[go: up one dir, main page]

JPS645396B2 - - Google Patents

Info

Publication number
JPS645396B2
JPS645396B2 JP549481A JP549481A JPS645396B2 JP S645396 B2 JPS645396 B2 JP S645396B2 JP 549481 A JP549481 A JP 549481A JP 549481 A JP549481 A JP 549481A JP S645396 B2 JPS645396 B2 JP S645396B2
Authority
JP
Japan
Prior art keywords
pattern
bubble
transfer
magnetization
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP549481A
Other languages
Japanese (ja)
Other versions
JPS57120290A (en
Inventor
Susumu Asata
Hisao Matsudera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP549481A priority Critical patent/JPS57120290A/en
Publication of JPS57120290A publication Critical patent/JPS57120290A/en
Publication of JPS645396B2 publication Critical patent/JPS645396B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0808Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation
    • G11C19/0816Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation using a rotating or alternating coplanar magnetic field

Description

【発明の詳細な説明】 本発明はバブル磁区(以下単にバブルと称す)
素子に関する。
[Detailed Description of the Invention] The present invention relates to a bubble magnetic domain (hereinafter simply referred to as bubble).
Regarding elements.

従来、バブル素子にはバブル保持層の上に軟磁
性体パターンを互いに間隙を設けて面内磁場回転
によりバブルを転送させる方式が採用されてき
た。しかし、前記のパターンの間隙は、バブル密
度の低下、バブルの高速度転送に対する障害そし
てパターン微細加工の限界という点で好ましくな
かつた。
Conventionally, bubble devices have adopted a method in which soft magnetic patterns are provided on a bubble retaining layer with a gap between them and bubbles are transferred by in-plane magnetic field rotation. However, the gaps in the pattern are undesirable because they reduce bubble density, impede high-speed bubble transfer, and limit pattern microfabrication.

これに対し、米国特許第3828329号公報に無間
隙のパターンを用いてバブルを転送させる素子が
提示され、最近急速に開発が進められてきた。そ
こでパターンはイオン注入法で形成されている。
その素子はその転送パターンが円を連らねた形状
であつたことから、その後に開発された形状のも
のも含めてコンテイギユアス・デイスク(以下
CDと称す)素子と言われている。
On the other hand, US Pat. No. 3,828,329 proposed an element that transfers bubbles using a gapless pattern, and its development has been progressing rapidly recently. Therefore, the pattern is formed by ion implantation.
Since the transfer pattern of that element was in the shape of a series of circles, contagious disks (hereinafter referred to as
(referred to as CD) element.

このCD素子では、バブル保持層の上に面内磁
化層を設け、その面内磁化層内に磁荷壁
(Charged wall)を発生させてバブルを転送させ
る。この面内磁化層は通常結晶異方性をもつため
CD素子は、アイ・イー・イー・イー・トランザ
クシヨンズ・オン・マグネテイクス(IEEE
Trans.Magn.)第Mag−15巻(1979年)第1323
頁(以下文献という)に記載されているように、
転送路の結晶面方位により転送が異なる特徴をも
つ。特に、面内の磁化困難軸と垂直でかつ磁化困
難方向側の転送路はバツド(bad)トラツク、逆
側の転送路はスーパー(super)トラツク、磁化
困難方向と平行な転送路はグツド(good)トラ
ツクとそれぞれ呼ばれ、バブル転送はバツドトラ
ツクで最も悪く、スーパートラツクで最も良いこ
とが知られている。CD素子では、グツドトラツ
ク、スーパートラツクが主に使われているが、バ
ツドトラツクでの転送特性の悪さがCD素子を機
能させるときの障害になつている。
In this CD element, an in-plane magnetization layer is provided on the bubble retention layer, and a magnetic charged wall is generated within the in-plane magnetization layer to transfer bubbles. This in-plane magnetization layer usually has crystal anisotropy, so
The CD element is manufactured by IE Transactions on Magnetics (IEEE
Trans.Magn.) Volume 15 (1979) No. 1323
As stated in the page (hereinafter referred to as the document),
Transfer has different characteristics depending on the crystal plane orientation of the transfer path. In particular, the transfer path perpendicular to the in-plane hard magnetization axis and on the side of the hard magnetization direction is a bad track, the transfer path on the opposite side is a super track, and the transfer path parallel to the hard magnetization direction is a good track. ) tracks, and bubble transfer is known to be worst in butt tracks and best in super tracks. Good track and super track are mainly used in CD devices, but poor transfer characteristics in bad track are an obstacle to making CD devices work.

バツドトラツクの転送パターンとしては、円を
連らねた通常のパターンや、第1図のように立ち
上り部が45度をなすダイヤモンドパターンの他に
前記文献のに示されているルーフトツプ
(rooftop)パターンによる転送改善の試みが知ら
れている。しかし、ルーフトツプパターンは小さ
いパターン要素と大きいパターン要素とが交互に
配列されているため、機能部構成の設計が難しい
点また大きいパターンで転送エラーが多い点など
難点が残されている。しかし乍ら、現状では、そ
れ以外の有効な改善策は未だ知られていない。
As for the transfer pattern of the butt track, in addition to the normal pattern of a series of circles, the diamond pattern with the rising part forming an angle of 45 degrees as shown in Figure 1, and the roof top pattern shown in the above-mentioned document. Attempts to improve transfer are known. However, since the roof top pattern has small pattern elements and large pattern elements arranged alternately, there are still some drawbacks, such as difficulty in designing the configuration of functional parts and large patterns causing many transfer errors. However, at present, no other effective improvement measures are known.

本発明は、前記バツドトラツクの従来パターン
の転送特性の難点を軽減するパターン形状をもつ
CD素子を提供することを目的とする。
The present invention has a pattern shape that alleviates the drawbacks of the transfer characteristics of the conventional pattern of the butt track.
The purpose is to provide CD elements.

本発明によれば、バブル保持層の上に面内磁化
層を設けて転送パターンを形成し、面内磁化層の
磁荷壁によりバブルをパターンに沿つて転送させ
るCD素子において、面内の磁化困難方向と垂直
でかつその磁化困難方向側の転送路はパターン要
素が隙間なく周期的に連結され、かつ、その各パ
ターン要素の2個の立ち上り部が前記磁化困難方
向に対し約30〜40度の角度をなすように形成され
ているバブル素子が得られる。
According to the present invention, in a CD element in which an in-plane magnetization layer is provided on a bubble retaining layer to form a transfer pattern, and bubbles are transferred along the pattern by the magnetic charge wall of the in-plane magnetization layer, in-plane magnetization In the transfer path perpendicular to the difficult direction and on the side of the difficult magnetization direction, pattern elements are periodically connected without gaps, and two rising parts of each pattern element are at an angle of about 30 to 40 degrees with respect to the difficult magnetization direction. A bubble element formed at an angle of .

以下、本発明について実施例をもつて詳細に説
明する。
Hereinafter, the present invention will be explained in detail using examples.

実施例 1 第2図は本発明の転送パターンの例を示す。こ
こでパターンは、第2図下隅の円のまわりの黒丸
方向で示す磁化困難方向21と垂直で、磁化困難
軸21側の転送路(バツドトラツク)を斜線で示
している。本実施例のパターンは、隙間なく周期
的に連結されたパターン要素の2個の立ち上り部
のそれぞれと磁化困難方向21とのなす角度を約
30゜に選んだ。この転送路でのバブル転送実験に
は、Gd3Ga5O12(111)単結晶基板上に、厚さ約
2.0μmストライプ幅約1.7μm、飽和磁化約520ガウ
スの(SmLuBiCa)3(FeGe)5O12ガーネツトから
なるバブル保持層を用いた。本実施例では、更に
(GdSmTmCa)3(FeGe)5O12ガーネツトからなる
厚さ約0.5μm、飽和磁化約590ガウス、Q値約2.0
のドライブ層を用いた。この上にHe+イオンを
140KeV、5×1015/cm2注入しCD素子を形成し
た。
Embodiment 1 FIG. 2 shows an example of a transfer pattern of the present invention. Here, the pattern is perpendicular to the direction of difficult magnetization 21 shown by the black circle around the circle at the bottom corner of FIG. 2, and the transfer path (butt track) on the side of the difficult magnetization axis 21 is shown by diagonal lines. In the pattern of this example, the angle between each of the two rising portions of pattern elements that are periodically connected without gaps and the difficult magnetization direction 21 is approximately
I chose 30°. For bubble transfer experiments using this transfer path, a Gd 3 Ga 5 O 12 (111) single-crystal substrate with a thickness of approx.
A bubble retention layer made of (SmLuBiCa) 3 (FeGe) 5 O 12 garnet with a 2.0 μm stripe width of approximately 1.7 μm and a saturation magnetization of approximately 520 Gauss was used. In this example, it is further made of (GdSmTmCa) 3 (FeGe) 5 O 12 garnet with a thickness of about 0.5 μm, a saturation magnetization of about 590 Gauss, and a Q value of about 2.0.
drive layer was used. Add He + ions on top of this
A CD element was formed by implanting 140 KeV and 5×10 15 /cm 2 .

本実施例の8μm周期パターンの準静的単純転送
マージンを第5図実線51に示す。第5図で横軸
Hrは面内回転磁場、縦軸Hzはバイアス磁場であ
る。第5図破線53は、比較のため、第1図のダ
イヤモンドパターンの結果を示したものである。
いずれも、片側10ビツトの平行した3本のループ
の中央のループでバブルを周回したときのマージ
ンを示す。ここで、スーパートラツク及びコーナ
ーのマージンは十分広く、第5図はバツドトラツ
クのマージンを示していると言える。第5図に示
すようにバツドトラツクのバブル転送マージン
は、実施例パターンにおいて、従来のダイヤモン
ドパターンに比べカスプ内でのエラーが少なく転
送改善効果が認められる。
The quasi-static simple transfer margin of the 8 μm periodic pattern of this embodiment is shown by the solid line 51 in FIG. In Figure 5, the horizontal axis
Hr is an in-plane rotating magnetic field, and the vertical axis Hz is a bias magnetic field. A broken line 53 in FIG. 5 shows the result of the diamond pattern in FIG. 1 for comparison.
In both cases, the margin is shown when the center loop of three parallel loops with 10 bits on each side goes around the bubble. Here, it can be said that the supertrack and corner margins are sufficiently wide, and FIG. 5 shows the butttrack margin. As shown in FIG. 5, in the bubble transfer margin of the butt track, in the example pattern, errors within the cusp are smaller than in the conventional diamond pattern, and a transfer improvement effect is recognized.

実施例 2 実施例1に比べてパターン要素の立ち上り部が
磁化困難方向21となす角度を40度と大きくした
第3図の場合、その準静的単純転送マージンは第
5図一点鎖線52の様に、実施例1のものよりは
狭いが、従来のダイヤモンドパターン(第1図)
の結果(第5図破線53)に比べ、転送改善効果
が認められる。
Example 2 In the case of FIG. 3 in which the angle between the rising part of the pattern element and the direction of difficult magnetization 21 is larger than that in Example 1 to 40 degrees, the quasi-static simple transfer margin is as shown by the dashed-dotted line 52 in FIG. The conventional diamond pattern (Fig. 1) is narrower than that of Example 1.
Compared to the results of (broken line 53 in Figure 5), a transfer improvement effect is recognized.

また、パターン要素の立ち上り部と磁化困難方
向21とのなす角度をさらに大きくした第4図の
場合の準静的単純転送マージンは第5図点線54
に示すように従来のダイヤモンドパターンに比べ
ても劣る結果が得られた。即ち、本発明のパター
ン形成条件が重要であることを示している。
Furthermore, the quasi-static simple transfer margin in the case of FIG. 4 in which the angle formed between the rising portion of the pattern element and the difficult magnetization direction 21 is further increased is the dotted line 54 in FIG.
As shown in Figure 2, the results obtained were inferior to those of the conventional diamond pattern. That is, this shows that the pattern forming conditions of the present invention are important.

実施例 3 実施例1および実施例2において、バブル保持
層が厚さ約0.8μm、ストライプ幅約1.0μm、飽和
磁化約700ガウスであり、ドライブ層が厚さ約
0.4μm、飽和磁化約590ガウス、Q値約1.3であり、
イオン注入条件が100KeV、3×1015/cm2であり、
パターン周期が4μmである点が異なる実験膜にお
いて、本発明の実施例パターン(第2,3図)の
バツドトラツクのバブル転送マージンは、従来の
ダイヤモンド・パターンに比べ転送の改善効果が
十分認められた。
Example 3 In Examples 1 and 2, the bubble retention layer has a thickness of approximately 0.8 μm, a stripe width of approximately 1.0 μm, and a saturation magnetization of approximately 700 Gauss, and the drive layer has a thickness of approximately
0.4μm, saturation magnetization approximately 590 Gauss, Q value approximately 1.3,
The ion implantation conditions were 100KeV and 3× 1015 / cm2 ,
Among the experimental films that differed in that the pattern period was 4 μm, the bubble transfer margin of the butt track of the example pattern of the present invention (Figures 2 and 3) was sufficiently improved in transfer compared to the conventional diamond pattern. .

以上、本発明によればCD素子のバツドトラツ
クにおける従来パターンの転送特性の難点を、軽
減するパターン形状をもつCD素子が得られ、CD
素子を機能させる上での効果が大きい。なおパタ
ーン形成によりパターンは丸味を帯びるが、本発
明のパターン形状は勿論この種の丸味を帯びたパ
ターン形状も含む。
As described above, according to the present invention, it is possible to obtain a CD element having a pattern shape that alleviates the drawbacks of the transfer characteristics of conventional patterns in the butt track of the CD element.
This has a great effect on making the device function. Note that the pattern is rounded by pattern formation, and the pattern shape of the present invention naturally includes this kind of rounded pattern shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はバツドトラツクの従来パターンの一例
を示す図、第2図、第3図、第4図はそれぞれ本
発明の実施例パターンを示す図、第5図はバブル
の準静的単純転送マージンを示す図である。 図において、21,22,23は磁化困難方向
の3方向、51と52は実施例1、2のそれぞれ
の転送マージン、53は従来パターンの転送マー
ジン、54は第4図のパターンの転送マージンを
表わす。
FIG. 1 is a diagram showing an example of a conventional pattern of a bubble track, FIGS. 2, 3, and 4 are diagrams each showing an example pattern of the present invention, and FIG. 5 is a diagram showing a quasi-static simple transfer margin of a bubble. FIG. In the figure, 21, 22, and 23 are the three directions of difficult magnetization, 51 and 52 are the transfer margins of Examples 1 and 2, 53 is the transfer margin of the conventional pattern, and 54 is the transfer margin of the pattern in FIG. represent

Claims (1)

【特許請求の範囲】[Claims] 1 バブル磁区保持層の上に磁性ガーネツト
{111}膜の面内磁化層を設けて転送パターンを形
成し、面内磁化層の磁化容易方向と逆方向(磁化
困難方向と称す)に磁界を印加したとき、最も顕
著に形成される磁荷壁によりバブル磁区をパター
ンに沿つて転送させるコンテイギユアス・デイス
ク・バブル磁区素子において、面内の磁化困難方
向と垂直でかつその磁化困難方向側の転送路はパ
ターン要素が隙間なく周期的に連結され、かつ、
その各パターン要素の2個の立ち上り部が前記磁
化困難方向に対し約30〜40度の角度をなすように
形成されていることを特徴とするバブル磁区素
子。
1. A transfer pattern is formed by providing an in-plane magnetization layer of a magnetic garnet {111} film on the bubble magnetic domain holding layer, and a magnetic field is applied in the direction opposite to the easy magnetization direction of the in-plane magnetization layer (referred to as the difficult magnetization direction). In a contiguous disk bubble magnetic domain element in which the bubble magnetic domain is transferred along the pattern by the magnetic charge wall that is most prominently formed when The pattern elements are periodically connected without gaps, and
A bubble magnetic domain element characterized in that two rising portions of each pattern element are formed so as to form an angle of about 30 to 40 degrees with respect to the difficult magnetization direction.
JP549481A 1981-01-16 1981-01-16 Bubble magnetic domain element Granted JPS57120290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP549481A JPS57120290A (en) 1981-01-16 1981-01-16 Bubble magnetic domain element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP549481A JPS57120290A (en) 1981-01-16 1981-01-16 Bubble magnetic domain element

Publications (2)

Publication Number Publication Date
JPS57120290A JPS57120290A (en) 1982-07-27
JPS645396B2 true JPS645396B2 (en) 1989-01-30

Family

ID=11612781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP549481A Granted JPS57120290A (en) 1981-01-16 1981-01-16 Bubble magnetic domain element

Country Status (1)

Country Link
JP (1) JPS57120290A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534374A (en) * 1978-09-01 1980-03-10 Nec Corp Magnetic bubble domain element using contiguous pattern

Also Published As

Publication number Publication date
JPS57120290A (en) 1982-07-27

Similar Documents

Publication Publication Date Title
EP0011137B1 (en) Manufacture of a magnetic bubble domain chip with enhanced propagation margins
JPS645396B2 (en)
JPS6330716B2 (en)
JPS645395B2 (en)
US4525808A (en) Hybrid magnetic bubble memory device
US4559617A (en) Magnetic bubble memory device
JPS623513B2 (en)
JP2616906B2 (en) Bloch line memory
US4462087A (en) Ion-implanted bubble device
JP2763917B2 (en) Bloch line memory device
US4745578A (en) Magnetic bubble memory device
JPS6330717B2 (en)
JPS59162684A (en) Ion implantation bubble device
JPS59119587A (en) Magnetic bubble device
JPS613387A (en) Magnetic bubble memory element
JPS5826386A (en) Bubble magnetic domain element
JPS62214579A (en) Hybrid type magnetic bubble memory element
JPS6037547B2 (en) Gate driving method for ion-implanted magnetic bubble memory device
JPS6260756B2 (en)
JPS6346917B2 (en)
JPS59116984A (en) Block replicator of ion implantation bubble device
JPS6337888A (en) Bloch line memory
JPS6337803A (en) Information transfer method of bloch line memory
JPS6337886A (en) Bloch line memory
JPS6259394B2 (en)