JPS642204B2 - - Google Patents
Info
- Publication number
- JPS642204B2 JPS642204B2 JP17573381A JP17573381A JPS642204B2 JP S642204 B2 JPS642204 B2 JP S642204B2 JP 17573381 A JP17573381 A JP 17573381A JP 17573381 A JP17573381 A JP 17573381A JP S642204 B2 JPS642204 B2 JP S642204B2
- Authority
- JP
- Japan
- Prior art keywords
- vortex
- shaped
- flow
- ring
- karman
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012530 fluid Substances 0.000 claims description 15
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 230000000737 periodic effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/20—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
- G01F1/32—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
- G01F1/3209—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices
- G01F1/3218—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices bluff body design
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
Description
【発明の詳細な説明】
本発明は、流体中に生じるカルマン渦を利用し
て管路内に流れる流体の流量又は流速を測定する
カルマン渦流量計に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Karman vortex flow meter that measures the flow rate or flow velocity of a fluid flowing in a pipe by utilizing Karman vortices generated in the fluid.
渦発生体にリングを使用したカルマン渦流量計
は、一般に第1図に示すように、管路1内に同心
状にリング状渦発生体2を配置してその下流側に
サーミスタなどの渦検出器3を取付けて成る。リ
ング状渦発生体2は、管路内の流れ(矢印Uで示
す)の平均流速相当半径位置に同心配置されてお
り、これによつて流速分布の影響を受けずに、渦
線が閉曲線となるカルマン渦4を生じさせること
ができ、このカルマン渦を検出器3によつて検出
して流体の流量または流速を測定できるようにな
つている。このようなカルマン渦流量計では、カ
ルマン渦3が自己誘起速度に基づく渦輪自身の不
安定性を有するため、本来2次元渦に比較して単
独で不安定なものであり、従つて渦輪が崩壊しや
すいという欠点があつた。また円管内の流れは管
路1の状態によつては渦発生体2の上流側に流速
分布の歪や旋回流などを生じ、これらによつて定
常な渦発生が乱され、或いは阻害されるという欠
点があつた。さらに第1図の如き従来のカルマン
渦流量計では、渦発生体2を竪固に設置すること
が困難であるという欠点も問題である。 A Karman vortex flow meter that uses a ring as a vortex generator generally has a ring-shaped vortex generator 2 arranged concentrically within a pipe 1 and a vortex detector such as a thermistor installed downstream of the ring-shaped vortex generator 2, as shown in Fig. 1. It consists of a container 3 attached. The ring-shaped vortex generator 2 is arranged concentrically at a radius position corresponding to the average flow velocity of the flow in the pipe (indicated by arrow U), thereby making the vortex lines form a closed curve without being affected by the flow velocity distribution. A Karman vortex 4 can be generated, and this Karman vortex can be detected by the detector 3 to measure the flow rate or flow velocity of the fluid. In such a Karman vortex flowmeter, the Karman vortex 3 has instability of the vortex ring itself based on self-induced velocity, so it is inherently unstable on its own compared to a two-dimensional vortex, and therefore the vortex ring collapses. It had the disadvantage of being easy to use. Furthermore, depending on the condition of the pipe line 1, the flow within the circular pipe may cause distortion of the flow velocity distribution or swirling flow on the upstream side of the vortex generator 2, and these may disturb or obstruct the steady vortex generation. There was a drawback. Furthermore, the conventional Karman vortex flowmeter as shown in FIG. 1 has another problem in that it is difficult to install the vortex generator 2 vertically.
この発明の目的は、自己誘起速度に基づく渦輪
自身の不安定性を軽減し、渦発生体の下流側でよ
り安定した周期的なカルマン渦を得るようにし、
さらに曲管路や内径の変化する管路など流速分布
の歪や旋回流の影響が懸念される使用条件におい
ても適用可能とした改良されたカルマン渦流量計
を提供することにある。 The purpose of this invention is to reduce the instability of the vortex ring itself based on self-induced velocity, and to obtain a more stable periodic Karman vortex downstream of the vortex generator.
Furthermore, it is an object of the present invention to provide an improved Karman vortex flowmeter that can be applied to usage conditions such as curved pipes and pipes where the inner diameter changes, where distortion of the flow velocity distribution and effects of swirling flow are a concern.
すなわちこの発明のカルマン渦流量計は、管内
でカルマン渦を利用して流体の流量又は流速を測
定するものにおいて、頭部がドーム状、胴部が柱
状、尾端が縮径コーン状の中心構造体を、その頭
部を流体流れの上流側に向けて前記管内に同心状
にベーン状支持構造体によつて固定し、管内壁と
中心構造体との間に形成される環状流路内にリン
グ状渦発生体を前記ベーン状支持構造体によつて
同心状に取付け、このリング状渦発生体により発
生されるカルマン渦を検出して流体の流量又は流
速を測定するようにしてなるもので、リング状渦
発生体の上流側で流れを積極的に絞り且つ整流し
て、渦発生を安定化すると共に発生した渦輪の崩
壊を抑制し、これによつて流れの下流側で一層安
定した周期的な渦を得ることができるようになる
と共に、曲り管や内径の変化する管路などでの流
速分布の歪ないし旋回流などの影響を受けずに流
量、流速測定ができるようになり、この種流量計
の使用条件の拡大に大きく寄与するほか、渦発生
体の支持を強固且つ安定化し得るものである。 In other words, the Karman vortex flowmeter of the present invention measures the flow rate or flow velocity of fluid in a pipe by using Karman vortices, and has a central structure in which the head is dome-shaped, the body is columnar, and the tail end is cone-shaped. The body is fixed concentrically within the tube by a vane-like support structure with its head facing upstream of the fluid flow, and within an annular channel formed between the inner wall of the tube and the central structure. A ring-shaped vortex generator is attached concentrically by the vane-shaped support structure, and the Karman vortex generated by the ring-shaped vortex generator is detected to measure the flow rate or flow velocity of the fluid. , actively constricts and rectifies the flow on the upstream side of the ring-shaped vortex generator, stabilizes vortex generation and suppresses the collapse of the generated vortex ring, thereby creating a more stable cycle on the downstream side of the flow. In addition to making it possible to obtain a vortex, it has also become possible to measure flow rate and flow velocity without being affected by distortion of flow velocity distribution or swirling flow in curved pipes or pipes with varying inner diameters. In addition to greatly contributing to expanding the usage conditions of seed flowmeters, it also strengthens and stabilizes the support of the vortex generator.
以下にこの発明の一実施例を第2図および第3
図と共に詳述する。第2図および第3図において
1は管路であり、この管路1内には流体が満たさ
れ且つ矢印Uで示す方向にこの流体が流れてい
る。5は流線魚雷形の中心構造体であり、流体の
流れ方向に対して頭部5aが半球ドーム状に、中
央部5bが柱状に、また尾端部5cが漸次縮径す
るコーン状に形成されている。この中心構造体5
は、その中央部5bにおいて放射状のベーン状支
持構造体6a,6b,6cにより管路1内に固定
支持されており、その頭部5aを流れの上流側に
向けて管路1内の中心軸線上に同心状に配置され
ている。この場合、中心構造体5の頭部5a及び
尾端部5cは、前記ベーン状支持構造体6a,6
b,6cの先端縁及び後端縁よりも各々上流側及
び下流側に突出している。 An embodiment of this invention is shown below in Figures 2 and 3.
This will be explained in detail with figures. In FIGS. 2 and 3, reference numeral 1 indicates a conduit, and this conduit 1 is filled with fluid, and this fluid flows in the direction shown by arrow U. Reference numeral 5 denotes a streamline torpedo-shaped central structure, in which the head 5a is shaped like a hemispherical dome, the center part 5b is shaped like a column, and the tail end 5c is shaped like a cone whose diameter gradually decreases with respect to the flow direction of the fluid. has been done. This central structure 5
is fixedly supported in the pipe line 1 by radial vane-shaped support structures 6a, 6b, and 6c at its central part 5b, and is aligned with the central axis in the pipe line 1 with its head 5a facing upstream of the flow. They are arranged concentrically on a line. In this case, the head 5a and tail end 5c of the central structure 5 are connected to the vane-like support structures 6a, 6.
b, 6c protrude upstream and downstream from the leading edge and trailing edge, respectively.
前記中心構造体5と管路1の内壁との間に形成
される環状流路の前記胴部5b部分、すなわち環
状流路中に、リング状渦発生体7がベーン状支持
構造体6a,6b,6cによつて支持されて管路
1及び中心構造体5と同心状に配設されている。
これらの中心構造体5とベーン状支持構造体6
a,6b,6cおよびリング状渦発生体7は例え
ば互いに一体構成されていてよく、中央構造体5
のリング状渦発生体7より下流側の適当な個所と
それに対応する管路1の内壁とに各々対をなす超
音波送受波器8a,8b,8c及び9a,9b,
9cが取付けられ、これらによつて発生渦10の
個数等を検出することにより、流体の流量ないし
流速を測定するようにしてある。 In the body portion 5b of the annular flow path formed between the central structure 5 and the inner wall of the conduit 1, that is, in the annular flow path, a ring-shaped vortex generator 7 is provided with vane-like support structures 6a, 6b. , 6c and are disposed concentrically with the conduit 1 and the central structure 5.
These central structures 5 and vane-like support structures 6
a, 6b, 6c and the ring-shaped vortex generator 7 may, for example, be constructed integrally with each other, and the central structure 5
Ultrasonic transducers 8a, 8b, 8c and 9a, 9b, each forming a pair at a suitable location on the downstream side of the ring-shaped vortex generator 7 and the corresponding inner wall of the conduit 1.
9c is attached, and by detecting the number of generated vortices 10, etc., the flow rate or flow velocity of the fluid is measured.
このような構成をもつこの発明のカルマン渦流
量計では、前記の流体流れの中における中心構造
体5の頭部5aが半球ドーム状に形成されている
からこの頭部5aによつて流れを急激且つ滑らか
に絞り、その下流側の胴部5bにおける平行部に
一様な流速分布の流れを導びくことになり、従つ
てこの流速分布の一様な流れの中でリング状渦発
生体7が機能することになつて、周期的なカルマ
ン渦の安定な発生が達成されるものである。また
中心構造体5の前記胴部5bおよび尾端部5cは
漸次縮径するコーン状に形成されているので、リ
ング状渦発生体7の下流側に生じるカルマン渦1
0の自己誘起速度に基づく渦輪自身の不安定性を
効果的に抑制し、さらに放射状のベーン状支持構
造体6a,6b,6cによつて、上流管路条件に
より流体の主流に生じる旋回流があつてもこれを
整流して平行層流にすることができ、このように
して平行層流の主流の方向に流れが整えられ、絞
られて増速された流れがリング状渦発生体7に導
びかれることにより、安定で周期的な渦輪列の形
成が果されるものである。 In the Karman vortex flowmeter of the present invention having such a configuration, the head 5a of the central structure 5 in the fluid flow is formed in the shape of a hemispherical dome. In addition, the ring-shaped vortex generating body 7 is smoothly constricted, and a flow with a uniform velocity distribution is guided to the parallel portion of the body portion 5b on the downstream side. When functioning, stable generation of periodic Karman vortices is achieved. Further, since the body portion 5b and the tail end portion 5c of the central structure 5 are formed in a cone shape whose diameter gradually decreases, the Karman vortex 1 generated on the downstream side of the ring-shaped vortex generator 7
The instability of the vortex ring itself based on the self-induced speed of However, this flow can be rectified into a parallel laminar flow, and in this way, the flow is adjusted in the direction of the main flow of the parallel laminar flow, and the flow that has been throttled and accelerated is guided to the ring-shaped vortex generator 7. By swinging, a stable and periodic vortex train is formed.
渦10の検出は種々の方式のものが適用できる
が、特に好ましくはベーン状支持構造体6a,6
b,6cで仕切られた扇形区域毎に超音波送受波
器8a,8b,8cおよび9a,9b,9cの対
を配設し、各区域毎の検出結果を平均化するのが
良い。すなわち各区域には、上流側管路条件によ
つて主流に生じた偏流がそれぞれ独立の流れに分
割されて分散導入されることになり、従つてこの
分割された流れ毎の渦の周波数をそれぞれの区域
の超音波送受波器で独立して検出してその結果を
平均化することにより、一層正確な平均流速を求
めることができるものである。尚、超音波の透過
経路としては図示の実施例のように主流に直角方
向とするほか、多重反射を防止するために主流に
対して斜め方向としてもよい。また渦の検出には
前述の例のように超音波によるもの以外にも、例
えばリング状渦発生体7のまわりの流速変動を測
定するもの、リング状渦発生体7に作用する圧力
又は流体力の変動を測定するものを用いてもよ
い。 Although various methods can be applied to detect the vortex 10, it is particularly preferable to use the vane-like support structures 6a, 6.
It is preferable to arrange pairs of ultrasonic transducers 8a, 8b, 8c and 9a, 9b, 9c in each fan-shaped area partitioned by b and 6c, and to average the detection results for each area. In other words, the drifted flow that occurs in the main stream due to the upstream pipe conditions is divided into independent flows and introduced in a distributed manner into each zone, and the frequency of the vortices in each divided flow is adjusted accordingly. A more accurate average flow velocity can be determined by independently detecting the flow rate using an ultrasonic transducer in the area and averaging the results. The transmission path of the ultrasonic waves may be perpendicular to the mainstream as in the illustrated embodiment, or may be diagonal to the mainstream to prevent multiple reflections. In addition to the above-mentioned method of detecting vortices using ultrasonic waves, for example, methods that measure flow velocity fluctuations around the ring-shaped vortex generator 7, pressure or fluid force acting on the ring-shaped vortex generator 7, etc. It is also possible to use a device that measures fluctuations in .
本発明は叙上のようであり、リング状渦発生体
が竪固に固定されて安定したカルマン渦がその下
流に発生され、またこの渦の発生は周期的であつ
て渦輪の崩壊も少なく、さらにベーン状支持構造
体による整流の効果も相俟つて、極めて正確な流
量・流速測定ができ、曲り管や径の変化する管路
への適用も可能であつて、使用条件の拡大にも寄
与するところが大である。 The present invention is as described above, in which the ring-shaped vortex generating body is fixed vertically and a stable Karman vortex is generated downstream thereof, and the generation of this vortex is periodic and there is little collapse of the vortex ring. In addition, the vane-shaped support structure also has a rectifying effect, allowing extremely accurate flow rate and velocity measurements, and can be applied to curved pipes and pipes with varying diameters, contributing to an expansion of usage conditions. It is important to do so.
第1図は従来例を管路側面から示した断面図、
第2図はこの発明の一実施例を管路正面から示し
た背面図、第3図は第2図A−A線矢視断面図で
ある。
1:管路、5:中心構造体、5a:頭部、5
b:胴部、5c:尾端部、6a,6b,6c:ベ
ーン状支持構造体、7:リング状渦発生体、8
a,8b,8c,9a,9b,9c:超音波送受
波器、10:渦。
Figure 1 is a sectional view of the conventional example from the side of the pipe.
FIG. 2 is a rear view of an embodiment of the present invention as seen from the front of the pipe, and FIG. 3 is a sectional view taken along the line A--A in FIG. 1: Pipeline, 5: Central structure, 5a: Head, 5
b: body, 5c: tail end, 6a, 6b, 6c: vane-shaped support structure, 7: ring-shaped vortex generator, 8
a, 8b, 8c, 9a, 9b, 9c: Ultrasonic transducer, 10: Vortex.
Claims (1)
流速を測定するカルマン渦流量計において、頭部
がドーム状、胴部が柱状、尾端が縮径コーン状の
中心構造体を、その頭部を流体流れの上流側に向
けて前記管内に同心状にベーン状支持構造体によ
つて固定し、管内壁と中心構造体との間に形成さ
れる環状流路内にリング状渦発生体を前記ベーン
状支持構造体によつて同心状に取付け、このリン
グ状渦発生体により発生されるカルマン渦を検出
して流体の流量又は流速を測定するようにしてな
ることを特徴とするカルマン渦流量計。1. In a Karman vortex flowmeter that measures the flow rate or flow velocity of a fluid using Karman vortices in a pipe, a central structure with a dome-shaped head, a column-shaped body, and a reduced-diameter cone-shaped tail end is connected to the is fixed concentrically within the tube by a vane-shaped support structure toward the upstream side of the fluid flow, and a ring-shaped vortex generator is placed in the annular flow path formed between the inner wall of the tube and the central structure. The Karman vortex flow rate is characterized in that the Karman vortex is mounted concentrically by the vane-shaped support structure and the Karman vortex generated by the ring-shaped vortex generator is detected to measure the flow rate or flow velocity of the fluid. Total.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17573381A JPS5877620A (en) | 1981-11-04 | 1981-11-04 | Karman's vortex street flowmeter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17573381A JPS5877620A (en) | 1981-11-04 | 1981-11-04 | Karman's vortex street flowmeter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5877620A JPS5877620A (en) | 1983-05-11 |
JPS642204B2 true JPS642204B2 (en) | 1989-01-17 |
Family
ID=16001282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17573381A Granted JPS5877620A (en) | 1981-11-04 | 1981-11-04 | Karman's vortex street flowmeter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5877620A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01502690A (en) * | 1986-08-20 | 1989-09-14 | ケテマ、インコーポレイテッド | fluid flow device |
JPH01148912A (en) * | 1987-12-04 | 1989-06-12 | Agency Of Ind Science & Technol | Ring vortex flowmeter |
JP4637999B2 (en) * | 2000-05-12 | 2011-02-23 | 三菱重工業株式会社 | Gas mixing equipment |
KR100760065B1 (en) | 2006-06-02 | 2007-09-18 | 한국산업기술대학교산학협력단 | Mass Mass Flow Measurement Device |
US9194729B2 (en) | 2013-07-23 | 2015-11-24 | Yokogawa Corporation Of America | Flow area reduction techniques using a centralized streamlined body in vortex flowmeters |
CN109520571A (en) * | 2019-01-02 | 2019-03-26 | 安徽天维仪表有限公司 | A kind of pipe cyclone and swirl flowmeter, processing method |
-
1981
- 1981-11-04 JP JP17573381A patent/JPS5877620A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5877620A (en) | 1983-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3197016B2 (en) | Fluid flow device | |
KR20100013325A (en) | Averaging orifice primary flow element | |
JP2009524058A (en) | A reduced-bore vortex flowmeter with a stepped inlet. | |
US4984470A (en) | Vortex-shedding flowmeters | |
JPS642204B2 (en) | ||
JP3100926B2 (en) | Eddy current sensor with turbulent grid | |
JPS6328247B2 (en) | ||
RU2331851C2 (en) | Ultrasonic flow metre | |
KR100201077B1 (en) | Average Pitot Pipe Flow Measurement Device | |
JPS6021771Y2 (en) | vortex flow meter | |
JPH0915012A (en) | Ultrasonic wave flowmeter | |
EP0744596A1 (en) | Ultrasonic flow meter | |
CN211477246U (en) | Differential pressure flowmeter | |
RU118744U1 (en) | ULTRASONIC FLOW METER | |
US20240280121A1 (en) | Flow rectifier | |
JPS6326537A (en) | Ultrasonic flow meter | |
JPH0544740Y2 (en) | ||
JPH09196720A (en) | Insertion-type vortex flowmeter | |
JPH0553368B2 (en) | ||
RU2055322C1 (en) | Flowmeter | |
SU585405A1 (en) | Stream-straightening device to flowmeter sensor | |
JP2761122B2 (en) | Vortex flow meter | |
CN109425398A (en) | Fluid flow pipe, sensor module and coriolis mass flowmeters | |
CN107782378A (en) | Natural gas flow measurer | |
JPH10213465A (en) | Vortex flow meter |