfuric acid A method using a chemical reduction method in which a silver aqueous solution is reacted with polyvinyl pyrrolidone as one of sodium phosphinate, formaldehyde and hydroquinone as a reducing agent is known.

特開平8-209375号公報JP-A-8-209375 特開2001−107101号公報JP 2001-107101 A 特開平6−122905号公報JP-A-6-122905

上記のような各種銀粉の製造方法の中で、還元剤を用いる方法はコストが高くなる傾向があるばかりか、還元剤の種類によっては異臭が発生するなど作業環境の点で問題を生じることがある。それに比べ、電解法は、比較的安価に銀粉を製造できる上、高電流密度での操業が可能であるため生産効率の点でも優れている。
しかし、電解法によると、銀粉の粒径が粗大化する傾向があり、微細回路形成に求められるような微粒な銀粉を得ることが難しいという課題を抱えていた。
Among the various silver powder production methods as described above, the method using a reducing agent tends to increase the cost, and depending on the type of the reducing agent, it may cause problems in terms of the working environment such as the generation of a strange odor. is there. In comparison, the electrolytic method is superior in production efficiency because it can produce silver powder at a relatively low cost and can be operated at a high current density.
However, according to the electrolytic method, the particle diameter of the silver powder tends to become coarse, and there is a problem that it is difficult to obtain a fine silver powder required for forming a fine circuit.

そこで本発明は、電解法によって微粒銀粉を得ることができるように、新たな微粒銀粉の製造方法を提供せんとするものである。   Therefore, the present invention is to provide a new method for producing fine silver powder so that fine silver powder can be obtained by an electrolytic method.

本発明は、銀錯塩水溶液を電解液に用いて電解することを特徴とする微粒銀粉の製造方法を提案する。   The present invention proposes a method for producing fine silver powder, characterized in that electrolysis is performed using an aqueous silver complex salt solution as an electrolytic solution.

銀アンミン錯塩水溶液などの銀錯塩水溶液を電解液に用いて電解することにより、平均粒径(D50)10μm以下の微粒銀粉を得ることができる。しかも、得られる銀粉は、球状粒子の少ないデンドライト状の粒子が主体の銀粉であり、均質性の点でも優れている。また、デンドライト状の粉粒は、球状粉に比べ、比表面積が大きく、加熱による熱的影響を受けやすく、低温焼結性を発揮しやすい物理的特徴を有している。
さらに、従来の一般的な電解法は、酸性溶液中で電解を行うのが一般的であったため、たとえ微粒子が析出したとしても再溶解してしまうが、銀アンミン錯塩水溶液などの銀錯塩水溶液をpH調整の上、電解液に用いることにより、析出した微粒銀粒子が再溶解することなく安定して存在し得るため、形状及び大きさの点で均質なデンドライト状の微粒銀粉を得ることができる。
Fine silver powder having an average particle size (D50) of 10 μm or less can be obtained by electrolysis using a silver complex salt aqueous solution such as a silver ammine complex salt aqueous solution as an electrolyte. Moreover, the silver powder obtained is a silver powder mainly composed of dendritic particles with few spherical particles, and is excellent in terms of homogeneity. In addition, dendritic particles have a specific surface area larger than that of spherical powder, are easily affected by heat, and have physical characteristics that easily exhibit low-temperature sinterability.
Furthermore, since the conventional general electrolysis method is generally performed in an acidic solution, even if fine particles are precipitated, it is re-dissolved. However, a silver complex salt aqueous solution such as a silver ammine complex salt aqueous solution is used. By adjusting the pH and using it in the electrolyte, the precipitated fine silver particles can exist stably without re-dissolving, so that a dendritic fine silver powder that is homogeneous in terms of shape and size can be obtained. .

上記電解液に水溶性有機高分子を加えることで、得られる銀粒子の粒径をさらに小さくすることができる。   By adding a water-soluble organic polymer to the electrolytic solution, the particle size of the obtained silver particles can be further reduced.

また、上記の如く電解して得られた銀粉を湿式粉砕することにより、デンドライト状銀粒子における幹部分と分岐部分とを分離することができ、より一層微粒な針状銀粒子を得ることができる。
そして、湿式粉砕後に分級することにより、例えば幹部分と分岐部分とを分離することができ、各粒径及び形状に応じた用途に各々利用することができる。
Further, by wet-grinding the silver powder obtained by electrolysis as described above, the trunk portion and the branched portion in the dendrite-like silver particles can be separated, and even finer needle-like silver particles can be obtained. .
And by classifying after wet pulverization, for example, a trunk portion and a branched portion can be separated, and each can be used for applications according to each particle size and shape.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施形態について詳述するが、本発明の範囲が以下の実施形態に限定されるものではない。
なお、本明細書において、「X〜Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意であり、「好ましくはXより大きく、Yより小さい」の意を包含するものである。
Hereinafter, although the embodiment of the present invention is described in detail, the scope of the present invention is not limited to the following embodiment.
In this specification, “X to Y” (X and Y are arbitrary numbers) means “X or more and Y or less” unless otherwise specified, “preferably larger than X, Y It includes the meaning of “smaller”.

本実施形態では、銀錯塩水溶液を電解液として電解し、微粒銀粉を得る製造方法について説明する。
なお、本発明における「電解」とは、DSE電極を用いた電解採取、銀電極を用いた電解精製のどちらも包含するものである。
In the present embodiment, a manufacturing method for obtaining fine silver powder by electrolyzing an aqueous silver complex salt solution as an electrolytic solution will be described.
In the present invention, “electrolysis” includes both electrolytic collection using a DSE electrode and electrolytic purification using a silver electrode.

銀錯塩水溶液としては、一座配位子錯塩である銀アンミン錯塩の水溶液(銀アンミン錯塩水溶液)を用いるのが好ましい。
一座配位子である銀アンミン錯塩は、二座配位子或いはそれ以上の多座配位子に比べて銀イオンとの結合力が弱く、立体障害も少ないため、錯体の中でも特に銀粉の電析に適している。
As the silver complex salt aqueous solution, a silver ammine complex salt aqueous solution (silver ammine complex salt aqueous solution) which is a monodentate ligand complex salt is preferably used.
Silver ammine complex salts, which are monodentate ligands, have a weaker binding power to silver ions and less steric hindrance than bidentate ligands or higher polydentate ligands. Suitable for analysis.

銀錯塩水溶液の調製方法は、特に限定するものではない。例えば銀アンミン錯塩水溶液を調製する場合には、硝酸銀水溶液などの銀イオンを含む水溶液に、アンモニア或いはアンモニア水を加えて調製することもできるし、また、さらに硫酸アンモニウム等のアンモニウム塩をさらに加えて調製することもできる。この際、アンモニウム塩はアンモニウムイオンの供給源となると共にpH緩衝剤として機能するため、アンモニア或いはアンモニア水の添加量を抑えることができ、電解液のpH調整を容易にすることができる。   The method for preparing the silver complex aqueous solution is not particularly limited. For example, when preparing an aqueous silver ammine complex salt solution, it can be prepared by adding ammonia or aqueous ammonia to an aqueous solution containing silver ions such as an aqueous silver nitrate solution, or by further adding an ammonium salt such as ammonium sulfate. You can also At this time, the ammonium salt serves as a supply source of ammonium ions and functions as a pH buffering agent. Therefore, the amount of ammonia or ammonia water added can be suppressed, and pH adjustment of the electrolyte can be facilitated.

銀錯塩水溶液のpHは3〜11、特に4〜11、その中でも特に5〜10に調整するのが好ましい。pHが3よりも低いときは、析出した粒子が溶解してしまい、形状が安定しない。また、pHが11を超える場合には、アンモニアガスが揮発し、悪臭を引き起こすばかりか、生成する粒子に差がないことより経済的でない。中でも特に銀錯塩水溶液のpHを5〜10の範囲に調整することにより、析出した微粒銀粒子が溶解(再溶解)することなくより一層安定して存在するため、形状及び大きさの点で品質がより一層安定した微粒銀粉を製造することができる。   The pH of the silver complex salt aqueous solution is preferably adjusted to 3 to 11, particularly 4 to 11, and particularly preferably 5 to 10. When the pH is lower than 3, the precipitated particles are dissolved and the shape is not stable. On the other hand, when the pH exceeds 11, not only the ammonia gas volatilizes and causes bad odor, but also it is not economical because there is no difference in the generated particles. In particular, by adjusting the pH of the aqueous silver complex salt solution to a range of 5 to 10, the precipitated fine silver particles are present more stably without dissolving (re-dissolving), so the quality in terms of shape and size Can produce a more stable fine silver powder.

電解液中の銀濃度は、0.5g/L〜50g/L、特に1g/L〜30g/Lに調整するのが好ましい。0.5g/L未満になると、銀の析出速度が遅くなり、効率的に銀粉を得ることができない。また、50g/Lより多くなると、生成する銀粒子の形状が安定しなくなるため好ましくない。   The silver concentration in the electrolytic solution is preferably adjusted to 0.5 g / L to 50 g / L, particularly 1 g / L to 30 g / L. If it is less than 0.5 g / L, the silver deposition rate becomes slow, and silver powder cannot be obtained efficiently. Moreover, since it will become unstable for the shape of the silver particle to produce | generate when it exceeds 50 g / L, it is unpreferable.

電解液中のNH3/Ag+は、モル比で2以上、中でも2〜20に調整するのが好ましい。2未満であると錯形成が不十分となり銀が沈殿するようになる。また、20より大きくなると不経済であり、アンモニアガスの悪臭により作業環境が悪化する可能性がある。
具体的には、例えば硝酸銀水溶液とアンモニア水、或いはさらに、硫酸アンモニウム等のアンモニウム塩とを、銀とNH3とのモル比が上記所定の範囲内になるように混合するのが好ましい
NH 3 / Ag + in the electrolytic solution is preferably adjusted to a molar ratio of 2 or more, particularly 2 to 20. If it is less than 2, complex formation is insufficient and silver is precipitated. Moreover, when it exceeds 20, it is uneconomical and there is a possibility that the working environment is deteriorated due to the bad smell of ammonia gas.
Specifically, for example, an aqueous silver nitrate solution and aqueous ammonia, or further an ammonium salt such as ammonium sulfate, is preferably mixed so that the molar ratio of silver and NH 3 is within the predetermined range.

電解条件としては、電流密度は10〜1000A/m2が好ましく、より好ましくは30〜800A/m2であり、さらに好ましくは50〜500A/m2である。10A/m2未満であると、銀の析出速度が遅くなり粒子が粗大化する。また1000A/m2より高くなると、溶液内の温度が上昇し、銀粉の形状が安定しない。また、アンモニアもより揮発しやすくなり、ランニングコストもかさみ不経済である。 The electrolysis conditions, the current density is preferably 10~1000A / m 2, more preferably 30~800A / m 2, more preferably from 50~500A / m 2. If it is less than 10 A / m 2 , the silver deposition rate becomes slow and the grains become coarse. Moreover, when it becomes higher than 1000 A / m < 2 >, the temperature in a solution will rise and the shape of silver powder will not be stabilized. In addition, ammonia is more easily volatilized and the running cost is high, which is uneconomical.

極板上に析出した銀粉は適宜時間おきに掻き落し、極板から掻き落した銀粉は、濾過し、洗浄し、乾燥することにより、微粒銀粉を得ることができる。この際、濾過、洗浄および乾燥の方法は特に限定するものではなく、一般的な方法を採用すればよい。   The silver powder deposited on the electrode plate is scraped off at appropriate intervals, and the silver powder scraped off from the electrode plate is filtered, washed, and dried to obtain fine silver powder. At this time, the method of filtration, washing and drying is not particularly limited, and a general method may be adopted.

上記のようにして銀粉を製造すれば、いずれの粒子もデンドライト状を呈し、且つ、平均粒径(D50)10μm以下、好ましくは5μm〜10μmの微粒銀粉を得ることができる。
なお、デンドライト状とは、幹部分から平面状に枝部分が分岐して成長してなる形状である。
When silver powder is produced as described above, all particles have a dendritic shape, and a fine silver powder having an average particle diameter (D50) of 10 μm or less, preferably 5 μm to 10 μm can be obtained.
The dendrite shape is a shape formed by branching and growing from a trunk portion to a planar shape.

さらに、上記電解液に水溶性有機高分子を加えて上記のように電解することによって、上記のデンドライト状微粒銀粉をさらに微粒化することができる。
水溶性有機高分子としては、例えばゼラチン、ポリビニルアルコール、水溶性でんぷん、にかわ、水溶性カルボン酸塩などを挙げることができ、中でもゼラチンが好ましい。
この際、水溶性有機高分子は、電解液に対して0.05g/L〜5g/Lとなるように添加するのが好ましい。0.05g/L未満であると十分な効果が得られず、5g/Lより多くなると粒子形状が安定しなくなるため好ましくない。
Furthermore, the dendritic fine silver powder can be further atomized by adding a water-soluble organic polymer to the electrolytic solution and performing electrolysis as described above.
Examples of the water-soluble organic polymer include gelatin, polyvinyl alcohol, water-soluble starch, glue, water-soluble carboxylate, etc. Among them, gelatin is preferable.
At this time, the water-soluble organic polymer is preferably added so as to be 0.05 g / L to 5 g / L with respect to the electrolytic solution. If it is less than 0.05 g / L, a sufficient effect cannot be obtained, and if it exceeds 5 g / L, the particle shape becomes unstable.

また、上記のように電解して得られた銀粉を湿式粉砕することにより、デンドライト状銀粒子の幹部分と分岐部分とを分離することができ、これによってさらに微粒な針状銀粒子を得ることができる。   In addition, by wet-grinding the silver powder obtained by electrolysis as described above, the trunk portion and the branched portion of the dendrite-like silver particles can be separated, thereby obtaining finer needle-like silver particles. Can do.

湿式粉砕手段としては、銀粒子は軟らかいため、形状を維持できるように、メディア(ビーズやボールなどの粉砕媒体)を使用しない湿式粉砕手段を採用するのが好ましく、例えば湿式ジェットミルなどを好適に用いることができる。   As the wet pulverization means, since the silver particles are soft, it is preferable to employ a wet pulverization means that does not use a medium (a pulverization medium such as beads or balls) so that the shape can be maintained. For example, a wet jet mill is preferably used. Can be used.

さらに、上記湿式粉砕に続いて分級することにより、例えば幹部分と分岐部分とを分離することができ、いずれも極めて微粒な粒子であるが、その中でも幹部分と分岐部分のそれぞれの特徴に応じた用途に利用することができる。
この際、分級方法としては、遠心分級のほか、振動篩いや面内篩いのように一定の大きさの網目を通過させる方法や、気流により分離する方法のいずれを採用してもよい。
Furthermore, by classifying following the above-mentioned wet pulverization, for example, the trunk portion and the branched portion can be separated, both of which are extremely fine particles, among which depending on the characteristics of the trunk portion and the branched portion. Can be used for various purposes.
In this case, as a classification method, in addition to centrifugal classification, any of a method of passing a mesh of a certain size such as a vibration sieve or an in-plane sieve, or a method of separation by airflow may be employed.

上記のようにして得られた銀粉に対して有機表面処理を施してもよい。銀粒子に有機表面処理を施すことにより、凝集性を抑制することができる。また、有機表面処理剤を適宜選択することにより、他材料との親和性をコントロールすることも可能となる。
この際、有機表面処理としては、例えば飽和脂肪酸、不飽和脂肪酸、窒素含有有機化合物、硫黄含有有機化合物及びシランカップリング剤等からなる皮膜を銀粒子表面を形成するようにすればよい。中でも、上記有機化合物のうち、オレイン酸、カプリン酸又はステアリン酸を用いて行なうのが好ましい。皮膜形成方法としては、例えば乾式法、湿式法等、公知の方法を採用すればよい。
An organic surface treatment may be applied to the silver powder obtained as described above. Aggregation can be suppressed by applying an organic surface treatment to the silver particles. Moreover, the affinity with other materials can be controlled by appropriately selecting the organic surface treatment agent.
At this time, as the organic surface treatment, for example, a film made of a saturated fatty acid, an unsaturated fatty acid, a nitrogen-containing organic compound, a sulfur-containing organic compound, a silane coupling agent, or the like may be formed on the silver particle surface. Among these organic compounds, it is preferable to use oleic acid, capric acid or stearic acid. As a film forming method, a known method such as a dry method or a wet method may be employed.

以下、本発明の実施例について説明するが、本発明が以下の実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

<粒度測定>
銀粉を少量ビーカーに取り、3%トリトンX溶液(関東化学製)を2、3滴添加し、粉末になじませてから、0.1%SNディスパーサント41溶液(サンノプコ製)50mLを添加し、その後、超音波分散器TIPφ20(日本精機製作所製、OUTPUT:8、TUNING:5)を用いて2分間分散処理して測定用サンプルを調製した。
この測定用サンプルを、レーザー回折散乱式粒度分布測定装置MT3300 (日機装製)を用いて、粉体特性値(Dmin、D10、D50、D90、Dmax)を測定した。
<Particle size measurement>
Take a small amount of silver powder in a beaker, add a few drops of 3% Triton X solution (Kanto Chemical), blend in the powder, add 50 mL of 0.1% SN Dispersant 41 solution (San Nopco), Then, the dispersion | distribution process was performed for 2 minutes using the ultrasonic disperser TIP20 (Nippon Seiki Seisakusho make, OUTPUT: 8, TUNING: 5), and the sample for a measurement was prepared.
Powder characteristic values (Dmin, D10, D50, D90, Dmax) of this measurement sample were measured using a laser diffraction / scattering particle size distribution analyzer MT3300 (manufactured by Nikkiso).

<比表面積の測定>
比表面積は、ユアサアイオニクス社製モノソーブにて、BET1点法で測定した。
<Measurement of specific surface area>
The specific surface area was measured by the BET 1-point method with a monosorb manufactured by Yuasa Ionics.

(実施例1)
0.8Lの純水に硝酸銀12.6gを溶解し、25%アンモニア水を24mL、さらに硫酸アンモニウムを40g添加し、銀アンミン錯塩水溶液を調製した(銀濃度10g/L、NH3/Ag+モル比12、20℃、pH9.4)。
この銀アンミン錯塩水溶液を電解液とし、陽極、陰極共にDSE極板を使用し、電流密度200A/m2、溶液温度20℃で電解し、適当な間隔をおいてスクレーパにより電析した銀粒子を極板から掻き落し、1時間電解した。
その後、掻き落して得られた銀粉をヌッチェでろ過し、純水、さらにアルコール洗浄を行い、70℃×12時間、大気雰囲気下で乾燥させ、デンドライト状銀粉を得た。
Example 1
12.6 g of silver nitrate was dissolved in 0.8 L of pure water, 24 mL of 25% ammonia water and 40 g of ammonium sulfate were added to prepare an aqueous silver ammine complex salt solution (silver concentration 10 g / L, NH 3 / Ag + molar ratio). 12, 20 ° C., pH 9.4).
Using this silver ammine complex salt aqueous solution as an electrolytic solution, a DSE electrode plate is used for both the anode and the cathode, electrolysis is performed at a current density of 200 A / m 2 and a solution temperature of 20 ° C., and silver particles electrodeposited by a scraper at appropriate intervals The electrode plate was scraped off and electrolyzed for 1 hour.
Thereafter, the silver powder obtained by scraping off was filtered with Nutsche, washed with pure water and further with alcohol, and dried in an air atmosphere at 70 ° C. for 12 hours to obtain a dendritic silver powder.

得られた銀粉の走査型電子顕微鏡(SEM)観察像を図1に示した。また、得られた銀粉について、レーザー回折散乱式粒度分布測定装置により測定して得た粉体特性を表1に示した。   A scanning electron microscope (SEM) observation image of the obtained silver powder is shown in FIG. Table 1 shows the powder characteristics obtained by measuring the obtained silver powder with a laser diffraction / scattering particle size distribution analyzer.

(実施例2)
0.8Lの純水に硝酸銀1.26gを溶解し、25%アンモニア水を2.4mL、さらに硫酸アンモニウムを4g添加し、銀アンミン錯塩水溶液を調製した(銀濃度1g/L、NH3 /Ag+モル比12、20℃、pH9.4)。
この銀アンミン錯塩水溶液を電解液とし、陽極、陰極共にDSE極板を使用し、電流密度200A/m2、溶液温度20℃で電解し、適当な間隔をおいてスクレーパにより電析した銀粒子を極板から掻き落し、1時間電解した。
その後、掻き落して得られた銀粉をヌッチェでろ過し、純水、さらにアルコール洗浄を行い、70℃×12時間、大気雰囲気下で乾燥させ、デンドライト状銀粉を得た。
(Example 2)
1.26 g of silver nitrate was dissolved in 0.8 L of pure water, 2.4 mL of 25% aqueous ammonia and 4 g of ammonium sulfate were added to prepare an aqueous silver ammine complex salt solution (silver concentration: 1 g / L, NH 3 / Ag + Molar ratio 12, 20 ° C., pH 9.4).
Using this silver ammine complex salt aqueous solution as an electrolytic solution, a DSE electrode plate is used for both the anode and the cathode, electrolysis is performed at a current density of 200 A / m 2 and a solution temperature of 20 ° C., and silver particles electrodeposited by a scraper at appropriate intervals The electrode plate was scraped off and electrolyzed for 1 hour.
Thereafter, the silver powder obtained by scraping off was filtered with Nutsche, washed with pure water and further with alcohol, and dried in an air atmosphere at 70 ° C. for 12 hours to obtain a dendritic silver powder.

得られた銀粉について、レーザー回折散乱式粒度分布測定装置により測定して得た粉体特性を表1に示した。   Table 1 shows the powder characteristics obtained by measuring the obtained silver powder with a laser diffraction / scattering particle size distribution analyzer.

(実施例3)
0.8Lの純水に硝酸銀12.6gを溶解し、25%アンモニア水を24mL、さらに硫酸アンモニウムを40g添加し、銀アンミン錯塩水溶液を調製した(銀濃度10g/L、NH3/Ag+モル比12、20℃、pH9.4)。
この銀アンミン錯塩水溶液を電解液とし、陽極、陰極共にDSE極板を使用し、電流密度700A/m2、溶液温度20℃で電解し、適当な間隔をおいてスクレーパにより電析した銀粒子を極板から掻き落し、1時間電解した。
その後、掻き落して得られた銀粉をヌッチェでろ過し、純水、さらにアルコール洗浄を行い、70℃×12時間、大気雰囲気下で乾燥させ、デンドライト状銀粉を得た。
(Example 3)
12.6 g of silver nitrate was dissolved in 0.8 L of pure water, 24 mL of 25% ammonia water and 40 g of ammonium sulfate were added to prepare an aqueous silver ammine complex salt solution (silver concentration 10 g / L, NH 3 / Ag + molar ratio). 12, 20 ° C., pH 9.4).
Using this silver ammine complex salt aqueous solution as an electrolytic solution, a DSE electrode plate is used for both the anode and the cathode, electrolysis is performed at a current density of 700 A / m 2 and a solution temperature of 20 ° C., and silver particles electrodeposited by a scraper at appropriate intervals The electrode plate was scraped off and electrolyzed for 1 hour.
Thereafter, the silver powder obtained by scraping off was filtered with Nutsche, washed with pure water and further with alcohol, and dried in an air atmosphere at 70 ° C. for 12 hours to obtain a dendritic silver powder.

得られた銀粉について、レーザー回折散乱式粒度分布測定装置により測定して得た粉体特性を表1に示した。   Table 1 shows the powder characteristics obtained by measuring the obtained silver powder with a laser diffraction / scattering particle size distribution analyzer.

(実施例4)
0.8Lの純水に硝酸銀12.6gを溶解し、25%アンモニア水を24mL、さらに硫酸アンモニウムを40g添加し、銀アンミン錯塩水溶液を調製した(銀濃度10g/L、NH3/Ag+モル比12、50℃、pH9.4)。
この銀アンミン錯塩水溶液を電解液とし、陽極、陰極共にDSE極板を使用し、電流密度200A/m2、溶液温度50℃で電解し、適当な間隔をおいてスクレーパにより電析した銀粒子を極板から掻き落し、1時間電解した。
その後、掻き落して得られた銀粉をヌッチェでろ過し、純水、さらにアルコール洗浄を行い、70℃×12時間、大気雰囲気下で乾燥させ、デンドライト状銀粉を得た。
Example 4
12.6 g of silver nitrate was dissolved in 0.8 L of pure water, 24 mL of 25% aqueous ammonia and 40 g of ammonium sulfate were added to prepare an aqueous silver ammine complex salt solution (silver concentration 10 g / L, NH 3 / Ag + molar ratio). 12, 50 ° C., pH 9.4).
Using this silver ammine complex salt aqueous solution as an electrolytic solution, a DSE electrode plate is used for both the anode and the cathode, electrolysis is performed at a current density of 200 A / m 2 and a solution temperature of 50 ° C., and silver particles electrodeposited by a scraper at appropriate intervals The electrode plate was scraped off and electrolyzed for 1 hour.
Thereafter, the silver powder obtained by scraping off was filtered with Nutsche, washed with pure water and further with alcohol, and dried in an air atmosphere at 70 ° C. for 12 hours to obtain a dendritic silver powder.

得られた銀粉について、レーザー回折散乱式粒度分布測定装置により測定して得た粉体特性を表1に示した。   Table 1 shows the powder characteristics obtained by measuring the obtained silver powder with a laser diffraction / scattering particle size distribution analyzer.

(実施例5)
0.8Lの純水に硝酸銀12.6gを溶解し、25%アンモニア水を24mL、さらに硫酸アンモニウムを40g添加し、さらに0.1g/Lの割合でゼラチンを添加し、銀アンミン錯塩水溶液を調製した(銀濃度10g/L、NH3/Ag+モル比12、20℃、pH9.4)。
この銀アンミン錯塩水溶液を電解液とし、陽極、陰極共にDSE極板を使用し、電流密度200A/m2、溶液温度20℃で電解し、適当な間隔をおいてスクレーパにより電析した銀粒子を極板から掻き落し、1時間電解した。
その後、掻き落して得られた銀粉をヌッチェでろ過し、純水、さらにアルコール洗浄を行い、70℃×12時間、大気雰囲気下で乾燥させ、デンドライト状銀粉を得た。
(Example 5)
12.6 g of silver nitrate was dissolved in 0.8 L of pure water, 24 mL of 25% aqueous ammonia and 40 g of ammonium sulfate were added, and gelatin was further added at a rate of 0.1 g / L to prepare a silver ammine complex salt aqueous solution. (Silver concentration 10 g / L, NH 3 / Ag + molar ratio 12, 20 ° C., pH 9.4).
Using this silver ammine complex salt aqueous solution as an electrolytic solution, a DSE electrode plate is used for both the anode and the cathode, electrolysis is performed at a current density of 200 A / m 2 and a solution temperature of 20 ° C., and silver particles electrodeposited by a scraper at appropriate intervals The electrode plate was scraped off and electrolyzed for 1 hour.
Thereafter, the silver powder obtained by scraping off was filtered with Nutsche, washed with pure water and further with alcohol, and dried in an air atmosphere at 70 ° C. for 12 hours to obtain a dendritic silver powder.

得られた銀粉について、レーザー回折散乱式粒度分布測定装置により測定して得た粉体特性を表1に示した。   Table 1 shows the powder characteristics obtained by measuring the obtained silver powder with a laser diffraction / scattering particle size distribution analyzer.

Figure 0004074637
Figure 0004074637

実施例1で得られた銀粉は、平均粒径10μm以下の微粒銀粉であり、図1に見られるように、いずれの粒子も均一なデンドライト状を呈していた。
実施例2で得られた銀粉は、実施例1で得られた銀粉に比べ、析出量は少ないが、ほぼ同様なデンドライト状微粒銀粉が得られた。しかし生産効率を考えた場合、銀濃度は1g/L以上の方が好ましいと考えられる。
実施例3で得られた銀粉は、実施例1で得られた銀粉に比べ、析出量が増加し、ほぼ同様なデンドライト状微粒銀粉が得られた。しかし、電流密度の増加による液温の上昇によって、形状にバラツキが生じやすく、またアンモニアが揮発しやすくなるので注意を要する。
実施例4で得られた銀粉は、実施例1で得られた銀粉とほぼ同様なデンドライト状微粒銀粉が得られた。しかし、電解温度を上げると形状にバラツキが生じやすく、またアンモニアが揮発しやすくなるので注意を要する。
実施例5で得られた銀粉は、実施例1で得られた銀粉に比べ、顕著に粒径が小さくなった。
The silver powder obtained in Example 1 was a fine silver powder having an average particle size of 10 μm or less, and as seen in FIG. 1, all the particles had a uniform dendrite shape.
Although the silver powder obtained in Example 2 had a smaller precipitation amount than the silver powder obtained in Example 1, almost the same dendritic fine silver powder was obtained. However, when considering production efficiency, it is considered that the silver concentration is preferably 1 g / L or more.
Compared with the silver powder obtained in Example 1, the silver powder obtained in Example 3 had an increased precipitation amount, and almost the same dendritic fine silver powder was obtained. However, caution is required because the liquid temperature rises due to the increase in current density, and the shape tends to vary, and ammonia tends to volatilize.
As for the silver powder obtained in Example 4, dendritic fine silver powder almost similar to the silver powder obtained in Example 1 was obtained. However, when the electrolysis temperature is raised, the shape tends to vary, and ammonia tends to volatilize.
The silver powder obtained in Example 5 was significantly smaller in particle size than the silver powder obtained in Example 1.

実施例1で得られた銀粉の走査型電子顕微鏡(SEM、倍率5000倍)観察像である。2 is a scanning electron microscope (SEM, magnification 5000 times) observation image of the silver powder obtained in Example 1. FIG.

Claims (3)

硝酸銀溶液にアンモニアと共にアンモニウム塩を加えて調製してなる銀アンミン錯塩水溶液であって、NH3/Agモル比を2〜20に調整した銀アンミン錯塩水溶液を電解液に用いて電解することを特徴とする、デンドライト状を呈するD50:5μm〜10μmの微粒銀粉の製造方法。 A silver ammine complex salt aqueous solution prepared by adding an ammonium salt together with ammonia to a silver nitrate solution, wherein an electrolysis is performed using a silver ammine complex salt aqueous solution having an NH 3 / Ag molar ratio adjusted to 2 to 20 as an electrolyte. And D50 exhibiting a dendritic shape: a method for producing fine silver powder of 5 μm to 10 μm. 銀アンミン錯塩水溶液中の銀濃度を1g/Lより大きくかつ30g/Lより小さく調整することを特徴とする請求項1に記載の微粒銀粉の製造方法。     2. The method for producing fine silver powder according to claim 1, wherein the silver concentration in the silver ammine complex salt aqueous solution is adjusted to be larger than 1 g / L and smaller than 30 g / L. 銀アンミン錯塩水溶液のpHを5より高く10未満に調整することを特徴とする請求項1又は2に記載の微粒銀粉の製造方法。
The method for producing fine silver powder according to claim 1 or 2, wherein the pH of the aqueous silver ammine complex salt solution is adjusted to be higher than 5 and lower than 10.
JP2006022938A 2006-01-31 2006-01-31 Method for producing fine silver powder Active JP4074637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006022938A JP4074637B2 (en) 2006-01-31 2006-01-31 Method for producing fine silver powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006022938A JP4074637B2 (en) 2006-01-31 2006-01-31 Method for producing fine silver powder

Publications (2)

Publication Number Publication Date
JP2007204795A JP2007204795A (en) 2007-08-16
JP4074637B2 true JP4074637B2 (en) 2008-04-09

Family

ID=38484514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006022938A Active JP4074637B2 (en) 2006-01-31 2006-01-31 Method for producing fine silver powder

Country Status (1)

Country Link
JP (1) JP4074637B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130099998A (en) 2010-11-08 2013-09-06 나믹스 가부시끼가이샤 Metal particles and manufacturing method for same
CN102181885A (en) * 2011-04-07 2011-09-14 东南大学 Method for preparing nano silver solution by electrolysis
CN114540881A (en) * 2022-02-24 2022-05-27 昆明高聚科技有限公司 Preparation method of micron-sized monodisperse silver powder based on electrochemical deposition method

Also Published As

Publication number Publication date
JP2007204795A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP5065607B2 (en) Fine silver particle production method and fine silver particle obtained by the production method
TWI570196B (en) Silver-clad copper powder
JP5415708B2 (en) Silver powder manufacturing method
JP6274444B2 (en) Method for producing copper powder
CN102811830B (en) Fine silver-plated copper powder and method for producing same
JP2009046696A (en) Method for producing silver powder
JP6130209B2 (en) Conductive film
EP3296042A1 (en) Silver-coated copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing silver-coated copper powder
JP2013541640A (en) Silver particles and method for producing the same
JP6324237B2 (en) Fine particles, method for producing fine particles, and fine particle dispersion solution
JP2009013449A (en) Flat silver powder, method for producing flat silver powder, and conductive paste
JP6181344B1 (en) Dendritic silver powder
JP2007291513A (en) Silver particle
JP4074637B2 (en) Method for producing fine silver powder
JP2008007859A (en) Silver particle
JP5163843B2 (en) Method for producing silver fine particles
JP2007291499A (en) Dendrite-shaped silver powder particles
JP2005146387A (en) Dendrite-shaped fine silver powder, and its production method
JP2004332055A (en) Nickel powder and its producing method
JP5566743B2 (en) Method for producing copper alloy fine particles
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
JP2008223096A (en) Method for manufacturing flaky silver powder
JP2017039990A (en) Copper powder, method for producing the same, and conductive paste using the same
JP4577515B2 (en) Highly dispersible silver fine particles, production method thereof, and use
JP2018104724A (en) Production method of silver-coated copper powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070622

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4074637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250