JPS6399929A - Manufacture of electrically-conductive resin molding - Google Patents
Manufacture of electrically-conductive resin moldingInfo
- Publication number
- JPS6399929A JPS6399929A JP61246570A JP24657086A JPS6399929A JP S6399929 A JPS6399929 A JP S6399929A JP 61246570 A JP61246570 A JP 61246570A JP 24657086 A JP24657086 A JP 24657086A JP S6399929 A JPS6399929 A JP S6399929A
- Authority
- JP
- Japan
- Prior art keywords
- molding
- heat treatment
- carbon fiber
- case
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 18
- 239000011347 resin Substances 0.000 title claims abstract description 18
- 238000000465 moulding Methods 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 27
- 239000004917 carbon fiber Substances 0.000 claims abstract description 27
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 10
- 239000004734 Polyphenylene sulfide Substances 0.000 claims abstract description 8
- 229920000069 polyphenylene sulfide Polymers 0.000 claims abstract description 8
- 239000000835 fiber Substances 0.000 abstract description 8
- 238000001746 injection moulding Methods 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 4
- 238000002844 melting Methods 0.000 abstract description 4
- 230000008018 melting Effects 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 2
- 238000013329 compounding Methods 0.000 abstract 2
- 239000006185 dispersion Substances 0.000 abstract 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は電池、スイッチ等の接点材料や抵抗体として好
適な優れた導電性と耐熱性を有する樹脂成形物の製造方
法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a resin molded article having excellent conductivity and heat resistance and suitable as a contact material for batteries, switches, etc., or as a resistor.
(従来O技術)
熱可塑性樹脂に炭素繊維を均一に分散させて導電性を付
与することは、従来より広く行なわれている。炭素繊維
は導電性に加え、補強材としても優れた性能を有してお
シ、剛性1寸法精度を必要とする機械部品用材料として
も、益々、需要が増大している。(Conventional O Technique) It has been widely practiced in the past to uniformly disperse carbon fibers in a thermoplastic resin to impart conductivity. In addition to being electrically conductive, carbon fiber has excellent performance as a reinforcing material, and is increasingly in demand as a material for mechanical parts that require rigidity and dimensional precision.
例えば特開昭57−188155号公報「導電性樹脂」
では、熱可塑性樹脂に、極細の炭素繊維を配合した導電
特性と機械的特性に優れた導電性樹脂が提案されている
。又、特開昭58−46508号公報「導電性材料およ
びその製法」では、炭素繊維、金属繊維などの導電性繊
維と熱可塑性合成樹脂粉末を底部に回転翼のあるミキサ
ー中で混合し、この混合物を加熱、加圧成形することに
よって1機械的強度に優れかつ充分な導電性を有する導
電性樹脂成形物が得られることが示されている。For example, JP-A-57-188155 ``Conductive resin''
has proposed a conductive resin with excellent conductive and mechanical properties, which is a thermoplastic resin mixed with ultrafine carbon fibers. Furthermore, in JP-A No. 58-46508 ``Electrically conductive materials and their manufacturing method'', conductive fibers such as carbon fibers and metal fibers and thermoplastic synthetic resin powder are mixed in a mixer with rotary blades at the bottom. It has been shown that a conductive resin molded product having excellent mechanical strength and sufficient electrical conductivity can be obtained by heating and press-molding the mixture.
(発明が解決しようとする問題点)
炭素繊維の導電性は、一般の金属材料と比較した場合に
は、良好とはいえず、従って炭素繊維を配合した峙可塑
性樹脂の導電性も充分とはいえない。その九めに高レベ
ルの導電性を得るには、炭素繊維の配合量を多くせざる
を得ないという問題点があった。しかしながら配合量を
多くした場合には、溶融時の流動性が悪くなシ、成形加
工性が低下するという問題が生じ、また溶融品練、或い
は成形加工時の炭素繊維の折損が著しくなり配合量増大
に応じ之導電性向上は得られない。(Problems to be Solved by the Invention) The electrical conductivity of carbon fibers is not good when compared with general metal materials, and therefore the electrical conductivity of plastic resins containing carbon fibers is not sufficient. I can't say that. Ninthly, there was a problem in that in order to obtain a high level of conductivity, it was necessary to increase the amount of carbon fiber blended. However, if the blending amount is increased, there will be problems such as poor fluidity during melting and a decrease in molding processability, and the breakage of carbon fibers during melt kneading or molding processing will become significant. However, no improvement in conductivity can be obtained with the increase.
他方、電圧降下用の抵抗体として使用するには。On the other hand, to use it as a resistor for voltage drop.
通電に伴なう発熱に対する導電性の熱安定性や耐熱性に
問題点があった。There were problems with the thermal stability and heat resistance of the conductive material against the heat generated by energization.
(問題点を解決するための手段)
本発明者らは、か〜る従来技術の問題点を解決すべく鋭
慧研究した結果1本発明を達成するに至った。(Means for Solving the Problems) The present inventors have conducted intensive research to solve the problems of the prior art, and as a result, have achieved the present invention.
即ち本発明方法は、炭素繊維を10〜70亀景%含有ス
るポリフェニレンサルファイド樹脂を成形後−ニヤなく
とも80°Cで、2回以上熱処理することを特徴と導電
性樹脂成形物の製造方法である。That is, the method of the present invention is characterized in that a polyphenylene sulfide resin containing 10 to 70% carbon fiber is heat-treated at least twice at 80° C. after molding. It is.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明に使用する炭素繊維としては、アクリロニトリル
系、ピッチ系、セルロース系、リグニン系等の種々のも
のが使用可能で、r!A素質、黒鉛質の制限も受けない
。導電性付与及び機械的特性の面よp、1.0−2Ω・
cm以下の電気固有抵抗率、1001Kg / mm2
以上の引張強度を有するアクリロニトリル系、或いはピ
ッチ系の炭素繊維を用いるのが好ましい。Various carbon fibers such as acrylonitrile-based, pitch-based, cellulose-based, and lignin-based carbon fibers can be used as the carbon fibers used in the present invention, and r! There are no restrictions on A quality or graphite quality. In terms of conductivity and mechanical properties, p, 1.0-2Ω・
Specific electrical resistivity below cm, 1001Kg/mm2
It is preferable to use acrylonitrile-based or pitch-based carbon fibers having a tensile strength above.
炭素繊維の形状は特に制限を受けないが、通常の場合、
繊維径10μm以下、繊維長0.5〜6 mm程度のも
のを用いる。炭素繊維の配合量は10〜70重量%とす
ることが肝要であり、特に15〜60重量%とすること
が好ましい。配合量が1011景%未満の場合は、得ら
れる成形品の導電性が不充分とな夛1本発明の目的を達
成することが出来ない。−力、70″IL景%を超える
場合は、樹脂と炭素繊維の均一分散が難しく、更に溶融
時の流動性が極めて悪くなシ、成形することが困難とな
る。There are no particular restrictions on the shape of carbon fiber, but in normal cases,
Use fibers with a diameter of 10 μm or less and a fiber length of about 0.5 to 6 mm. It is important that the amount of carbon fiber blended is 10 to 70% by weight, particularly preferably 15 to 60% by weight. If the blending amount is less than 1011%, the resulting molded product will have insufficient conductivity and the object of the present invention cannot be achieved. - If the force exceeds 70″IL ratio, it will be difficult to uniformly disperse the resin and carbon fibers, and furthermore, the fluidity during melting will be extremely poor, making it difficult to mold.
本発明に使用するポリフェニレンサルファイド樹脂は、
ベンゼン環と硫黄の交互結合よシなるポリマーで1例え
ばパラジクロルベンゼント硫化ソーダを反応させること
によυ得られる。The polyphenylene sulfide resin used in the present invention is
A polymer consisting of alternating bonds of benzene rings and sulfur can be obtained by reacting paradichlorobenzene with sodium sulfide, for example.
炭素繊維を配合したポリフェニレンサルファイドの成形
方法としては、圧縮成形、射出成形等が挙げられるが、
生産性、力学特性、電気特性の点で射出成形が好ましい
。Examples of molding methods for polyphenylene sulfide blended with carbon fibers include compression molding, injection molding, etc.
Injection molding is preferred in terms of productivity, mechanical properties, and electrical properties.
本発明で実施する熱処理は、少なくとも80゛Cで行な
うことが季肝要であシ、特に100°C以上とすること
は、本発明の目的を達成する上で好適である。熱処理温
度が80゛C未満の場合には、繰返し熱処理による導電
性向上が十分でなく1本発明の目的を達成することが出
来ない。It is essential that the heat treatment carried out in the present invention be carried out at a temperature of at least 80°C, and in particular, a temperature of 100°C or higher is suitable for achieving the object of the present invention. If the heat treatment temperature is less than 80°C, the conductivity cannot be improved sufficiently by repeated heat treatments, and the object of the present invention cannot be achieved.
熱処理の回数は2回以上行なうことが肝要でちゃ、特に
8回以上行なうことが好ましい。熱処理の回数が1回の
場合には、高温、長時間の処理を行なっても十分な導電
性向上は得られない。即ち。It is important to carry out the heat treatment two or more times, and it is particularly preferable to carry out the heat treatment eight or more times. If the number of heat treatments is one, sufficient improvement in conductivity cannot be obtained even if the treatment is performed at high temperatures and for a long time. That is.
本発明者らは、熱処理を繰返すことによp導r4性が著
しく向上することを見出し1本発明を達成するに至った
のである。The present inventors have discovered that the p-conductivity is significantly improved by repeating heat treatment, and have achieved the present invention.
1回の熱処理の時間は、温度、或いは成形物の形状、大
きさ等により異なるが、通常1分間以上、よシ好ましく
は8分間以上である。熱処理は空気中、真空中、或いは
やアルゴンガス、窒素ガス等のガス中、更には水中、オ
イル中等1種々の算囲気下で行なうことが出来る。The time for one heat treatment varies depending on the temperature, shape, size, etc. of the molded product, but is usually 1 minute or more, preferably 8 minutes or more. The heat treatment can be carried out in air, vacuum, gas such as argon gas, nitrogen gas, etc., and further under various atmospheres such as water, oil, etc.
本発明では、炭素繊維以外はカーボンブラックや金属繊
維専の導電性フィラーやガラス繊維等の補強材を併用す
ることも出来る。In the present invention, in addition to carbon fibers, reinforcing materials such as carbon black, conductive filler exclusively for metal fibers, and glass fibers can also be used.
(発明の効果)
本発明にか入る導電性樹脂成形物は、従来の炭素繊維を
配合した樹脂成形物と比較して極めて潰れた導電性を有
しており、電池、スイッチ等の接点材料や耐熱性を必要
とする抵抗体として好適である。(Effects of the Invention) The conductive resin molded product according to the present invention has extremely low conductivity compared to conventional resin molded products containing carbon fiber, and can be used as a contact material for batteries, switches, etc. It is suitable as a resistor that requires heat resistance.
(実施例) 以下、実施例を用いて更に詳細な説明を行なう。(Example) A more detailed explanation will be given below using examples.
尚、実施例に示す物性の測音は以下の方法によった。Note that the physical properties shown in the Examples were measured by the following method.
(1) 引張強度 ASTM D−688に準じて測定し次。(1) Tensile strength Measured according to ASTM D-688.
(2) 曲げ弾性率 ASTM D−790に準じて測定した。(2) Flexural modulus Measured according to ASTM D-790.
(3)体積固有抵抗 ASTM D−257に準じて測定した。(3) Volume resistivity Measured according to ASTM D-257.
実施例1
ポリフェニレンサルファイド樹脂(フィリップス・ベト
ローリアム社製、ライドンP−4)、及び繊維径7μm
、繊維長6 mmのポリアクリロニトリル系の炭素繊維
(東邦レーヨン(株)製、ベスファイトETA−as−
NR)を表−1に示す割合で配合し、溶融混練してベレ
ットを得た。Example 1 Polyphenylene sulfide resin (manufactured by Phillips Vetroleum, Rydon P-4) and fiber diameter 7 μm
, polyacrylonitrile carbon fiber with a fiber length of 6 mm (manufactured by Toho Rayon Co., Ltd., Besphite ETA-as-
NR) were blended in the proportions shown in Table 1 and melt-kneaded to obtain pellets.
次いで、得られたベレットを用いて通常行なわれている
ポリフェニレンサルファイド樹脂の成形条件で射出成形
し、試験片を作成した。Next, injection molding was performed using the obtained pellet under the usual molding conditions for polyphenylene sulfide resin to prepare a test piece.
得られた試験片は空気中1表−2に示す条件で熱処理し
た後、物性測定を行なった。尚、熱処理した試験片は、
一旦、室温迄冷却した後1次の熱処理に供した。The obtained test pieces were heat-treated in air under the conditions shown in Table 1-2, and then their physical properties were measured. In addition, the heat-treated test piece is
Once cooled to room temperature, it was subjected to a first heat treatment.
表−INo、5の試料は、加熱溶融時の流動性が極めて
悪くベレット化することが出来なかった。The sample in Table I No. 5 had extremely poor fluidity during heating and melting and could not be pelletized.
表−1 表−2 表−8Table-1 Table-2 Table-8
Claims (5)
レンサルファイド樹脂を成形後、少なくとも80℃で、
2回以上熱処理することを特徴とする導電性樹脂成形物
の製造方法。(1) After molding polyphenylene sulfide resin containing 10 to 70% by weight of carbon fibers, at least 80°C,
A method for producing a conductive resin molded article, which comprises performing heat treatment two or more times.
囲第1項記載の方法。(2) The method according to claim 1, wherein the carbon fiber content is 15 to 60% by weight.
範囲第1項記載の方法。(3) The method according to claim 1, wherein the heat treatment is carried out at at least 100°C.
1項記載の方法。(4) The method according to claim 1, wherein the heat treatment is performed at least three times.
の範囲第1項記載の方法。(5) The method according to claim 1, wherein one heat treatment is performed for at least 3 minutes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61246570A JPS6399929A (en) | 1986-10-16 | 1986-10-16 | Manufacture of electrically-conductive resin molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61246570A JPS6399929A (en) | 1986-10-16 | 1986-10-16 | Manufacture of electrically-conductive resin molding |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6399929A true JPS6399929A (en) | 1988-05-02 |
Family
ID=17150379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61246570A Pending JPS6399929A (en) | 1986-10-16 | 1986-10-16 | Manufacture of electrically-conductive resin molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6399929A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0421404A (en) * | 1990-05-16 | 1992-01-24 | Minebea Co Ltd | Reinforcing method for composite material |
JP2002212434A (en) * | 2001-01-12 | 2002-07-31 | Yuka Denshi Co Ltd | Highly conductive molded products |
JP2003277529A (en) * | 2002-03-22 | 2003-10-02 | Toho Tenax Co Ltd | Carbon fiber reinforced resin sheet and its production method |
JP2010202834A (en) * | 2009-03-05 | 2010-09-16 | Polyplastics Co | Method of improving wear resistance of pps sliding material |
CN112029283A (en) * | 2020-09-11 | 2020-12-04 | 中材科技(苏州)有限公司 | Sealing ring composite material for lithium battery pole and preparation method thereof |
-
1986
- 1986-10-16 JP JP61246570A patent/JPS6399929A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0421404A (en) * | 1990-05-16 | 1992-01-24 | Minebea Co Ltd | Reinforcing method for composite material |
JP2002212434A (en) * | 2001-01-12 | 2002-07-31 | Yuka Denshi Co Ltd | Highly conductive molded products |
JP2003277529A (en) * | 2002-03-22 | 2003-10-02 | Toho Tenax Co Ltd | Carbon fiber reinforced resin sheet and its production method |
JP2010202834A (en) * | 2009-03-05 | 2010-09-16 | Polyplastics Co | Method of improving wear resistance of pps sliding material |
CN112029283A (en) * | 2020-09-11 | 2020-12-04 | 中材科技(苏州)有限公司 | Sealing ring composite material for lithium battery pole and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4559164A (en) | Electrically conductive poly(butylene terephthalate) moldings and compositions therefor | |
CN101161726B (en) | Highly-conductive polyphenylene sulfide composite material and method for making same | |
JP2001503799A (en) | Conductive composition and method for producing the same | |
EP0539936A2 (en) | Short fiber-containing polymer composition and method for controlling electrical resistance of the polymer composition | |
EP0337487A1 (en) | Electroconductive polymer composition | |
JPS63275667A (en) | Thermoplastic resin composition | |
US4350652A (en) | Manufacture of electrically conductive polyolefin moldings, and their use | |
JPS59157151A (en) | Electrically conductive organic thermoplastic composition | |
JPH10195311A (en) | Thermoplastic resin molded article, material for molded article, method for producing molded article | |
JPH0510390B2 (en) | ||
KR910004644B1 (en) | Polyarylene thioether composition for molding | |
CN109777101A (en) | A kind of modified polyetherimide resin complexes and preparation method thereof | |
JPS6399929A (en) | Manufacture of electrically-conductive resin molding | |
JP3493710B2 (en) | Carbon fiber reinforced resin composite material | |
JPS59155459A (en) | Polyester resin composition | |
JPH0379663A (en) | Polyamide resin composition | |
JPH0277442A (en) | Electrically conductive thermoplastic resin composition | |
CN106589889A (en) | High-performance polycarbonate composite material and preparation method and application thereof | |
JPS63272536A (en) | Manufacture of conductive resin molded product | |
CN111073287A (en) | Low-warpage and high-mechanical-property carbon fiber reinforced polyphenylene sulfide composite material and preparation method thereof | |
JPH0251459B2 (en) | ||
JPH03174466A (en) | Aromatic polysulfone resin composition | |
JPS6399930A (en) | Manufacture of electrically-conductive resin molding | |
JPH0313259B2 (en) | ||
JPS5861149A (en) | Reinforced thermoplastic resin composition |