JPS5826386A - Bubble magnetic domain element - Google Patents
Bubble magnetic domain elementInfo
- Publication number
- JPS5826386A JPS5826386A JP56123528A JP12352881A JPS5826386A JP S5826386 A JPS5826386 A JP S5826386A JP 56123528 A JP56123528 A JP 56123528A JP 12352881 A JP12352881 A JP 12352881A JP S5826386 A JPS5826386 A JP S5826386A
- Authority
- JP
- Japan
- Prior art keywords
- bubble
- pattern
- transfer
- axis
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C19/00—Digital stores in which the information is moved stepwise, e.g. shift registers
- G11C19/02—Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
- G11C19/08—Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
- G11C19/0875—Organisation of a plurality of magnetic shift registers
- G11C19/0883—Means for switching magnetic domains from one path into another path, i.e. transfer switches, swap gates or decoders
Abstract
Description
【発明の詳細な説明】
本発明はバブルイ!荘区(以F単にバブルと称す)素子
に関する。[Detailed Description of the Invention] The present invention is based on Bubble! This invention relates to a bubble (hereinafter simply referred to as a bubble) element.
従来、バブル素子にはバブル保持層の上に軟磁性体パタ
ーンを互いに間隙を設けて面内4+n場回転によりバブ
ルを転送させる方式が採用されてきた。Conventionally, bubble devices have adopted a method in which soft magnetic patterns are provided on a bubble retaining layer with a gap between them and bubbles are transferred by in-plane 4+n field rotation.
しかし、前記のパターンの間隙は、バブル密度の低下、
バブルの高速度転送に対する障害そしてパターン微細加
工の限界という点で好ましくなかった。However, the gaps in the above pattern reduce the bubble density,
This is unfavorable because it poses an obstacle to high-speed bubble transfer and limits pattern microfabrication.
これに対し、米国特許第3 、828 、329号公報
に無間隙のパターン會月1いてバブルを転送させる素子
が提示され、最近急速に開発が進められてきた。On the other hand, U.S. Pat. No. 3,828,329 proposed an element that transfers bubbles using a gapless pattern, and its development has been progressing rapidly recently.
そこではパターンはイオン注入法で形成されている。そ
の素子は転送パターンが円を連らねた形状であったこと
から、その後に開発された形状のものも含めてコンティ
ギーアス・ディスク(以下CD と称す)素子と首われ
ている。There, the pattern is formed by ion implantation. Since the transfer pattern of that device was in the shape of a series of circles, it is known as a contiguous disk (hereinafter referred to as CD) device, including devices with shapes developed later.
このCD素子で61、バブル保持層の上に面内磁化層を
設け、その面内磁化ノ1☆内に(1;(背壁(C’ha
rgedwa11) を発生させてバブルを転送させ
る。この面内磁化層はitB常結晶異方性をもつためC
Dンく子は、アイイー・イー・イー・トランザクション
ズ・オンマグネティスフ(IEI化Trans、 Ma
gn、) j(lJiag−15巻(1979年)第1
323頁(以下文献という)に記載されているように、
転送路の結晶面方位により転送が異なる特徴をイ)つ。In this CD element 61, an in-plane magnetization layer is provided on the bubble retention layer, and within the in-plane magnetization 1☆ (1;
rgedwa11) to transfer the bubble. Since this in-plane magnetization layer has itB normal crystal anisotropy, C
IEI Transactions on Magnetism (IEI Trans, Ma
gn, ) j (lJiag-Volume 15 (1979) No. 1
As stated on page 323 (hereinafter referred to as the document),
A) Characteristics that transfer differs depending on the crystal plane orientation of the transfer path.
特に、面内の磁化困難軸と垂直でかつ磁化困難軸側の転
送路はパッド(bad) l−ラック、逆側の転送路
はスーパー(5ttpQr −) トラック、イ戯化田
坤+l々平行な転送路はグツド(goocj)l−ラッ
クとそれぞれ呼ばれ、バブル転送はパッドトラックで最
も悪く、スーパートラ・りでmも良いことが知られてい
る。C1〕素子では、グツドトラック、スーパートラッ
クが主に使われているが、パッドトラックでの転送特性
の悪さがCI)素子を機能させるとさ−の障害になって
G)乙。In particular, the transfer path perpendicular to the in-plane hard magnetization axis and on the side of the hard magnetization axis is a pad (bad l-rack), and the transfer path on the opposite side is a super (5ttpQr-) track, which is parallel to the in-plane hard magnetization axis. The transfer paths are respectively called goucj and l-racks, and it is known that bubble transfer is worst in pad tracks and good in super tracks. For C1) elements, good tracks and super tracks are mainly used, but the poor transfer characteristics of pad tracks become an obstacle to the functioning of CI) elements.
パッドトラックの転送のr9善の試みは、前記文献のル
ー7トツプ(roof−tr+p)パターンの例がある
。An example of a r9-optimized attempt at pad track transfer is the roof-tr+p pattern in the above-mentioned document.
しかしルーフI・ヮブパターンは小さいパターン要素と
大きいパターン詠素吉が交互に配列されているため棹能
1ηシ構成の設計がI)11かしい点、才た大きいパタ
ーンで転送工苧所多い点など、雑煮が残されている。し
かし乍ら、現状では、それ以−にの有効な改式憤は未だ
知られていない。However, in the roof I/Wave pattern, small pattern elements and large pattern elements are arranged alternately, so the design of the structure is strange, and the large pattern has many transfer points. Zoni remains. However, at present, no other effective reformation method is known.
ンのEIt点ケ点状解決バブル転送特性を改善したパタ
ーン形状をもつ(、’I)素子を提供することを目的と
する。An object of the present invention is to provide an element having a pattern shape that improves bubble transfer characteristics.
本発明によれば、バブル保持層の上に面内磁化層を設け
て転送パターンを形成し、面内(ili化層の(+a荷
背壁よりバブルをパターンに沿って転送させるCD素子
において、面内の一つの磁化困難軸と垂直でかつ磁化困
難軸側の転送路のパターン要素の頂点を挾む2個の立上
り部のうち、バブルの進行方向に対し頂点の手前側の立
上り部と前記磁化困難軸となす角度が、他方の立上り部
の前記4E化困雌軸となす角度より小さいことを特徴と
するバブル素子が得られる。According to the present invention, in a CD element in which an in-plane magnetization layer is provided on a bubble retaining layer to form a transfer pattern, bubbles are transferred along the pattern from the in-plane (+a) back wall of the in-plane magnetization layer. Of the two rising parts that are perpendicular to one in-plane hard magnetization axis and sandwich the apex of the pattern element of the transfer path on the hard magnetization axis side, the rising part on the near side of the apex with respect to the bubble traveling direction and the above A bubble element is obtained in which the angle made with the hard magnetization axis is smaller than the angle made with the 4E hard magnetization axis of the other rising portion.
以ド、本発明について実施例をもって詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to examples.
実施例1゜ 第1図は本発明の転送パターンの一例を示す。Example 1゜ FIG. 1 shows an example of a transfer pattern of the present invention.
ここで第11左9111の円のまわりの黒丸方向11.
12.13は面内の磁化困難軸を示す。すなわち面内の
一つの磁化困難軸11と垂直でかつ11 側の転送路
にパターン要素が並べられている。第1図の様に周期P
の転送パターン(斜線部)の頂点14 を挾む2個の
立上り部のうちバブル17 の進行方向(以下簡単の
ためバブルの進行方向を18とする)に対し頂点の手酌
側の立上り部と磁化困難軸11とのなす角度15 が他
方の立上り部と11とのなr角度16 より小さいこ
とが特徴である。すなわち、前述のルーフトープパター
ンの場合も含め従来のパターンでは角度]5と16が等
しい様につくられ図の様なバブル転送マージンか得られ
る。このバブル転送実験には(支)30a5’l□単結
晶基板上に成長した膜厚約1.2μm、ストライプ幅約
1,1μm、飽和イ蝕化約650ガウス、 −’ill
異方性磁界約1700 エールステッド(Oe)の(
YSmLuUiCa)3(J(”elJe)50□2ガ
ーネ、トからなるバブル膜を用いた。イオン注入は)(
e+イオンを加速エネルギー5QKeVと140KeV
でそれぞれ約2B]5/crn2と約4. E ] 5
/cyn2注入する条件で行なった。転送は10ビツト
のスーツ寸トラブクを含む合計21ビツトのミニチーア
ルレープで準静的測定を行なった。パターン周期Pは4
μm である。Here, the direction of the black circle around the 11th left 9111 circle is 11.
12.13 indicates the in-plane hard magnetization axis. That is, the pattern elements are arranged in a transfer path perpendicular to one hard magnetization axis 11 in the plane and on the 11 side. As shown in Figure 1, the period P
Of the two rising parts sandwiching the apex 14 of the transfer pattern (shaded area), the rising part on the hand cup side of the apex and the magnetization with respect to the traveling direction of the bubble 17 (hereinafter, the traveling direction of the bubble is assumed to be 18 for simplicity). It is characterized in that the angle 15 with the difficult axis 11 is smaller than the angle 16 between the other rising part and 11. That is, in conventional patterns including the above-mentioned roof top pattern, the angles ]5 and 16 are made equal, and a bubble transfer margin as shown in the figure is obtained. This bubble transfer experiment (support) has a film grown on a 30a5'l□ single crystal substrate with a thickness of about 1.2 μm, a stripe width of about 1.1 μm, a saturation erosion rate of about 650 Gauss, -'ill
Anisotropic magnetic field of approximately 1700 Oersted (Oe) (
A bubble film consisting of YSmLuUiCa)3(J("elJe)50
Accelerate e+ ions with energies 5QKeV and 140KeV
about 2B]5/crn2 and about 4. E] 5
/cyn2 was injected. For transfer, quasi-static measurements were carried out using a total of 21 bits of mini-chire data including a 10-bit suit size track. The pattern period P is 4
It is μm.
角度15と16がともに約45 の従来のノ々ターンの
バブル転送マージンは22である。これに対し本実施例
のパターンでは21 の様に著しく転送の改善効果が
あった。The bubble transfer margin for a conventional no-turn where angles 15 and 16 are both approximately 45 degrees is 22 degrees. On the other hand, the pattern of this example had a significant transfer improvement effect as shown in 21.
実施例2゜
実施例1のパターンで角度15を約20とより小さくし
た第3図の転送パターンの場合、準静的ノくプル転送マ
ージンは21に比べわずかであるが更に改善された。な
お角度15 を更に小さくし零とした場合、バブルか
カスプ内で止まるエラーのため21に比ベマージンがや
や減少した。Example 2 In the case of the transfer pattern of FIG. 3 in which the angle 15 of the pattern of Example 1 is made smaller to about 20, the quasi-static no-pull transfer margin is slightly improved compared to 21. Note that when the angle 15 was further reduced to zero, the margin decreased slightly compared to 21 due to the error of stopping within the bubble or cusp.
実施例3゜
実施例2のバクーン第3図のかわりに角度J6を約45
°とした第4図の転送パターンの場合、21に比べやや
悪いながら、従来パターンに比べ転送の改善効果か見ら
れた。Embodiment 3゜Instead of the Bakun figure 3 of Embodiment 2, the angle J6 is set to about 45
In the case of the transfer pattern shown in FIG. 4, where the transfer pattern was set to 100°C, although it was slightly worse than 21, it was seen that there was an improvement in transfer compared to the conventional pattern.
実施例44
侠施例Jにおいて第1図のパターンのかわりにパターン
周期が2倍の81Lmで角度15が約20.角度16が
約55の第5図のパターン形状いた場合第6図61の様
な準静的バブル転送マージンが得られた従来の角度15
と16が等しいパターンの準静的バブル転送マージンは
62 である。低I Tr (IIIIでのカスプ
内バブル振動が減少しかつ高バイアスイ)仔界5図で頂
点部は曲線状に作られている。直線状に作1.た場合、
約5優のマージン減5少があるがマージン幅はなお広い
。Example 44 In the example J, instead of the pattern shown in FIG. 1, the pattern period is doubled to 81Lm and the angle 15 is about 20. If the pattern shape shown in Fig. 5 has an angle 16 of approximately 55, a quasi-static bubble transfer margin as shown in Fig. 6 61 can be obtained using the conventional angle 15.
The quasi-static bubble transfer margin for the pattern where and 16 are equal is 62. Low I Tr (intra-cusp bubble vibration in III is reduced and high bias I) The apex in Figure 5 is made in a curved shape. Create in a straight line1. If
Although the margin has decreased by about 5 points, the margin width is still wide.
実7シa例5
第5図のパターンを実施例1で述べた試料とは別の試料
でバブル転送実験を行なったところ第7図の様な準静的
転送マージンが得られた。Example 5 When a bubble transfer experiment was conducted using the pattern shown in FIG. 5 on a sample different from the sample described in Example 1, a quasi-static transfer margin as shown in FIG. 7 was obtained.
本実施例に用いた試料は実施例1と同じ拐料で膜厚約0
.9μm、ストライブ幅約1.011m 、 III和
イif、に化約620ガウス、Q値約3の特性をもつバ
ブル保持層の上に、更に膜厚約0.4μm、飽和修止6
:30ガウスQ値約2.2 (D (Od Sm ’l
)n Ca)3(FeGe)、01□材料によるドライ
ブ層を成長した二重膜試料である。第7図71は100
KeV 3E151−1e”/c1n2(Dイオン注
入条件(以下単に100Δ”/ 3E 15と称す)の
転送マージン。The sample used in this example had the same coating material as in Example 1 and had a film thickness of approximately 0.
.. On top of the bubble retaining layer, which has the characteristics of 9 μm, stripe width of approximately 1.011 m, III sum if, approximately 620 Gauss, and Q value of approximately 3, there is also a film thickness of approximately 0.4 μm, and a saturation correction layer of 6
:30 Gauss Q value approx. 2.2 (D (Od Sm 'l
)nCa)3(FeGe), This is a double film sample in which a drive layer of 01□ material was grown. Figure 7 71 is 100
Transfer margin of KeV 3E151-1e"/c1n2 (D ion implantation condition (hereinafter simply referred to as 100Δ"/3E15).
72は120AJe+/4E15 の転送マージン、第
3は160.41e”/ 51イj 15の転送マージ
ンを示す。72 indicates a transfer margin of 120AJe+/4E15, and the third indicates a transfer margin of 160.41e''/51Ij15.
第7図の結果は、単層膜と二重膜すなわちCD膜構造や
材料特性が多少異なっても、またイオン注入条件が多少
変わっても本実施例のパターンが広いマージンのバブル
転送に有効であることを示す。The results shown in FIG. 7 show that the pattern of this example is effective for bubble transfer with a wide margin even if the structure and material properties of the single-layer film and double-layer film, that is, the CD film, are slightly different, and even if the ion implantation conditions are slightly changed. Show that something is true.
才だ、lTh+以外に)f’−、)す、 NS 、 N
J″?イオン注入の場合にも有効なことは容易に類推で
きる。In addition to lTh+)f'-,)su, NS, N
It can be easily inferred that this is also effective in the case of ion implantation.
実施例6゜
実施例5の] 20/i−1υ4J615試料において
、パターン周期3P iなわち12μmで角度15が
約30゜角度16か約65の第8図パターンを用いて準
静的バブル転送マージン金測定した場合;JXD図91
の結果か得られた。また第8図においてパターン周
期4Pすなイつち16μmの場合第9図92 の準静
的バブル転送マージンが得られた。Example 6 [Example 5] In a 20/i-1υ4J615 sample, a quasi-static bubble transfer margin was obtained using the pattern shown in FIG. When gold is measured; JXD Figure 91
The result was obtained. In addition, in FIG. 8, when the pattern period is 4P, that is, 16 μm, a quasi-static bubble transfer margin of 92 in FIG. 9 is obtained.
、’V、j二、本発明によればCI)素子のパッドトラ
ックにおける従来のパターンの難点を減らし、転送特性
の改善を図ることが出来、C1)素子を機能させる上で
の効果が大きい。なお、パターン形成によりパターンは
丸味を帯びるが、本発明のパターン形状は勿論この種の
丸味を帯びたパターン形状イ、)含む。,'V,j2.According to the present invention, it is possible to reduce the drawbacks of the conventional pattern in the pad track of the CI) device, improve the transfer characteristics, and have a great effect on the functioning of the C1) device. Note that the pattern is rounded by pattern formation, and the pattern shape of the present invention naturally includes this kind of rounded pattern shape.
第1.3,4,5.8図は本発明の実施例を示す転送パ
ターンを示す図、第2.6,7.9肖はそれぞれ実施例
1,4,5.6でのバブルの準静的転送マージンを示す
図である。
lンlにおいて、1】は 転送路と垂直な面内の(胎化
困&!1を軸、J2と]3は面内の他の2つの磁化困%
ト輛、14 f;1パターン要紫の頂点、15 は
バブル進行方向に対し1p点の手14jl側のパターン
要素立上す部(!:値化困邦11’1illlとなす角
度、]6はm点を挾む仙のパターン要素立上り部と(面
化困+1コ回■1」]となす角度、17 はバブル、
】8 はバブル進向方向、2] 1r11実施例1パ
ターンのバブル転送マージン、22 は4E01周期
従来パターンのバブル転送マージン、61ζ;j央hN
?lJ 4パターンのバブル転送マージン、62ハ8
itm周期従来パターンのバブル転送マージン、7]
、 72.73は実カイ11例5におけるそれぞれ10
0A充4/3E]5.120/1−I(!/41121
5.1fiO/II+量15E]5のイオン注入条件に
おけるバブル転送マージン、91と92は実施しuGに
おけるそれぞれパターン周期12μlnさJ6μn】の
バブル転送マージンを表わす。
第1図
第 2 図
Hi (Oe)
第5図
第6図
第 7 図
Hl−(Oe)
第8図
璃9図
0 50 700Hi (O
e)Figures 1.3, 4, and 5.8 are diagrams showing transfer patterns in embodiments of the present invention, and Figures 2.6 and 7.9 are diagrams showing bubble conditions in embodiments 1, 4, and 5.6, respectively. FIG. 3 is a diagram showing static transfer margins. In lnl, 1] is the axis of magnetization &!1 in the plane perpendicular to the transfer path, J2 and ]3 is the other two magnetizations in the plane
14 f; 1 pattern required purple vertex, 15 is the rising part of the pattern element on the hand 14jl side of the 1p point with respect to the bubble traveling direction (!: Angle made with value conversion 11'1illl, ]6 is The angle formed by the rising part of the pattern element of the sen that pinches point m and (menka + 1 times ■ 1), 17 is the bubble,
】8 is the bubble advance direction, 2] is the bubble transfer margin of the 1r11 Example 1 pattern, 22 is the bubble transfer margin of the 4E01 cycle conventional pattern, 61ζ;
? lJ 4 pattern bubble transfer margin, 62ha 8
Bubble transfer margin of itm cycle conventional pattern, 7]
, 72.73 is 10 in each of the 11 actual cases 5.
0A charge 4/3E] 5.120/1-I (!/41121
5.1fiO/II+amount 15E] 5. 91 and 92 represent bubble transfer margins under the ion implantation conditions of 5.1fiO/II+amount 15E], and 91 and 92 represent bubble transfer margins for pattern periods of 12 μln and J6 μn, respectively, in the implemented uG. Figure 1 Figure 2 Hi (Oe) Figure 5 Figure 6 Figure 7 Figure Hl- (Oe) Figure 8 Li 9 Figure 0 50 700 Hi (O
e)
Claims (1)
パターンを形成し、面内磁化層の4c、(背壁によりバ
ブル保持層をパターンに沼って転送させ・)コンテfギ
ーアス・テ゛イスク・バブル(献区素子に↓;いて、[
■1内の一つのイ蔽化困着軸と垂直でかつ砒化固層軸側
の転送路のパターン要素の頂点を挾む2個の立上り部の
うち、バブル磁区の進行方向に対し頂点の手前側の立上
り部と前記磁化困難軸となす角度が、他方の立上り部の
前記磁化困難軸となす角度より小さいことを特徴とする
バブルIi1区素子。Bubble (in-plane bent PfI is provided on the 1st section retention layer to form a transfer pattern, 4c of the in-plane magnetization layer, (the bubble retention layer is swamped into a pattern by the back wall and transferred) Conte f gear・Teisuku Bubble (at Kenku Motoko ↓;
■ Of the two rising parts that are perpendicular to one shielding difficult axis in 1 and sandwich the apex of the pattern element of the transfer path on the side of the arsenized solid layer axis, this is before the apex in the traveling direction of the bubble magnetic domain. A bubble Ii 1 element, characterized in that an angle between one rising portion and the hard magnetization axis is smaller than an angle between the other rising portion and the hard magnetization axis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56123528A JPS5826386A (en) | 1981-08-06 | 1981-08-06 | Bubble magnetic domain element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56123528A JPS5826386A (en) | 1981-08-06 | 1981-08-06 | Bubble magnetic domain element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5826386A true JPS5826386A (en) | 1983-02-16 |
Family
ID=14862839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56123528A Pending JPS5826386A (en) | 1981-08-06 | 1981-08-06 | Bubble magnetic domain element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5826386A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57120288A (en) * | 1981-01-16 | 1982-07-27 | Nec Corp | Bubble magnetic domain element |
JPS57120289A (en) * | 1981-01-16 | 1982-07-27 | Nec Corp | Bubble magnetic domain element |
-
1981
- 1981-08-06 JP JP56123528A patent/JPS5826386A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57120288A (en) * | 1981-01-16 | 1982-07-27 | Nec Corp | Bubble magnetic domain element |
JPS57120289A (en) * | 1981-01-16 | 1982-07-27 | Nec Corp | Bubble magnetic domain element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68925548D1 (en) | Magnetic thin film devices for flux spreading | |
EP0011137B1 (en) | Manufacture of a magnetic bubble domain chip with enhanced propagation margins | |
JPS5826386A (en) | Bubble magnetic domain element | |
Taylor | Charged walls in amorphous magnetic films | |
JPS645395B2 (en) | ||
JPS6330716B2 (en) | ||
JPS6059669B2 (en) | High density bubble memory element | |
JPS645396B2 (en) | ||
Parzefall et al. | X-bar, a new propagation pattern for magnetic bubbles | |
US4547865A (en) | Magnetic bubble replicator | |
Shir | Preliminary computations of magnetic distributions in ion-implanted garnet films | |
JP2616906B2 (en) | Bloch line memory | |
JPS6037547B2 (en) | Gate driving method for ion-implanted magnetic bubble memory device | |
JPS613387A (en) | Magnetic bubble memory element | |
JPS62124690A (en) | Magnetic memory element | |
US4507755A (en) | Magnetic bubble memory device | |
JPH033187A (en) | Bloch line memory device | |
JPS58200490A (en) | Contiguous disc type magnetic bubble element | |
JPS6322382B2 (en) | ||
JPS59227079A (en) | Magnetic bubble memory element | |
JPS6038793B2 (en) | Contiguous disk type magnetic bubble element | |
JPS60140587A (en) | Ion implanting type magnetic bubble element garnet film | |
JPS58215783A (en) | Transfer pattern for ion implantation bubble device | |
JPS6032197A (en) | Magnetic bubble element | |
JPS6040591A (en) | Magnetic bubble memory element |