JPH10195311A - Thermoplastic resin molding, material for molding and production of molding - Google Patents
Thermoplastic resin molding, material for molding and production of moldingInfo
- Publication number
- JPH10195311A JPH10195311A JP31365097A JP31365097A JPH10195311A JP H10195311 A JPH10195311 A JP H10195311A JP 31365097 A JP31365097 A JP 31365097A JP 31365097 A JP31365097 A JP 31365097A JP H10195311 A JPH10195311 A JP H10195311A
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic resin
- glass fiber
- pellet
- glass
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920005992 thermoplastic resin Polymers 0.000 title claims abstract description 215
- 239000000463 material Substances 0.000 title claims abstract description 86
- 238000000465 moulding Methods 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000003365 glass fiber Substances 0.000 claims abstract description 257
- 239000008188 pellet Substances 0.000 claims abstract description 161
- 239000000835 fiber Substances 0.000 claims abstract description 106
- 239000004020 conductor Substances 0.000 claims abstract description 89
- 229920005989 resin Polymers 0.000 claims abstract description 50
- 239000011347 resin Substances 0.000 claims abstract description 50
- 238000000034 method Methods 0.000 claims abstract description 46
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 20
- 239000004917 carbon fiber Substances 0.000 claims abstract description 20
- 239000006229 carbon black Substances 0.000 claims abstract description 13
- 239000010935 stainless steel Substances 0.000 claims abstract description 11
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 11
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims abstract description 6
- 229920002647 polyamide Polymers 0.000 claims abstract description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 19
- 239000012778 molding material Substances 0.000 claims description 16
- 239000007822 coupling agent Substances 0.000 claims description 13
- 238000005520 cutting process Methods 0.000 claims description 12
- 229910001369 Brass Inorganic materials 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 239000010951 brass Substances 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 229920005672 polyolefin resin Polymers 0.000 claims description 9
- 239000004793 Polystyrene Substances 0.000 claims description 7
- 229920002223 polystyrene Polymers 0.000 claims description 7
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims description 3
- 229920006122 polyamide resin Polymers 0.000 claims description 3
- 229920005990 polystyrene resin Polymers 0.000 claims description 2
- 239000002991 molded plastic Substances 0.000 claims 1
- 239000000088 plastic resin Substances 0.000 claims 1
- 238000001746 injection moulding Methods 0.000 abstract description 15
- 230000005611 electricity Effects 0.000 abstract description 9
- 230000003068 static effect Effects 0.000 abstract description 9
- 238000002156 mixing Methods 0.000 abstract description 4
- 239000004952 Polyamide Substances 0.000 abstract 1
- 229920000098 polyolefin Polymers 0.000 abstract 1
- 239000011521 glass Substances 0.000 description 30
- -1 preferably Substances 0.000 description 22
- 239000004743 Polypropylene Substances 0.000 description 16
- 229920001155 polypropylene Polymers 0.000 description 16
- 239000000203 mixture Substances 0.000 description 12
- 239000004677 Nylon Substances 0.000 description 11
- 229920001778 nylon Polymers 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 239000002184 metal Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 6
- 239000000805 composite resin Substances 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229920001400 block copolymer Polymers 0.000 description 4
- 238000000748 compression moulding Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229920002492 poly(sulfone) Polymers 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000002216 antistatic agent Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000006232 furnace black Substances 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000010445 mica Substances 0.000 description 3
- 229910052618 mica group Inorganic materials 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 239000012779 reinforcing material Substances 0.000 description 3
- 238000004513 sizing Methods 0.000 description 3
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- 229920001431 Long-fiber-reinforced thermoplastic Polymers 0.000 description 2
- 102100036154 Platelet basic protein Human genes 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 244000145845 chattering Species 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 108010012808 leiomyoma-derived growth factor Proteins 0.000 description 2
- 239000004611 light stabiliser Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920006380 polyphenylene oxide Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229920005604 random copolymer Polymers 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000012756 surface treatment agent Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000010456 wollastonite Substances 0.000 description 2
- 229910052882 wollastonite Inorganic materials 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229920010524 Syndiotactic polystyrene Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 229920005603 alternating copolymer Polymers 0.000 description 1
- 229920006127 amorphous resin Polymers 0.000 description 1
- LNENVNGQOUBOIX-UHFFFAOYSA-N azidosilane Chemical compound [SiH3]N=[N+]=[N-] LNENVNGQOUBOIX-UHFFFAOYSA-N 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 229920006038 crystalline resin Polymers 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 239000011357 graphitized carbon fiber Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229920003049 isoprene rubber Polymers 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、導電性を有し、し
かも耐熱性、機械的諸物性のいずれにも優れたガラス長
繊維強化導電性樹脂成形品、当該成形品の製造に用いる
ガラス長繊維強化導電性樹脂成形品用材料およびガラス
長繊維強化導電性樹脂成形品の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a long glass fiber reinforced conductive resin molded article having conductivity and excellent in both heat resistance and mechanical properties, and a glass length used for manufacturing the molded article. The present invention relates to a material for a fiber-reinforced conductive resin molded product and a method for producing a glass long fiber-reinforced conductive resin molded product.
【0002】本発明のガラス長繊維強化導電性樹脂成形
品は、特に、静電気散逸材や電磁波シールド材として好
ましく用いられる。[0002] The long glass fiber reinforced conductive resin molded article of the present invention is particularly preferably used as a static electricity dissipating material or an electromagnetic wave shielding material.
【0003】[0003]
【従来の技術】熱可塑性樹脂は導電性材料との複合化に
より、導電性が付与され、静電気散逸用途、電磁波遮蔽
用途などに幅広く利用されている。導電性材料を含有す
る熱可塑性樹脂は、射出成形法、射出圧縮成形法などに
よって、様々な形状に成形可能であり、しかも安価な成
形加工費用で大量生産できるため、静電気散逸用途、電
磁波遮蔽用途に使用されている金属加工品、または導電
塗料塗布材料や金属めっき品などの表面導電性加工品に
比べ、コスト的に安価であり、工業的価値が高い。2. Description of the Related Art A thermoplastic resin is imparted with conductivity by being combined with a conductive material, and is widely used in applications such as static electricity dissipation and electromagnetic wave shielding. Thermoplastic resins containing conductive materials can be molded into various shapes by injection molding, injection compression molding, etc., and can be mass-produced at low molding costs, so they can be used for static electricity dissipation and electromagnetic wave shielding. It is inexpensive and has high industrial value as compared with metal processed products used in the field, or surface conductive processed products such as conductive coating materials and metal plated products.
【0004】しかしその反面、導電性材料を含有する熱
可塑性樹脂を用いた成形品は、機械的強度が不十分であ
り、検討の余地が残されていた。このため、従来は、ガ
ラス繊維など繊維状の補強材添加による、強度向上の検
討が行われている。強度向上には、成形品中の繊維長の
影響が顕著であり、成形品用材料として、例えば1mm以
上の長繊維を使用しても、成形加工工程中に繊維が折損
を受け、大部分の長繊維は0.2 mm以下になってしまい、
顕著な補強効果は見られなかった。[0004] On the other hand, however, a molded article using a thermoplastic resin containing a conductive material has insufficient mechanical strength, leaving room for study. For this reason, conventionally, studies have been made to improve the strength by adding a fibrous reinforcing material such as glass fiber. In order to improve the strength, the effect of the fiber length in the molded product is remarkable. Even if a long fiber of, for example, 1 mm or more is used as the material for the molded product, the fiber is broken during the molding process, and most of the fibers are broken. The long fiber becomes less than 0.2 mm,
No significant reinforcing effect was seen.
【0005】以下に、具体例を、従来技術に基づき説明
する。特開昭63−90564 号公報においては、熱可塑性樹
脂、ステンレス繊維、ガラス繊維からなる樹脂組成物が
提案されている。上記技術においては、繊維直径5〜50
μm、アスペクト比50〜500 のガラス繊維が使用されて
おり、換算すると、該ガラス繊維のガラス繊維長は0.25
〜25mmに相当する。[0005] A specific example will be described below based on the prior art. JP-A-63-90564 proposes a resin composition comprising a thermoplastic resin, stainless steel fiber and glass fiber. In the above technology, the fiber diameter is 5-50
μm, glass fibers having an aspect ratio of 50 to 500 are used, and when converted, the glass fiber length of the glass fibers is 0.25.
Equivalent to ~ 25mm.
【0006】しかし、このような繊維長のガラス繊維を
使用しても、上記の組成物を押出機により溶融混練し、
射出成形用のペレットを得たのでは、溶融混練工程時に
ガラス繊維が折損し、短化してしまう。特開昭59−2359
5 号公報、特公昭62−36069 号公報、特開昭60−88064
号公報、特公平4−68348 号公報、特開昭63−132959号
公報、特公平5−55961 号公報においても、ガラス繊維
が添加された導電性樹脂組成物が開示されているが、こ
れらは2軸あるいは1軸の押出機により溶融混練され、
ペレット化されており、ガラス繊維は短化してしまう。However, even when glass fibers having such a fiber length are used, the above composition is melt-kneaded by an extruder,
If pellets for injection molding are obtained, the glass fibers will break during the melt-kneading step, resulting in a shorter glass fiber. JP-A-59-2359
No. 5, JP-B-62-36069, JP-A-60-88064
JP, JP-B4-68348, JP-A-63-132959, and JP-B-5-55961 also disclose conductive resin compositions to which glass fibers are added. Melted and kneaded by a twin or single screw extruder,
It is pelletized and the glass fiber is shortened.
【0007】このように、従来技術では、樹脂成形品中
での均一分散性を考慮して、導電性材料、熱可塑性樹脂
およびガラス繊維を押出機により溶融混練し、ペレット
化しているため、ガラス繊維は短化し、機械的強度は不
十分であった。また、特開昭63−90564 号公報において
は、収束剤で収束されたガラス繊維束をペレット化し、
そのまま射出成形に供する方法が開示されている。As described above, in the prior art, the conductive material, the thermoplastic resin, and the glass fiber are melt-kneaded by an extruder and pelletized in consideration of uniform dispersibility in a resin molded product. The fibers were shortened and the mechanical strength was insufficient. In JP-A-63-90564, a glass fiber bundle converged with a sizing agent is pelletized,
A method for directly performing injection molding is disclosed.
【0008】特開昭60−18315 号公報には、繊維状導電
性材料と無機繊維(ガラス繊維)を束ねた表面に樹脂層
を形成させたペレット状導電性成形用材料が開示されて
いる。しかし、ガラス繊維束の表面のみを、収束剤ある
いは熱可塑性樹脂でコーティングした成形品用材料は、
ガラス繊維束内に樹脂が含浸されていないため、これを
射出成形した場合、溶融混練時に、ガラス繊維同士の擦
れ合いや未溶融樹脂、スクリューなどによる剪断のた
め、ガラス繊維は短化してしまう。JP-A-60-18315 discloses a pellet-shaped conductive molding material in which a resin layer is formed on the surface of a bundle of a fibrous conductive material and inorganic fibers (glass fibers). However, molding material in which only the surface of the glass fiber bundle is coated with a sizing agent or a thermoplastic resin,
Since the resin is not impregnated in the glass fiber bundle, when the glass fiber bundle is injection molded, the glass fiber is shortened due to friction between the glass fibers or shearing by the unmelted resin, screw or the like at the time of melt-kneading.
【0009】以上のように、従来技術では、強度向上の
ために添加したガラス繊維が成形加工時に短化してしま
い、得られる成形品の強度が不十分であった。As described above, in the prior art, the glass fiber added for improving the strength is shortened at the time of molding, and the strength of the obtained molded product is insufficient.
【0010】[0010]
【発明が解決しようとする課題】本発明は、前記した従
来技術の問題点を解決し、機械的強度に優れ、導電性を
有する熱可塑性樹脂成形品、該成形品を得るのに適した
成形品用材料および前記成形品の製造方法を提供するこ
とを目的とする。DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and has excellent mechanical strength and electrical conductivity, and a molded article suitable for obtaining the molded article. It is an object of the present invention to provide an article material and a method for producing the molded article.
【0011】[0011]
【課題を解決するための手段】本発明者は、成形品中の
ガラス繊維を長繊維化することによって、ガラス繊維と
導電性材料を含有する熱可塑性樹脂成形品の高強度化を
達成できると考え、鋭意検討した。成形加工工程中にお
けるガラス繊維の折損をできるだけ抑制し、成形品中の
ガラス繊維長を長くするためには、成形加工装置や成形
加工条件の検討が考えられる。The inventor of the present invention has stated that by increasing the length of glass fibers in a molded article, it is possible to achieve high strength of a thermoplastic resin molded article containing glass fibers and a conductive material. I thought and studied diligently. In order to suppress breakage of the glass fiber during the forming process as much as possible and to increase the length of the glass fiber in the formed product, it is possible to consider a forming apparatus and forming conditions.
【0012】例えば、射出成形法の場合、スクリューの
デザインを変え、深溝タイプとすると共に圧縮比を下げ
るといった成形加工装置の工夫が挙げられる。また、ガ
ラス繊維長を長く保つ成形加工条件として、スクリュー
回転数を落とし、剪断力を下げる方法、背圧を下げる方
法などが挙げられる。このような方法を組み合わせる
と、繊維長は長く保持される方向に向かうが、その反
面、ガラス繊維と導電性材料の均一分散性が低下し、成
形品の強度、導電性が不均一になる。[0012] For example, in the case of the injection molding method, there is a device of a molding apparatus in which the design of a screw is changed to a deep groove type and a compression ratio is lowered. Examples of the molding processing conditions for keeping the glass fiber length long include a method of lowering the screw rotation speed to lower the shearing force, a method of lowering the back pressure, and the like. When such a method is combined, the fiber length tends to be maintained longer, but on the other hand, the uniform dispersibility of the glass fiber and the conductive material decreases, and the strength and conductivity of the molded product become non-uniform.
【0013】このため本発明者は、材料、特にガラス繊
維含有ペレットの樹脂含浸に着目した。前記したよう
に、従来技術においては、ガラス繊維束を収束剤や熱可
塑性樹脂でコーティングしたものが用いられている。し
かし、上記したペレットは、基本的に、ガラス繊維束内
に樹脂が含浸されておらず、加工成形時に、ガラス同士
が擦れ合い、短化する。For this reason, the present inventor paid attention to the resin impregnation of the material, particularly the glass fiber-containing pellet. As described above, in the prior art, a glass fiber bundle coated with a sizing agent or a thermoplastic resin is used. However, in the above-mentioned pellets, the resin is not basically impregnated in the glass fiber bundle, and the glass is rubbed with each other at the time of processing and molding, and the pellets are shortened.
【0014】本発明者は、ガラス繊維束内に十分に樹脂
が含浸した、すなわちガラス繊維が十分に樹脂で濡れた
ガラス繊維を含有する樹脂ペレットを用いることによっ
て、ガラス繊維が長い繊維長を有した状態で、成形品中
に残存し、導電性材料を含有する熱可塑性樹脂成形品の
高強度化が達成可能であることを見い出した。これは、
ガラス繊維束内に樹脂を含浸することによって、溶融
混練時におけるガラス同士の擦れ合いを低減できるこ
と、剪断力が働いた場合、ガラス繊維間に存在する樹
脂がずれて、剪断エネルギーを吸収することによって、
ガラス繊維の折損が抑制されるためと考えられる。The inventor of the present invention has proposed that a glass fiber bundle has a long fiber length by using a resin pellet containing glass fiber sufficiently impregnated with a resin in the glass fiber bundle, that is, the glass fiber is sufficiently wetted with the resin. In this state, it was found that a thermoplastic resin molded article containing a conductive material and remaining in the molded article can achieve high strength. this is,
By impregnating the resin in the glass fiber bundle, it is possible to reduce the friction between the glasses during melt-kneading, and when a shear force is applied, the resin existing between the glass fibers is displaced and absorbs the shear energy. ,
It is considered that breakage of the glass fiber is suppressed.
【0015】また、上記した本発明に係わる樹脂ペレッ
トから得られた成形品について鋭意分析したところ、成
形品中のガラス繊維のうち、残存繊維長として0.4mm 以
上の繊維が強度に対する寄与が大きく、0.4mm 以上のガ
ラス繊維を、成形品中に5〜60重量%存在せしめること
で、強度特性に優れた成形品が得られることが分かっ
た。Further, when the molded article obtained from the resin pellets according to the present invention described above was intensively analyzed, among the glass fibers in the molded article, fibers having a residual fiber length of 0.4 mm or more greatly contributed to the strength. It was found that a molded product having excellent strength characteristics was obtained by allowing 5 to 60% by weight of a glass fiber of 0.4 mm or more to be present in the molded product.
【0016】すなわち、本発明は、以下の通りである。
第1の発明は、ガラス繊維と導電性材料と熱可塑性樹脂
を含有する熱可塑性樹脂成形品であって、該成形品中
に、長さ0.4mm 以上のガラス繊維を5〜60重量%、ガラ
ス繊維を合計量で5〜75重量%、導電性材料を3〜60重
量%含有することを特徴とするガラス長繊維で強化され
た導電性を有する熱可塑性樹脂成形品である。That is, the present invention is as follows.
A first invention is a thermoplastic resin molded article containing glass fiber, a conductive material, and a thermoplastic resin. The molded article contains 5 to 60% by weight of glass fiber having a length of 0.4 mm or more, It is a thermoplastic resin molded article having electroconductivity reinforced with long glass fibers, comprising 5 to 75% by weight in total of fibers and 3 to 60% by weight of conductive material.
【0017】前記した第1の発明においては、前記導電
性材料が、カーボンブラック、炭素繊維、ステンレス繊
維、銅繊維および黄銅繊維の内から選ばれる一種以上で
あることが好ましい。また、前記した第1の発明におい
ては、前記熱可塑性樹脂が、ポリオレフィン系樹脂、ポ
リアミド系樹脂、ポリスチレン系樹脂およびABS系樹
脂の内から選ばれる一種以上であることが好ましい。In the first aspect, the conductive material is preferably at least one selected from carbon black, carbon fiber, stainless steel fiber, copper fiber, and brass fiber. In the first aspect, it is preferable that the thermoplastic resin is at least one selected from a polyolefin-based resin, a polyamide-based resin, a polystyrene-based resin, and an ABS-based resin.
【0018】さらに、前記した第1の発明においては、
前記ガラス繊維がカップリング剤で処理されていること
が好ましい。第2の発明は、ガラス繊維束および導電性
材料を含有する熱可塑性樹脂ペレットを含む熱可塑性樹
脂成形品用材料であって、前記熱可塑性樹脂ペレット中
のガラス繊維の重量平均繊維長が1mm以上で、かつ前記
熱可塑性樹脂ペレット中のガラス繊維束が熱可塑性樹脂
で含浸され、前記熱可塑性樹脂成形品用材料中の全ガラ
ス繊維の含有量が5〜75重量%、導電性材料の含有量が
3〜60重量%であることを特徴とするガラス長繊維で強
化された導電性を有する熱可塑性樹脂成形品用材料であ
る。Further, in the above-mentioned first invention,
Preferably, the glass fibers have been treated with a coupling agent. A second invention is a material for a thermoplastic resin molded article including a thermoplastic resin pellet containing a glass fiber bundle and a conductive material, wherein the weight average fiber length of the glass fiber in the thermoplastic resin pellet is 1 mm or more. And the glass fiber bundle in the thermoplastic resin pellets is impregnated with a thermoplastic resin, and the content of all glass fibers in the material for the thermoplastic resin molded product is 5 to 75% by weight, and the content of the conductive material. Is 3 to 60% by weight, and is a material for a thermoplastic resin molded article having conductivity reinforced with long glass fibers.
【0019】第3の発明は、ガラス繊維束および導電性
材料を含有する熱可塑性樹脂ペレットと、熱可塑性樹脂
を含む熱可塑性樹脂成形品用材料であって、前記熱可塑
性樹脂ペレット中のガラス繊維の重量平均繊維長が1mm
以上で、かつ前記熱可塑性樹脂ペレット中のガラス繊維
束が熱可塑性樹脂で含浸され、前記熱可塑性樹脂成形品
用材料中の全ガラス繊維の含有量が5〜75重量%、導電
性材料の含有量が3〜60重量%であることを特徴とする
ガラス長繊維で強化された導電性を有する熱可塑性樹脂
成形品用材料である。A third invention is a thermoplastic resin pellet containing a glass fiber bundle and a conductive material, and a material for a thermoplastic resin molded article containing a thermoplastic resin, wherein the glass fiber in the thermoplastic resin pellet is provided. Weight average fiber length of 1mm
Above, and the glass fiber bundle in the thermoplastic resin pellets is impregnated with a thermoplastic resin, the content of all glass fibers in the thermoplastic resin molding material is 5 to 75% by weight, and the conductive material is contained. An amount of 3 to 60% by weight is a material for a thermoplastic resin molded article having conductivity reinforced with long glass fibers.
【0020】第4の発明は、ガラス繊維束を含有する熱
可塑性樹脂ペレットと、導電性材料を含む熱可塑性樹脂
成形品用材料であって、前記熱可塑性樹脂ペレット中の
ガラス繊維の重量平均繊維長が1mm以上で、かつ前記熱
可塑性樹脂ペレット中のガラス繊維束が熱可塑性樹脂で
含浸され、前記熱可塑性樹脂成形品用材料中の全ガラス
繊維の含有量が5〜75重量%、導電性材料の含有量が3
〜60重量%であることを特徴とするガラス長繊維で強化
された導電性を有する熱可塑性樹脂成形品用材料であ
る。A fourth invention is a thermoplastic resin pellet containing a glass fiber bundle and a material for a thermoplastic resin molded article containing a conductive material, wherein the weight average fiber of the glass fiber in the thermoplastic resin pellet is A glass fiber bundle having a length of 1 mm or more and being impregnated with a thermoplastic resin in the thermoplastic resin pellets, wherein the content of all glass fibers in the thermoplastic resin molding material is 5 to 75% by weight; Material content is 3
It is a material for a thermoplastic resin molded article having conductivity reinforced with long glass fibers, characterized in that the content is about 60% by weight.
【0021】第5の発明は、ガラス繊維束を含有する熱
可塑性樹脂ペレットと、導電性材料と、熱可塑性樹脂と
を含む熱可塑性樹脂成形品用材料であって、前記熱可塑
性樹脂ペレット中のガラス繊維の重量平均繊維長が1mm
以上で、かつ前記熱可塑性樹脂ペレット中のガラス繊維
束が熱可塑性樹脂で含浸され、前記熱可塑性樹脂成形品
用材料中の全ガラス繊維の含有量が5〜75重量%、導電
性材料の含有量が3〜60重量%であることを特徴とする
ガラス長繊維で強化された導電性を有する熱可塑性樹脂
成形品用材料である。According to a fifth aspect of the present invention, there is provided a material for a thermoplastic resin molded article including a thermoplastic resin pellet containing a glass fiber bundle, a conductive material, and a thermoplastic resin. Glass fiber weight average fiber length is 1mm
Above, and the glass fiber bundle in the thermoplastic resin pellets is impregnated with a thermoplastic resin, the content of all glass fibers in the thermoplastic resin molding material is 5 to 75% by weight, and the conductive material is contained. An amount of 3 to 60% by weight is a material for a thermoplastic resin molded article having conductivity reinforced with long glass fibers.
【0022】前記した第2の発明〜第5の発明において
は、前記熱可塑性樹脂ペレットの平均長さが1〜150mm
であり、該ペレット中のガラス繊維がペレットの長さ方
向に整列し、かつ、ガラス繊維が該ペレットと実質的に
同一長さを有することが好ましい。第6の発明は、導電
性材料を含有するガラス繊維強化熱可塑性樹脂ペレット
を含む熱可塑性樹脂成形品用材料であって、前記ガラス
繊維強化熱可塑性樹脂ペレットが、ガラス繊維束に熱可
塑性樹脂を含浸し、切断して得られるペレットで、か
つ、ガラス繊維が実質的にペレットと同一長さを有し、
当該繊維同士が平行に整列し、ガラス繊維含有率が10〜
90重量%、繊維方向の平均長さが1〜150 mmのペレット
であることを特徴とするガラス長繊維で強化された導電
性を有する熱可塑性樹脂成形品用材料である。In the second to fifth inventions, the thermoplastic resin pellets have an average length of 1 to 150 mm.
Preferably, the glass fibers in the pellet are aligned in the length direction of the pellet, and the glass fiber has substantially the same length as the pellet. A sixth invention is a material for a thermoplastic resin molded article including glass fiber reinforced thermoplastic resin pellets containing a conductive material, wherein the glass fiber reinforced thermoplastic resin pellets contain a thermoplastic resin in a glass fiber bundle. Impregnated, the pellet obtained by cutting, and the glass fiber has substantially the same length as the pellet,
The fibers are aligned in parallel with each other, and the glass fiber content is 10 to
90% by weight, a pellet having an average length in the fiber direction of 1 to 150 mm, which is a material for a thermoplastic resin molded article having conductivity reinforced with long glass fibers.
【0023】第7の発明は、導電性材料を含有するガラ
ス繊維強化熱可塑性樹脂ペレットと、熱可塑性樹脂を含
む熱可塑性樹脂成形品用材料であって、前記ガラス繊維
強化熱可塑性樹脂ペレットが、ガラス繊維束に熱可塑性
樹脂を含浸し、切断して得られるペレットで、かつ、ガ
ラス繊維が実質的にペレットと同一長さを有し、当該繊
維同士が平行に整列し、ガラス繊維含有率が10〜90重量
%、繊維方向の平均長さが1〜150 mmのペレットである
ことを特徴とするガラス長繊維で強化された導電性を有
する熱可塑性樹脂成形品用材料である。A seventh invention is a glass fiber reinforced thermoplastic resin pellet containing a conductive material, and a material for a thermoplastic resin molded article containing a thermoplastic resin, wherein the glass fiber reinforced thermoplastic resin pellet comprises: A glass fiber bundle is impregnated with a thermoplastic resin and pellets obtained by cutting, and the glass fibers have substantially the same length as the pellets, the fibers are aligned in parallel, and the glass fiber content is reduced. This is a material for a thermoplastic resin molded article having conductivity reinforced by long glass fibers, which is a pellet having a weight of 10 to 90% by weight and an average length in a fiber direction of 1 to 150 mm.
【0024】第8の発明は、ガラス繊維強化熱可塑性樹
脂ペレットと、導電性材料を含む熱可塑性樹脂成形品用
材料であって、前記ガラス繊維強化熱可塑性樹脂ペレッ
トが、ガラス繊維束に熱可塑性樹脂を含浸し、切断して
得られるペレットで、かつ、ガラス繊維が実質的にペレ
ットと同一長さを有し、当該繊維同士が平行に整列し、
ガラス繊維含有率が10〜90重量%、繊維方向の平均長さ
が1〜150 mmのペレットであることを特徴とするガラス
長繊維で強化された導電性を有する熱可塑性樹脂成形品
用材料である。An eighth invention is a material for a thermoplastic resin molded article containing a glass fiber reinforced thermoplastic resin pellet and a conductive material, wherein the glass fiber reinforced thermoplastic resin pellet is formed of a thermoplastic resin in a glass fiber bundle. Impregnated with resin, pellets obtained by cutting, and the glass fibers have substantially the same length as the pellets, the fibers are aligned in parallel,
A material for thermoplastic resin moldings having a glass fiber content of 10 to 90% by weight and an average length in the fiber direction of 1 to 150 mm and having conductivity reinforced with long glass fibers. is there.
【0025】第9の発明は、ガラス繊維強化熱可塑性樹
脂ペレットと、導電性材料を含有する熱可塑性樹脂ペレ
ットを含む熱可塑性樹脂成形品用材料であって、前記ガ
ラス繊維強化熱可塑性樹脂ペレットが、ガラス繊維束に
熱可塑性樹脂を含浸し、切断して得られるペレットで、
かつ、ガラス繊維が実質的にペレットと同一長さを有
し、当該繊維同士が平行に整列し、ガラス繊維含有率が
10〜90重量%、繊維方向の平均長さが1〜150 mmのペレ
ットであることを特徴とする熱可塑性樹脂成形品用材料
である。A ninth invention is a material for a thermoplastic resin molded article including a glass fiber reinforced thermoplastic resin pellet and a thermoplastic resin pellet containing a conductive material, wherein the glass fiber reinforced thermoplastic resin pellet is In a pellet obtained by impregnating a glass fiber bundle with a thermoplastic resin and cutting,
And, the glass fibers have substantially the same length as the pellet, the fibers are aligned in parallel, the glass fiber content is
A thermoplastic resin molding material characterized in that the pellet is 10 to 90% by weight and has an average length in the fiber direction of 1 to 150 mm.
【0026】第10の発明は、ガラス繊維強化熱可塑性樹
脂ペレットと、導電性材料と、熱可塑性樹脂を含む熱可
塑性樹脂成形品用材料であって、前記ガラス繊維強化熱
可塑性樹脂ペレットが、ガラス繊維束に熱可塑性樹脂を
含浸し、切断して得られるペレットで、かつ、ガラス繊
維が実質的にペレットと同一長さを有し、当該繊維同士
が平行に整列し、ガラス繊維含有率が10〜90重量%、繊
維方向の平均長さが1〜150 mmのペレットであることを
特徴とするガラス長繊維で強化された導電性を有する熱
可塑性樹脂成形品用材料である。According to a tenth aspect, there is provided a thermoplastic resin molded material containing a glass fiber reinforced thermoplastic resin pellet, a conductive material, and a thermoplastic resin, wherein the glass fiber reinforced thermoplastic resin pellet is made of glass. The fiber bundle is impregnated with a thermoplastic resin and pellets obtained by cutting, and the glass fibers have substantially the same length as the pellets, the fibers are aligned in parallel, and the glass fiber content is 10%. A material for a thermoplastic resin molded article having conductivity reinforced with long glass fibers, which is a pellet having a length of 1 to 150 mm in a fiber direction of 90% by weight.
【0027】前記した第2の発明〜第10の発明において
は、前記導電性材料が、カーボンブラック、炭素繊維、
ステンレス繊維、銅繊維および黄銅繊維の内から選ばれ
る一種以上であることが好ましい。また、前記した第2
の発明〜第10の発明においては、前記熱可塑性樹脂が、
ポリオレフィン系樹脂、ポリアミド系樹脂、ポリスチレ
ン系樹脂およびABS系樹脂の内から選ばれる一種以上
であることが好ましい。In the second to tenth aspects, the conductive material may be carbon black, carbon fiber,
It is preferably at least one selected from stainless steel fiber, copper fiber and brass fiber. In addition, the second
In the invention to the tenth invention, the thermoplastic resin,
It is preferably at least one selected from a polyolefin resin, a polyamide resin, a polystyrene resin and an ABS resin.
【0028】また、前記した第2の発明〜第10の発明に
おいては、前記ガラス繊維束が、カップリング剤で処理
されたガラス繊維束であることが好ましい。第11の発明
は、前記した第2の発明〜第10の発明の内、少なくとも
いずれかの発明のガラス長繊維で強化された導電性を有
する熱可塑性樹脂成形品用材料を成形することを特徴と
するガラス長繊維で強化された導電性を有する熱可塑性
樹脂成形品の製造方法である。In the second to tenth aspects, the glass fiber bundle is preferably a glass fiber bundle treated with a coupling agent. An eleventh invention is characterized in that the material for a thermoplastic resin molded article having conductivity reinforced by a long glass fiber of at least one of the second invention to the tenth invention is molded. This is a method for producing a thermoplastic resin molded article having conductivity reinforced by long glass fibers.
【0029】前記した第11の発明においては、前記熱可
塑性樹脂成形品用材料の成形法として射出成形法を用い
ることが好ましい。In the eleventh aspect, it is preferable to use an injection molding method as a method for molding the material for a thermoplastic resin molded article.
【0030】[0030]
【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明者は、前記した従来技術の問題点を解決す
るために鋭意検討した結果、少なくとも、ガラス繊維束
中に熱可塑性樹脂が含浸されたガラス繊維強化熱可塑性
樹脂ペレットと、導電性カーボンブラック、導電性繊維
などの導電性材料を含む成形品用材料を用い、成形品中
の0.4mm 以上のガラス繊維の含有量が特定の範囲となる
ように成形することによって、導電性を有し、かつ、耐
熱性、および、耐衝撃性、引張強度、引張弾性率、曲げ
強度および曲げ弾性率などの機械的諸物性のいずれにも
優れた繊維強化熱可塑性樹脂成形品が得られることを見
出した。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The present inventor has conducted intensive studies to solve the above-described problems of the related art, and at least, glass fiber reinforced thermoplastic resin pellets impregnated with a thermoplastic resin in a glass fiber bundle, and conductive carbon black, By using a material for a molded article containing a conductive material such as a conductive fiber and molding so that the content of glass fiber of 0.4 mm or more in the molded article falls within a specific range, it has conductivity, and It has been found that a fiber-reinforced thermoplastic resin molded article having excellent mechanical properties such as heat resistance, impact resistance, tensile strength, tensile modulus, flexural strength and flexural modulus can be obtained.
【0031】本発明のガラス長繊維で強化された導電性
を有する熱可塑性樹脂成形品は、最終的な熱可塑性樹脂
成形品中に、繊維長が0.4mm 以上のガラス長繊維と、導
電性材料が特定量含有されていればよく、いかなる製造
方法、成形方法を用いても良い。しかしながら、成形品
の特性の均一性、経済性の観点からは、以下のような方
法で製造するのが好ましい。The thermoplastic resin molded article having conductivity reinforced by long glass fibers of the present invention comprises, in the final thermoplastic resin molded article, a long glass fiber having a fiber length of 0.4 mm or more, and a conductive material. Any production method and molding method may be used as long as it is contained in a specific amount. However, from the viewpoint of uniformity of the characteristics of the molded article and economical efficiency, it is preferable to produce the molded article by the following method.
【0032】すなわち、ガラス繊維束中に熱可塑性樹脂
が含浸され、かつ導電性材料を含有する熱可塑性樹脂ペ
レットを成形品用材料として、低圧射出成形、射出圧縮
成形などの射出成形法により成形し、成形品を得ること
が好ましい。また、ガラス繊維束中に熱可塑性樹脂が含
浸された熱可塑性樹脂ペレットと、導電性材料を含有し
た熱可塑性樹脂ペレットをそれぞれ製造し、両ペレット
を混合した成形品用材料を、低圧射出成形、射出圧縮成
形などの射出成形法により成形し、成形品を得ることが
好ましい。That is, a thermoplastic resin pellet impregnated in a glass fiber bundle and containing a conductive material is molded as a material for a molded article by an injection molding method such as low pressure injection molding or injection compression molding. It is preferable to obtain a molded product. Also, a thermoplastic resin pellet in which a thermoplastic resin is impregnated in a glass fiber bundle, and a thermoplastic resin pellet containing a conductive material are respectively manufactured, and a material for a molded product in which both pellets are mixed is subjected to low pressure injection molding. It is preferable to obtain a molded product by molding by an injection molding method such as injection compression molding.
【0033】以下、本発明の成形品用材料、成形品、お
よびそれらの原料、製造方法について述べる。 (ガラス繊維:)本発明で用いるガラス繊維の種類は、
一般的に用いられるガラス繊維でよい。例えば、E−ガ
ラス、AR−ガラス、T−ガラス、D−ガラスやS−ガ
ラス、C−ガラス、R−ガラスなどが例示される。The materials for molded articles, molded articles, their raw materials and production methods of the present invention will be described below. (Glass fiber :) The type of glass fiber used in the present invention is:
Commonly used glass fibers may be used. For example, E-glass, AR-glass, T-glass, D-glass, S-glass, C-glass, R-glass and the like are exemplified.
【0034】本発明に用いるガラス繊維の形態として
は、引抜き法で使用可能な連続したガラス繊維束が好ま
しく、例えば、数千〜数万本のガラスフィラメントを集
めた束をコイル状に巻き取った、所謂ガラスロービング
が例示される。ガラス繊維の直径は、5〜35μmのもの
が適している。ガラス繊維の直径が5μm未満の場合、
同一ガラス含有量にする場合、相対的にガラス繊維数が
増加するため樹脂のガラス繊維束への含浸が困難とな
り、逆に35μmを超えると成形品の表面外観が著しく悪
化する。The form of the glass fiber used in the present invention is preferably a continuous glass fiber bundle usable in a drawing method. For example, a bundle of thousands to tens of thousands of glass filaments is wound into a coil. , So-called glass roving. A glass fiber having a diameter of 5 to 35 μm is suitable. When the diameter of the glass fiber is less than 5 μm,
When the same glass content is used, the number of glass fibers relatively increases, so that it becomes difficult to impregnate the glass fiber bundle with the resin. Conversely, when the glass fiber size exceeds 35 μm, the surface appearance of the molded product is significantly deteriorated.
【0035】最適なガラス繊維の直径は9〜20μmであ
る。なお、ガラス繊維の断面形状が円形でない場合は、
その断面積と等しい面積の円の直径である面積相当直径
が好ましくは5〜35μm、さらには面積相当直径が9〜
20μmのガラス繊維を用いることが好ましい。本発明に
用いるガラス繊維は、カップリング剤を含む表面処理剤
で表面処理されていると好ましい。The optimal glass fiber diameter is 9 to 20 μm. When the cross-sectional shape of the glass fiber is not circular,
The area equivalent diameter, which is the diameter of a circle having an area equal to the cross-sectional area, is preferably 5 to 35 μm, and more preferably the area equivalent diameter is 9 to 35 μm.
Preferably, 20 μm glass fibers are used. The glass fiber used in the present invention is preferably surface-treated with a surface treatment agent containing a coupling agent.
【0036】ガラス繊維をカップリング剤で表面処理す
ると、ガラス繊維束中への樹脂の含浸が良好になり、さ
らにはガラス繊維と樹脂との接着が良好になり、成形品
の強度も向上する。カップリング剤としては、アミノシ
ラン、エポキシシラン、アミドシラン、アジドシラン、
アクリルシランのようなシランカップリング剤、チタネ
ート系カップリング剤またはこれらの混合物が利用でき
る。When the surface treatment of the glass fiber with the coupling agent is performed, the impregnation of the resin into the glass fiber bundle is improved, the adhesion between the glass fiber and the resin is improved, and the strength of the molded product is improved. As coupling agents, aminosilane, epoxysilane, amidosilane, azidosilane,
A silane coupling agent such as acrylic silane, a titanate coupling agent, or a mixture thereof can be used.
【0037】これらのうち、アミノシランとエポキシシ
ランが好ましく、特にアミノシランカップリング剤が好
ましい。表面処理剤にはカップリング剤以外に、界面活
性剤、帯電防止剤などが含まれていてもよい。 (導電性材料:)導電性材料としては、好ましくは、カ
ーボンブラック、炭素繊維、ステンレス繊維、黄銅繊
維、銅繊維などが例示される。Of these, aminosilane and epoxysilane are preferred, and aminosilane coupling agents are particularly preferred. The surface treatment agent may contain a surfactant, an antistatic agent and the like in addition to the coupling agent. (Conductive Material :) As the conductive material, preferably, carbon black, carbon fiber, stainless steel fiber, brass fiber, copper fiber and the like are exemplified.
【0038】これらは単独で用いてもよく、2種以上を
用いてもよい。カーボンブラックとしては、ファーネス
ブラック、アセチレンブラックなどが例示される。ファ
ーネスブラック、アセチレンブラックなどの導電性カー
ボンブラックは、100 〜102 Ωcm程度の高い体積抵抗率
を有し、導電性材料としてこれらを用いた本発明の成形
品はICチップトレーの用途に用いた場合、静電気散逸
の面で優れた性能を発揮する。These may be used alone or in combination of two or more. Examples of carbon black include furnace black and acetylene black. Furnace black, conductive carbon black such as acetylene black, use the 10 0 - 10 2 have Ωcm about high volume resistivity, the molded article of the present invention using them as the conductive material of the IC chip trays applications If it does, it will show excellent performance in terms of static electricity dissipation.
【0039】ファーネスブラックは原油をファーネス式
不完全燃焼法により燃焼することにより製造され、例え
ばバルカンXC−72、ケッチェンブラックEC(いず
れも商品名)などを用いることができる。本発明におい
ては、カーボンブラックを、本発明の成形品用材料、成
形品中に3〜60重量%、好ましくは5〜40重量%、より
好ましくは5〜25重量%含有せしめることにより、良好
な導電性を有する成形品を得ることができる。Furnace black is produced by burning crude oil by a furnace-type incomplete combustion method. For example, Vulcan XC-72, Ketjen Black EC (both trade names) and the like can be used. In the present invention, the carbon black is contained in the material for a molded article of the present invention, preferably in an amount of 3 to 60% by weight, preferably 5 to 40% by weight, more preferably 5 to 25% by weight. A molded article having conductivity can be obtained.
【0040】炭素繊維は、PAN系、ピッチ系の2種類
に大別されるが、いずれも導電性に優れ、10-4〜10-3Ω
・cmの体積抵抗率を有する。本発明にはいかなる炭素繊
維も利用することができ、黒鉛化炭素繊維も好ましく用
いられる。また、ニッケルなど金属をメッキした炭素繊
維も使用でき、これは上記のPAN系、ピッチ系の炭素
繊維にメッキ処理を行うことにより得られる。The carbon fibers are roughly classified into two types, that is, PAN type and pitch type. Both types are excellent in conductivity and 10 -4 to 10 -3 Ω.
Has a volume resistivity of cm. In the present invention, any carbon fiber can be used, and graphitized carbon fiber is also preferably used. Further, carbon fibers plated with a metal such as nickel can also be used, and can be obtained by plating the above PAN-based or pitch-based carbon fibers.
【0041】ニッケルをメッキした炭素繊維は体積抵抗
率が小さいため、電磁波シールド性向け用途として有用
である。ステンレス繊維、黄銅繊維、銅繊維は、引抜き
法やビビリ法により製造される。炭素繊維、ステンレス
繊維、銅繊維、黄銅繊維、ニッケルなど金属をメッキし
た炭素繊維などの導電性繊維を含有した樹脂複合材は、
これら導電性材料の少量の添加で非常に高い導電性を付
与することが可能であることから、電磁波シールド材料
としての低電気抵抗樹脂複合材に欠かせない導電性材料
である。Since nickel-plated carbon fiber has a small volume resistivity, it is useful as an application for electromagnetic wave shielding. Stainless fibers, brass fibers, and copper fibers are produced by a drawing method or a chattering method. Carbon fiber, stainless steel fiber, copper fiber, brass fiber, resin composite material containing conductive fiber such as carbon fiber plated with metal such as nickel,
Since very high conductivity can be imparted by adding a small amount of these conductive materials, it is an indispensable conductive material for a low electric resistance resin composite material as an electromagnetic wave shielding material.
【0042】上記した繊維状の導電性材料は、成形品中
での均一な分散を達成するため、予め樹脂と複合化させ
たペレットとして用いることが好ましい。炭素繊維、ス
テンレス繊維、銅繊維、黄銅繊維、ニッケルなど金属を
メッキした炭素繊維などの導電性繊維の含有率は、本発
明の成形品用材料、成形品において、3〜60重量%、好
ましくは3〜50重量%、さらには3〜30重量%であるこ
とがより好ましい。The above-mentioned fibrous conductive material is preferably used in the form of pellets previously compounded with a resin in order to achieve uniform dispersion in a molded article. The content of the conductive fiber such as carbon fiber, stainless fiber, copper fiber, brass fiber, carbon fiber plated with metal such as nickel is 3 to 60% by weight, preferably 3 to 60% by weight in the molded article material and molded article of the present invention. More preferably, it is 3 to 50% by weight, more preferably 3 to 30% by weight.
【0043】電磁波シールド性(EMIシールド性)を
得るためには、上記成形品において、ステンレス繊維の
場合、含有率を7重量%以上、炭素繊維の場合、含有率
を10重量%以上とすることがより好ましい。また、ビビ
リ法により得られた金属繊維の場合には、EMIシール
ド性を得るためには、上記成形品において、含有率を15
重量%以上とすることがより好ましい。In order to obtain electromagnetic wave shielding properties (EMI shielding properties), the content of the above-mentioned molded product should be 7% by weight or more in the case of stainless steel fiber and 10% by weight or more in the case of carbon fiber. Is more preferred. Further, in the case of the metal fiber obtained by the chattering method, in order to obtain the EMI shielding property, the content of the above-mentioned molded article is set at 15%.
It is more preferable that the content be not less than% by weight.
【0044】(熱可塑性樹脂:)本発明に用いる熱可塑
性樹脂の種類は、特に制限されるものではない。ただ
し、ポリオレフィン系樹脂やシンジオタクチックポリス
チレン、6−ナイロン、6、6−ナイロンなどのポリア
ミド樹脂など結晶性樹脂を用いた場合、長繊維との複合
化により、加重たわみ温度(HDT)に代表される熱的
特性が向上するため、有利である。(Thermoplastic resin) The kind of the thermoplastic resin used in the present invention is not particularly limited. However, when a crystalline resin such as a polyolefin-based resin or a polyamide resin such as syndiotactic polystyrene, 6-nylon, 6,6-nylon is used, it is represented by a weighted deflection temperature (HDT) due to the compounding with a long fiber. This is advantageous because the thermal characteristics are improved.
【0045】特に、ポリオレフィン系樹脂は、安価であ
り、リサイクルなどの観点から工業的、経済的にも優れ
ているため、特に好ましい。以下、ポリオレフィン系樹
脂について詳細に記載する。本発明で用いるポリオレフ
ィン系樹脂としては、エチレン、プロピレン、ブテン、
4−メチルペンテンなどの単独重合体が例示され、さら
にはこれらのモノマーと酢酸ビニル、アクリル酸、アク
リル酸エステル、無水マレイン酸などの極性モノマーと
のランダム、交互、ブロック、またはグラフト共重合体
も含まれる。In particular, polyolefin-based resins are particularly preferable because they are inexpensive and are industrially and economically excellent from the viewpoint of recycling and the like. Hereinafter, the polyolefin resin will be described in detail. As the polyolefin resin used in the present invention, ethylene, propylene, butene,
Homopolymers such as 4-methylpentene are exemplified, and also random, alternating, block, or graft copolymers of these monomers with polar monomers such as vinyl acetate, acrylic acid, acrylates, and maleic anhydride. included.
【0046】また、これらの重合体にエチレン−α−オ
レフィン系共重合体ゴム、イソプレンゴム、イソブチレ
ンゴムなどの合成ゴムを50重量%未満添加した組成物も
含まれる。具体的には、高圧法エチレン単独重合体、高
圧法エチレン−プロピレン共重合体、低圧法エチレン単
独重合体、低圧法エチレン−プロピレン共重合体、低圧
法エチレン−1−ブテン共重合体、低圧法エチレン−1
−ヘキセン共重合体、中圧法エチレン共重合体、高圧法
エチレン−酢酸ビニル共重合体、プロピレン−エチレン
のランダムまたはブロック共重合体などが例示される。Further, a composition in which a synthetic rubber such as ethylene-α-olefin copolymer rubber, isoprene rubber, isobutylene rubber or the like is added to the polymer in an amount of less than 50% by weight is also included. Specifically, high-pressure ethylene homopolymer, high-pressure ethylene-propylene copolymer, low-pressure ethylene homopolymer, low-pressure ethylene-propylene copolymer, low-pressure ethylene-1-butene copolymer, low-pressure ethylene Ethylene-1
-Hexene copolymer, medium pressure method ethylene copolymer, high pressure method ethylene-vinyl acetate copolymer, propylene-ethylene random or block copolymer, and the like.
【0047】また、上記したポリオレフィン系樹脂の中
でも結晶性プロピレン系重合体、特にポリプロピレンが
好ましい。ポリプロピレンとしては、プロピレンの単独
重合体のほか、プロピレンを主体としてエチレン成分を
含む共重合体、例えばプロピレン−エチレンブロック共
重合体、プロピレンとエチレン−プロピレンゴムとのブ
ロック共重合体などであってもよい。Further, among the above-mentioned polyolefin-based resins, a crystalline propylene-based polymer, particularly, polypropylene is preferable. As the polypropylene, other than propylene homopolymer, a copolymer containing propylene as the main component and an ethylene component, such as a propylene-ethylene block copolymer, a block copolymer of propylene and ethylene-propylene rubber, and the like. Good.
【0048】また、本発明においては、熱可塑性樹脂と
して、アクリロニトリル−ブタジエン−スチレン樹脂
(ABS樹脂)、ポリスチレン、ポリカーボネート、ポ
リサルフォン(PSU)、ポリフェニレンスルフィド
(PPS)、ポリエーテルサルフォン(PES)などの
非結晶性樹脂を用いた場合でも、ガラス長繊維との複合
化をはかることにより、衝撃強度、引張強度、曲げ強
度、曲げ弾性率などの機械的強度が向上する。In the present invention, as the thermoplastic resin, acrylonitrile-butadiene-styrene resin (ABS resin), polystyrene, polycarbonate, polysulfone (PSU), polyphenylene sulfide (PPS), polyether sulfone (PES) and the like are used. Even when an amorphous resin is used, mechanical strength such as impact strength, tensile strength, bending strength, and flexural modulus is improved by forming a composite with long glass fibers.
【0049】特にアイゾット衝撃強度などについては大
幅に向上するため、ハウジングや電子回路の筺体など耐
衝撃性の要求される用途に好ましく用いることができ
る。 (ガラス繊維束を含有する熱可塑性樹脂ペレット、ガラ
ス繊維強化熱可塑性樹脂ペレット:)本発明に用いるガ
ラス繊維束を含有する熱可塑性樹脂ペレット(:第2の
発明〜第5の発明)もしくはガラス繊維強化熱可塑性樹
脂ペレット(:第6の発明〜第10の発明)は、ガラス繊
維束中に熱可塑性樹脂が含浸され、かつガラス繊維の重
量平均繊維長が1mm以上であればいかなる方法で製造し
てもよい。Particularly, since the Izod impact strength is greatly improved, it can be preferably used for applications requiring impact resistance, such as a housing or a housing of an electronic circuit. (Thermoplastic resin pellets containing glass fiber bundles, glass fiber reinforced thermoplastic resin pellets :) Thermoplastic resin pellets containing glass fiber bundles used in the present invention (second to fifth inventions) or glass fibers The reinforced thermoplastic resin pellets (the sixth to tenth inventions) can be manufactured by any method as long as the thermoplastic resin is impregnated in the glass fiber bundle and the weight average fiber length of the glass fiber is 1 mm or more. You may.
【0050】ガラス繊維束中に熱可塑性樹脂を含浸した
後、所望の長さに切断することによって本発明に係わる
ペレットが得られる。熱可塑性樹脂をガラス繊維束に含
浸する方法としては、例えば、熱可塑性樹脂のエマル
ジョンをガラス繊維束に含浸し、被覆付着後、乾燥させ
る方法、熱可塑性樹脂の粉末懸濁液をガラス繊維束に
付着させ、乾燥後加熱溶融含浸させる方法、ガラス繊
維束を帯電させて、熱可塑性樹脂粉末を付着させた後、
加熱溶融含浸させる方法、溶媒に溶解した熱可塑性樹
脂をガラス繊維束に含浸後、溶媒を除去する方法、熱
可塑性樹脂の連続繊維とガラスの連続繊維の混合繊維を
加熱し、溶融した樹脂をガラス繊維束に含浸させる方
法、および加熱溶融した熱可塑性樹脂をバー、ロー
ル、ダイス上でガラス繊維束を開繊させながら含浸させ
る方法などのいずれの方法でもよい。The glass fiber bundle is impregnated with a thermoplastic resin and then cut into a desired length to obtain a pellet according to the present invention. As a method of impregnating a thermoplastic resin into a glass fiber bundle, for example, a method of impregnating a glass fiber bundle with an emulsion of a thermoplastic resin, drying after coating is applied, a powder suspension of a thermoplastic resin into a glass fiber bundle. A method of heating and melting and impregnating after drying, charging the glass fiber bundle, and attaching the thermoplastic resin powder,
A method of heat-melting impregnation, a method of impregnating a glass fiber bundle with a thermoplastic resin dissolved in a solvent, and a method of removing the solvent, heating a mixed fiber of continuous fiber of thermoplastic resin and continuous fiber of glass, and melting the molten resin into glass. Any of a method of impregnating the fiber bundle and a method of impregnating the glass fiber bundle with the thermoplastic resin melted by heating on a bar, a roll, or a die may be used.
【0051】本発明においては、これらの方法の内、装
置およびプロセスの簡便さから、加熱溶融した熱可塑性
樹脂をバー、ロール、ダイス上でガラス繊維束を開繊さ
せながら含浸させる方法(引き抜き法)が好ましい。ま
た、樹脂含浸時に、導電性材料や酸化防止剤、耐光安定
剤、難燃剤などの添加剤や、マイカ、タルク、チタン酸
ウイスカー、ウオラストナイト、ガラスフレーク、ガラ
スビーズなどの補強材を添加してもよい。In the present invention, of these methods, a method of impregnating a heated and melted thermoplastic resin with a glass fiber bundle on a bar, a roll, or a die while opening the glass fiber bundle (drawing method) is used because of the simplicity of the apparatus and the process. Is preferred. In addition, at the time of resin impregnation, additives such as conductive materials, antioxidants, light stabilizers, and flame retardants, and reinforcing materials such as mica, talc, whisker titanate, wollastonite, glass flakes, and glass beads are added. You may.
【0052】これらの添加方法は、特には制限されない
が、例えば樹脂と上記各種添加剤とを混合、溶融させ、
バー、ロール、ダイス上でガラス繊維束中に含浸させる
方法(引き抜き法)などが例示される。樹脂を含浸した
ガラス繊維束は、乾燥または冷却し、所望の長さに切断
する。切断後のペレットの長さは、繊維方向の平均長さ
で1〜150mm であることが好ましく、より好ましくは2
〜150mm 、さらに好ましくは2〜100mm 、さらに好まし
くは6〜15mmである。The method of addition is not particularly limited. For example, a resin and the above-mentioned various additives are mixed and melted.
A method of impregnating the glass fiber bundle on a bar, roll, or die (drawing method) is exemplified. The glass fiber bundle impregnated with the resin is dried or cooled and cut into a desired length. The length of the pellet after cutting is preferably 1 to 150 mm in average length in the fiber direction, and more preferably 2 to 150 mm.
150150 mm, more preferably 2-100 mm, even more preferably 6-15 mm.
【0053】ここで重要なことは、ペレット中のガラス
繊維の重量平均繊維長を1mm以上とすることである。ペ
レット中のガラス繊維の重量平均繊維長が1mm未満の場
合、得られる成形品中の長さが0.4mm 以上のガラス繊維
の量が少なくなり、機械的強度が不十分となる。What is important here is that the weight average fiber length of the glass fibers in the pellets is 1 mm or more. When the weight-average fiber length of the glass fibers in the pellet is less than 1 mm, the amount of glass fibers having a length of 0.4 mm or more in the obtained molded article becomes small, and the mechanical strength becomes insufficient.
【0054】このため、繊維方向のペレットの平均長さ
は1mm以上必要である。また、逆に、ペレットの平均長
さが150mm を超えると、成形機のホッパ内で詰まりが生
じやすい。なお、本発明における上記したペレットの平
均長さは、ペレットの重量平均長さで定義される。Therefore, the average length of the pellet in the fiber direction needs to be 1 mm or more. Conversely, if the average length of the pellets exceeds 150 mm, clogging tends to occur in the hopper of the molding machine. In addition, the average length of the above-mentioned pellet in the present invention is defined by the weight average length of the pellet.
【0055】さらに、上記したガラス長繊維強化熱可塑
性樹脂ペレットとしては、当該繊維強化熱可塑性樹脂ペ
レット中において、ガラス繊維が実質的にペレットと同
一長さでかつ繊維がペレットの長さ方向に整列するのが
好ましい。本発明においては、ガラス繊維含有率が10〜
90重量%、さらに好ましくは30〜70重量%であるガラス
長繊維強化熱可塑性樹脂ペレットを用いることが好まし
い。Further, as the above-mentioned glass long fiber reinforced thermoplastic resin pellets, in the fiber reinforced thermoplastic resin pellets, the glass fibers are substantially the same length as the pellets and the fibers are aligned in the length direction of the pellets. Is preferred. In the present invention, the glass fiber content is 10 to
It is preferable to use 90% by weight, more preferably 30 to 70% by weight of long glass fiber reinforced thermoplastic resin pellets.
【0056】(成形品用材料:)本発明の成形品用材料
は、下記構成とすることが好ましい。 (1) 前記したガラス長繊維で強化された熱可塑性樹脂ペ
レット中に導電性材料を含有させたもの。 (2) (a) 前記したガラス長繊維で強化された熱可塑性樹
脂ペレット中に導電性材料を含有させたものと、(b) 熱
可塑性樹脂とを混合したもの。(Material for molded article) The material for a molded article of the present invention preferably has the following constitution. (1) A thermoplastic resin pellet reinforced with long glass fibers as described above, containing a conductive material. (2) A mixture of (a) a thermoplastic resin pellet reinforced with long glass fibers described above and a conductive material, and (b) a thermoplastic resin.
【0057】なお、この場合、上記(a) と(b) を均一に
混合するため、上記(b) としてはペレット状のものを用
いることが好ましい。 (3) (a) 前記したガラス長繊維で強化された熱可塑性樹
脂ペレットと、(b) 導電性材料とを混合したもの。 (4) (a) 前記したガラス長繊維で強化された熱可塑性樹
脂ペレットと、(b) 導電性材料と、(c) 熱可塑性樹脂と
を混合したもの。In this case, in order to uniformly mix the above (a) and (b), it is preferable to use a pellet as the above (b). (3) A mixture of (a) the thermoplastic resin pellet reinforced with the long glass fiber described above and (b) a conductive material. (4) A mixture of (a) the thermoplastic resin pellet reinforced with the long glass fiber, (b) a conductive material, and (c) a thermoplastic resin.
【0058】なお、上記(4) の場合、導電性材料を均一
に混合するために、予め、導電性材料と熱可塑性樹脂を
押出機あるいはニーダーなどの混練機を用いて混合し、
成形して製造した導電性材料を含有する熱可塑性樹脂ペ
レット(d) を前記した(b) 導電性材料として用いるのが
好ましい。上記した(1) 〜(4) の成形品用材料中の全ガ
ラス繊維の含有量は、好ましくは、成形品用材料中にお
いて5〜75重量%、さらに好ましくは成形品用材料中に
おいて10〜60重量%である。In the case of the above (4), in order to uniformly mix the conductive material, the conductive material and the thermoplastic resin are previously mixed using a kneader such as an extruder or a kneader.
It is preferable to use a thermoplastic resin pellet (d) containing a conductive material produced by molding as the above-mentioned (b) conductive material. The content of all the glass fibers in the above-mentioned (1) to (4) molding material is preferably 5 to 75% by weight in the molding material, more preferably 10 to 75% by weight in the molding material. 60% by weight.
【0059】ガラス繊維の含有量が5重量%未満の場
合、成形品の強度が十分ではなく、逆に75重量%を超え
ると、成形が困難となり、さらには得られた成形品の外
観も不良になる。前記した(1) 〜(4) の成形品用材料中
の導電性材料の含有量は、好ましくは、成形品用材料中
において3〜60重量%、さらに好ましくは成形品用材料
中において5〜50重量%である。When the content of the glass fiber is less than 5% by weight, the strength of the molded article is not sufficient. On the contrary, when it exceeds 75% by weight, molding becomes difficult and the appearance of the obtained molded article is also poor. become. The content of the conductive material in the material for a molded article of (1) to (4) is preferably 3 to 60% by weight in the material for a molded article, and more preferably 5 to 60% by weight in the material for a molded article. 50% by weight.
【0060】導電性材料の含有量が3重量%未満の場
合、得られる成形品の導電性が不十分で電磁波シールド
材料などの用途に用いることができず、逆に導電性材料
の含有量が60重量%を超えると、成形が困難になる。な
お、前記した(2) の成形品用材料における(a) ガラス長
繊維で強化され導電性材料を含有する熱可塑性樹脂ペレ
ットと(b) 熱可塑性樹脂の好ましい配合割合は、(a) ガ
ラス長繊維で強化され導電性材料を含有する熱可塑性樹
脂ペレット100 重量部に対して、(b) 熱可塑性樹脂3〜
300 重量部である。When the content of the conductive material is less than 3% by weight, the obtained molded product has insufficient conductivity and cannot be used for applications such as an electromagnetic wave shielding material. If it exceeds 60% by weight, molding becomes difficult. In the material for a molded article of the above (2), (a) a thermoplastic resin pellet reinforced with long glass fibers and containing a conductive material and (b) a thermoplastic resin preferably has a mixing ratio of (a) glass length. For 100 parts by weight of thermoplastic resin pellets reinforced with fibers and containing a conductive material, (b) thermoplastic resin 3 to
300 parts by weight.
【0061】また、前記した(3) の成形品用材料におけ
る(a) ガラス長繊維で強化された熱可塑性樹脂ペレット
と(b) 導電性材料の好ましい配合割合は、(a) ガラス長
繊維で強化された熱可塑性樹脂ペレット100 重量部に対
して、(b) 導電性材料3〜150 重量部である。また、前
記した(4) の成形品用材料における(a) ガラス長繊維で
強化された熱可塑性樹脂ペレットと(b) 導電性材料と
(c) 熱可塑性樹脂の好ましい配合割合は、(a) ガラス長
繊維で強化された熱可塑性樹脂ペレット100 重量部に対
して、(b) 導電性材料3〜150 重量部、(c) 熱可塑性樹
脂1〜100 重量部である。Further, in the above-mentioned molded article material (3), the preferred compounding ratio of (a) the thermoplastic resin pellet reinforced with long glass fiber and (b) the conductive material is (a) long glass fiber. (B) 3 to 150 parts by weight of the conductive material based on 100 parts by weight of the reinforced thermoplastic resin pellets. Further, (a) a thermoplastic resin pellet reinforced with long glass fibers and (b) a conductive material in the molded article material of (4) above.
The preferred blending ratio of (c) thermoplastic resin is (a) 100 parts by weight of thermoplastic resin pellets reinforced with long glass fiber, (b) 3 to 150 parts by weight of conductive material, and (c) thermoplastic resin. Resin is 1 to 100 parts by weight.
【0062】さらに前記した(4) において、導電性材料
を含有する熱可塑性樹脂ペレット(d) を用いた場合、好
ましい配合割合は、(a) ガラス長繊維で強化された熱可
塑性樹脂ペレット100 重量部に対して、(d) 導電性材料
を含有する熱可塑性樹脂ペレット5〜300 重量部であ
る。本発明の成形品用材料中には、先に述べた酸化防止
剤、耐光安定剤、難燃剤などの添加剤や、マイカ、タル
ク、チタン酸ウイスカー、ウオラストナイト、ガラスフ
レーク、ガラスビーズなどの補強材が含まれていてもよ
い。Further, in the above (4), when the thermoplastic resin pellet (d) containing a conductive material is used, the preferable compounding ratio is (a) 100 wt% of the thermoplastic resin pellet reinforced with long glass fiber. (D) 5-300 parts by weight of thermoplastic resin pellets containing a conductive material. In the material for molded articles of the present invention, additives such as antioxidants, light stabilizers, and flame retardants described above, and mica, talc, whisker titanate, wollastonite, glass flakes, glass beads, etc. A reinforcing material may be included.
【0063】(成形方法:)本発明における成形方法と
しては、射出成形、ブロー成形、押出し成形など、樹脂
を成形するいかなる方法も使用することができるが、ガ
ラス繊維の切断を防止するために射出成形法を用いるこ
とが好ましく、射出圧縮成形法、低圧射出成形法が、射
出時のガラス繊維の切断が少ないため適している。(Molding method) As a molding method in the present invention, any method for molding a resin, such as injection molding, blow molding, extrusion molding, etc., can be used. It is preferable to use a molding method, and an injection compression molding method and a low-pressure injection molding method are suitable because the glass fiber is hardly cut at the time of injection.
【0064】すなわち、本発明の成形品用材料を成形機
に供給し、成形機内で溶融混練する。本発明の成形品用
材料を用いて成形すると、成形品中のガラス繊維と導
電性材料の配合率を所望の範囲に調整することが容易と
なり、ガラス繊維が破断し難く、成形品中のガラス繊
維が長くなり、強度が大きな成形品が得られ、さらに
は、成形品中のガラス繊維および導電性材料の分散が
均一となり、強度、導電性においてさらに優れた特性が
得られる。That is, the material for a molded article of the present invention is supplied to a molding machine and melt-kneaded in the molding machine. When molded using the material for molded articles of the present invention, it becomes easy to adjust the blending ratio of the glass fiber and the conductive material in the molded article to a desired range, the glass fibers are hardly broken, and the glass in the molded article is hardly broken. Fibers become longer and a molded article having high strength is obtained. Further, the dispersion of the glass fiber and the conductive material in the molded article becomes uniform, so that more excellent properties in strength and conductivity are obtained.
【0065】(成形品:)本発明の成形品は、成形品中
に導電性材料を3〜60重量%含有する。導電性材料の含
有量が3重量%未満の場合、導電性が不十分で、電磁波
シールド材料などの用途に用いることができず、逆に導
電性材料の含有量が60重量%を超えると、成形品表面へ
の導電性材料の浮き出しが多くなり、外観不良になる。(Molded Article) The molded article of the present invention contains 3 to 60% by weight of a conductive material in the molded article. When the content of the conductive material is less than 3% by weight, the conductivity is insufficient and cannot be used for applications such as an electromagnetic wave shielding material. Conversely, when the content of the conductive material exceeds 60% by weight, The amount of the conductive material protruding from the surface of the molded product increases, resulting in poor appearance.
【0066】本発明の成形品中の全ガラス繊維の含有率
は、5〜75重量%である。全ガラス繊維の含有率が5重
量%未満の場合、機械的強度や耐熱性の向上が少なく、
ガラス長繊維による優れた効果が得られない。逆に、75
重量%超えの場合は、溶融時の流動性が低く、成形加工
が困難なうえ、成形品の外観が不良になる。The content of all glass fibers in the molded article of the present invention is 5 to 75% by weight. When the content of all glass fibers is less than 5% by weight, there is little improvement in mechanical strength and heat resistance,
Excellent effects due to long glass fibers cannot be obtained. Conversely, 75
If the content is more than the percentage by weight, the fluidity at the time of melting is low, molding is difficult, and the appearance of the molded product is poor.
【0067】特に本発明で重要なことは、繊維長が0.4m
m 以上のガラス繊維を、成形品中に5〜60重量%、より
好ましくは10〜50重量%残存させることである。繊維長
が0.4mm 未満のガラス繊維は、長繊維としての補強効果
が少ない。また、成形品中の0.4mm 以上のガラス繊維の
含有量が5重量%未満の場合、補強効果が少なく、逆に
60重量%を超えると成形加工が困難なうえ、成形品の外
観が不良になる。What is particularly important in the present invention is that the fiber length is 0.4 m.
In this case, 5 to 60% by weight, more preferably 10 to 50% by weight, of glass fiber of m or more is left in the molded article. Glass fibers having a fiber length of less than 0.4 mm have little reinforcing effect as long fibers. When the glass fiber content of 0.4 mm or more in the molded article is less than 5% by weight, the reinforcing effect is small, and conversely.
If it exceeds 60% by weight, the molding process is difficult and the appearance of the molded product becomes poor.
【0068】次に、本発明の成形品の好適な用途につい
て述べるが、本発明の成形品の用途は下記の例に限定さ
れるものではない。本発明の成形品は、その表面抵抗率
により帯電防止材用、静電気散逸材用、電磁波シールド
材用に分けられる。帯電防止材用は表面抵抗率が1×10
9 〜1×1013Ω/cm2であり、静電気散逸材用は表面抵抗
率が1×102 〜1×109 Ω/cm2であり、電磁波シールド
材用は表面抵抗率が1×10-3〜1×102 Ω/cm2である。Next, preferred uses of the molded article of the present invention will be described, but the uses of the molded article of the present invention are not limited to the following examples. The molded articles of the present invention are classified into antistatic materials, static electricity dissipating materials, and electromagnetic wave shielding materials according to their surface resistivity. Surface resistivity of 1 × 10 for antistatic materials
9 to 1 × 10 13 Ω / cm 2 , the surface resistivity is 1 × 10 2 to 1 × 10 9 Ω / cm 2 for the static electricity dissipating material, and 1 × 10 9 for the electromagnetic wave shielding material. −3 to 1 × 10 2 Ω / cm 2 .
【0069】表面抵抗率は、カーボンブラック、炭素繊
維、ニッケルメッキなど金属メッキされた炭素繊維、ス
テンレス繊維、黄銅繊維、銅繊維などを単独または2種
以上を添加することにより、調整できる。さらに本発明
の成形品の用途を具体的に説明する。導電性材料として
カーボンブラックを用いた本発明の樹脂複合材は、静電
気散逸性を有する材料として有用である。The surface resistivity can be adjusted by adding carbon black, carbon fiber, carbon fiber plated with metal such as nickel plating, stainless steel fiber, brass fiber, copper fiber or the like alone or in combination of two or more. Further, the use of the molded article of the present invention will be specifically described. The resin composite of the present invention using carbon black as the conductive material is useful as a material having static electricity dissipation.
【0070】静電気散逸性を有する成形品の用途として
は、ICチップトレイが例示される。ICチップトレイ
は、従来、導電性カーボンブラックを含有したポリスチ
レン、ポリプロピレンなどが用いられていた。しかし、
ポリプロピレンの場合、ガラス短繊維やマイカ、各種ミ
ネラルを配合しても、耐熱性の指標である熱変形温度
(HDT)は、後述の比較例に示すように、高々104 〜
110 ℃であり、高温での使用が困難であった。As a use of the molded article having the static electricity dissipation property, an IC chip tray is exemplified. Conventionally, for the IC chip tray, polystyrene, polypropylene, or the like containing conductive carbon black has been used. But,
In the case of polypropylene, even when short glass fibers, mica, and various minerals are blended, the heat distortion temperature (HDT), which is an index of heat resistance, is at most 104 to 104 as shown in a comparative example described later.
It was 110 ° C, making it difficult to use at high temperatures.
【0071】また、要求されるHDTが150 ℃付近のI
Cチップトレイ材としては、従来、ベース樹脂として、
耐熱性を有する変性PPO(ポリフェニレンオキシ
ド)、PSU(ポリサルフォン)、PCアロイ(ポリカ
ーボネートのアロイ)など、高価な樹脂が使用されてい
る。本発明に係わるカーボンブラック含有ガラス長繊維
ポリプロピレンの成形品は、ガラス長繊維により高度に
樹脂複合材が補強されるため、そのHDTは150 ℃以上
を示す。When the required HDT is about 150 ° C.
As C chip tray material, conventionally, as base resin,
Expensive resins such as heat-resistant modified PPO (polyphenylene oxide), PSU (polysulfone), and PC alloy (alloy of polycarbonate) are used. The molded article of the carbon black-containing glass long fiber polypropylene according to the present invention has a HDT of 150 ° C. or higher because the resin composite is highly reinforced by the glass long fiber.
【0072】したがって、カーボンブラック含有ガラス
長繊維ポリプロピレンの成形品は耐熱性ICチップトレ
イに使用でき、上記の高価な樹脂を用いた場合に比べ、
コストダウンを図れ、工業的、経済的な意味は大きい。
また、携帯電話、パソコンの急速な普及に伴い、電磁波
からの遮蔽、電磁波の漏洩防止などの電磁波シールド性
(EMIシールド性)に関する注目は、益々高まってい
る。Therefore, a molded article of carbon black-containing glass long fiber polypropylene can be used for a heat-resistant IC chip tray, and compared with the case of using the above expensive resin.
Cost reduction, industrial and economic significance.
Also, with the rapid spread of mobile phones and personal computers, attention is being paid to electromagnetic wave shielding properties (EMI shielding properties) such as shielding from electromagnetic waves and prevention of leakage of electromagnetic waves.
【0073】電磁波障害を無くすためには、電磁波を発
生させる機器類の筺体をEMIシールド材とし、また、
外部からの電磁波により誤動作する場合には電磁波を遮
断するために筺体やハウジングをEMIシールド材とす
ることが要求される。この場合、従来品であるステンレ
スファイバーなど金属繊維のみが添加された樹脂複合材
は、強度が不足する上、耐衝撃性が極端に低いため、E
MIシールド用のハウジングの要求特性に応えるために
は、不十分である。In order to eliminate the electromagnetic wave interference, the housing of the equipment that generates the electromagnetic wave is made of an EMI shielding material,
When a malfunction occurs due to an external electromagnetic wave, it is required that the housing or the housing be made of an EMI shielding material in order to block the electromagnetic wave. In this case, a conventional resin composite material containing only metal fibers such as stainless steel fiber has insufficient strength and extremely low impact resistance.
It is insufficient to meet the required characteristics of the housing for the MI shield.
【0074】これに対して、本発明に係わる炭素繊維、
ニッケルメッキなど金属メッキされた炭素繊維、ステン
レス繊維、黄銅繊維、銅繊維などを含有したガラス長繊
維強化熱可塑性樹脂成形品は、150 ℃以上の熱変形温度
を有し、さらには、ガラス長繊維で補強されているた
め、引張強度、曲げ強度、曲げ弾性率、耐衝撃性のいず
れにも優れている。On the other hand, the carbon fiber according to the present invention
A long glass fiber reinforced thermoplastic resin molded product containing carbon fiber, stainless steel fiber, brass fiber, copper fiber, etc. plated with metal such as nickel has a heat deformation temperature of 150 ° C or more, Since it is reinforced with, it has excellent tensile strength, flexural strength, flexural modulus and impact resistance.
【0075】さらに、上記した本発明の成形品は、EM
Iシールド性を有することから、EMIシールド用のハ
ウジングや筺体など強度を要求される部材にも好ましく
適用できる。Further, the molded article of the present invention described above has an EM
Since it has I-shielding properties, it can be preferably applied to members requiring strength, such as an EMI shielding housing and a housing.
【0076】[0076]
【実施例】以下、本発明を実施例に基づき具体的に説明
する。本実施例、比較例では、ガラス長繊維を含有した
熱可塑性樹脂ペレット(以下LGFと記す)、ガラス繊
維(:ガラス長繊維)と導電性材料を含有した熱可塑性
樹脂ペレット(以下LDGFと記す)、ガラス短繊維を
含有した熱可塑性樹脂ペレット(以下SGFと記す)、
および導電性材料を含有した熱可塑性樹脂ペレット(以
下DPと記す)の4種類のペレットを、それぞれ下記の
方法で製造し、それらのペレットを混合して用いるかま
たは単独で用いた熱可塑性樹脂成形品用材料を、射出成
形により成形し、試験片を得た。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments. In Examples and Comparative Examples, thermoplastic resin pellets containing glass fiber (hereinafter referred to as LGF), and thermoplastic resin pellets containing glass fiber (: glass long fiber) and a conductive material (hereinafter referred to as LDGF). , Thermoplastic resin pellets containing short glass fibers (hereinafter referred to as SGF),
And four types of thermoplastic resin pellets containing a conductive material (hereinafter referred to as DP) are produced by the following method, respectively, and these pellets are used as a mixture or used alone. The product material was molded by injection molding to obtain a test piece.
【0077】〔ガラス長繊維強化熱可塑性樹脂ペレット
(LGF)の製造方法:〕加熱溶融した熱可塑性樹脂を
ダイス上でガラス繊維束(:ガラス繊維モノフィラメン
トφ13μmをアミノシランカップリング剤で処理したガ
ラス繊維束)を開繊させながら含浸し、冷却後、切断
し、長さが9mmのペレットを得た(引抜き法)。[Method of Manufacturing Long Fiber Reinforced Thermoplastic Resin Pellets (LGF):] A glass fiber bundle obtained by heating and melting a thermoplastic resin on a die (glass fiber monofilament φ13 μm treated with an aminosilane coupling agent) ) Was opened and impregnated, cooled and cut to obtain pellets having a length of 9 mm (drawing method).
【0078】使用した熱可塑性樹脂の種類、得られたペ
レット中のガラス繊維含有率およびガラス繊維長を表1
−1に示す。得られたペレットを軟X線により観察した
結果、ペレット中において、ガラス繊維は相互に平行に
整列し、ガラス繊維の長さはペレットと実質的に同じ長
さであった。Table 1 shows the type of thermoplastic resin used, the glass fiber content in the obtained pellets, and the glass fiber length.
-1. As a result of observing the obtained pellet by soft X-ray, the glass fibers were aligned parallel to each other in the pellet, and the length of the glass fiber was substantially the same as that of the pellet.
【0079】また、ペレットの断面を観察すると、ガラ
ス繊維束中は樹脂で含浸されていた。 〔ガラス繊維(:ガラス長繊維)強化導電性熱可塑性樹
脂ペレット(LDGF)の製造方法:〕溶融混練した熱
可塑性樹脂と導電性材料をダイス上でガラス繊維束(:
ガラス繊維モノフィラメントφ13μmをアミノシランカ
ップリング剤で処理したガラス繊維束)を開繊させなが
ら含浸し、冷却後、任意の長さに切断しペレットを得た
(引抜き法)。When the cross section of the pellet was observed, the glass fiber bundle was impregnated with the resin. [Production method of glass fiber (: glass long fiber) reinforced conductive thermoplastic resin pellets (LDGF):] A glass fiber bundle (:
The glass fiber monofilament φ13 μm was impregnated with opening a glass fiber bundle treated with an aminosilane coupling agent), cooled, and then cut to an arbitrary length to obtain a pellet (drawing method).
【0080】使用したポリプロピレンはホモタイプ、メ
ルトフローレイト40g/10min のポリプロピレンで、導電
性材料としては、カーボンブラック(ケッチェンブラッ
クEC)を用いた。得られたペレットを軟X線により観
察した結果、ペレット中において、ガラス繊維は相互に
平行に整列し、ガラス繊維の長さはペレットと実質的に
同じ長さであった。The polypropylene used was a homo-type polypropylene having a melt flow rate of 40 g / 10 min. Carbon black (Ketjen Black EC) was used as the conductive material. As a result of observing the obtained pellet by soft X-ray, the glass fibers were aligned parallel to each other in the pellet, and the length of the glass fiber was substantially the same as that of the pellet.
【0081】また、ペレットの断面を観察すると、ガラ
ス繊維束中は樹脂で含浸されていた。ペレット中の、導
電性材料の含有量、ガラス繊維長、含有量を表1−2に
示す。 〔ガラス短繊維強化熱可塑性樹脂ペレット(SGF)の
製造方法:〕熱可塑性樹脂ペレットとチョップ状のガラ
ス繊維(ガラス繊維モノフィラメントφ16μm、長さ15
mmをアミノシランカップリング剤で処理したチョップ状
のガラス繊維)を2軸押し出し機( TEX30X, L/D=42 、
日本製鋼(株)社製)を用い溶融混練、押出して、長さ
が3mmのペレットを得た。When the cross section of the pellet was observed, the glass fiber bundle was impregnated with the resin. Table 1-2 shows the content, glass fiber length, and content of the conductive material in the pellet. [Production method of short glass fiber reinforced thermoplastic resin pellet (SGF):] Thermoplastic resin pellet and chopped glass fiber (glass fiber monofilament φ16 μm, length 15
A twin-screw extruder (CEX-shaped glass fiber whose mm has been treated with an aminosilane coupling agent) (TEX30X, L / D = 42,
The mixture was melt-kneaded and extruded using Nippon Steel Corporation to obtain pellets having a length of 3 mm.
【0082】使用した熱可塑性樹脂の種類、得られたペ
レット中のガラス繊維含有率およびガラス繊維長を表1
−1に示す。押出機のシリンダー温度は、使用樹脂がポ
リプロピレンの場合は210 ℃、ポリスチレンの場合180
℃、6、6−ナイロンの場合は300 ℃、6−ナイロンの
場合250 ℃であった。Table 1 shows the type of thermoplastic resin used, the glass fiber content in the obtained pellets, and the glass fiber length.
-1. The cylinder temperature of the extruder is 210 ° C when the resin used is polypropylene, and 180 ° C when the resin used is polystyrene.
The temperature was 300 ° C. for 6,6-nylon and 250 ° C. for 6-nylon.
【0083】ポリプロピレンは、ホモタイプ、メルトフ
ローレイト40g/10min のポリプロピレンを用いた。ま
た、6、6−ナイロンはザイデル101 (商品名、デュポ
ン社製)を用いた。 〔導電性ペレット(DP)の製造方法:〕熱可塑性樹脂
ペレットと導電性材料を2軸押出機( TEX30X, L/D=42
、日本製鋼(株)社製)を用い溶融混練、押出して、
長さが3mmのペレットを得た。As the polypropylene, a homo-type polypropylene having a melt flow rate of 40 g / 10 min was used. As 6,6-nylon, Seidel 101 (trade name, manufactured by DuPont) was used. [Production method of conductive pellets (DP):] A twin screw extruder (TEX30X, L / D = 42) is used to extrude thermoplastic resin pellets and conductive material.
, Made by Nippon Steel Corporation), melt-kneaded and extruded,
A 3 mm long pellet was obtained.
【0084】使用した熱可塑性樹脂および導電性材料の
種類、得られたペレット中の導電性材料の含有率を表1
−1に示す。押出機のシリンダー温度は、使用樹脂がポ
リプロピレンの場合は210 ℃、6、6−ナイロンの場合
は300 ℃であった。ポリプロピレンは、ホモタイプ、メ
ルトフローレイト40g/10min のポリプロピレンを用い
た。Table 1 shows the types of the thermoplastic resin and the conductive material used, and the content of the conductive material in the obtained pellets.
-1. The cylinder temperature of the extruder was 210 ° C. when the resin used was polypropylene, and 300 ° C. when the resin used was 6,6-nylon. As the polypropylene, a homo-type polypropylene having a melt flow rate of 40 g / 10 min was used.
【0085】また、6、6−ナイロンはザイデル101
(商品名、デュポン社製)を用いた。 (実施例1〜16、比較例1〜15:)前記方法で製造した
各種ペレットを、表2−1、表3−1、表4−1、表5
−1に示す割合で乾式混合し、射出成形(型締め力50
t)を行い、ASTM準拠の引張り、曲げ、アイゾット
(ノッチ付)の試験片を得た。Further, 6,6-nylon is Seidel 101.
(Trade name, manufactured by DuPont) was used. (Examples 1 to 16, Comparative Examples 1 to 15) Various pellets produced by the above method were used in Tables 2-1 to 3-1 and Tables 4-1 and 5-1.
Dry mixing at the ratio shown in -1 and injection molding (mold clamping force 50
t) was performed to obtain ASTM-compliant tensile, bent, and Izod (notched) test pieces.
【0086】なお、本実施例、比較例における熱可塑性
樹脂成形品用材料は下記の通りである。 実施例1〜10、実施例14〜16:ガラス長繊維強化熱可塑
性樹脂ペレットと導電性ペレットとの混合物。 比較例1〜10、比較例13〜15:ガラス短繊維強化熱可塑
性樹脂ペレットと導電性ペレットとの混合物。The materials for thermoplastic resin molded articles in the present example and comparative examples are as follows. Examples 1 to 10 and Examples 14 to 16: Mixtures of long glass fiber reinforced thermoplastic resin pellets and conductive pellets. Comparative Examples 1 to 10, Comparative Examples 13 to 15: Mixtures of short glass fiber reinforced thermoplastic resin pellets and conductive pellets.
【0087】実施例11〜13、比較例11、12:ガラス繊維
強化導電性熱可塑性樹脂ペレットのみ。 射出成形温度は、使用樹脂がポリプロピレンの場合240
℃、ポリスチレンの場合200 ℃、6−ナイロンの場合25
0 ℃、6、6−ナイロンの場合280 ℃であり、金型温度
はポリプロピレンの場合60℃、ポリスチレンの場合70
℃、6−ナイロンと6、6−ナイロンの場合100 ℃とし
た。Examples 11 to 13 and Comparative Examples 11 and 12: Only glass fiber reinforced conductive thermoplastic resin pellets. Injection molding temperature is 240 when the resin used is polypropylene
℃, 200 ℃ for polystyrene, 25 for 6-nylon
0 ° C, 280 ° C for 6,6-nylon, mold temperature 60 ° C for polypropylene, 70 ° C for polystyrene
C., 100 ° C. for 6-nylon and 6,6-nylon.
【0088】機械的強度、熱変形温度、表面抵抗率はA
STMに準じて測定した。またペレット成形品を600 ℃
で焼成後、拡大鏡を用いて重量平均ガラス繊維長を測定
した。なお、重量平均ガラス繊維長lw は、lw =Σ
(wi ×li )/Σwi 、(w i :ガラス繊維の重量、
li :ガラス繊維長)により算出した。The mechanical strength, heat deformation temperature and surface resistivity are A
It was measured according to STM. In addition, pellet molded product is 600 ℃
After firing, measure the weight average glass fiber length using a magnifying glass
did. The weight average glass fiber length lwIs lw= Σ
(Wi× li) / Σwi, (W i: Glass fiber weight,
li: Glass fiber length).
【0089】得られた性能試験結果を、表2−2、表3
−2、表4−2および表5−2に示す。表2−2、表3
−2、表4−2および表5−2に示されるように、本発
明の成形品は、導電性を有し、しかも、引張強度、曲げ
強度、曲げ弾性率、アイゾット衝撃値で示される機械的
強度のいずれにも優れ、さらには熱変形温度が高く耐熱
性に優れていることが分かる。Table 2-2 and Table 3 show the obtained performance test results.
-2, Table 4-2 and Table 5-2. Table 2-2, Table 3
-2, as shown in Tables 4-2 and 5-2, the molded article of the present invention has electrical conductivity and is further represented by tensile strength, bending strength, flexural modulus, and Izod impact value. It can be seen that the thermal strength is high and the heat deformation temperature is high and the heat resistance is excellent.
【0090】[0090]
【表1】 [Table 1]
【0091】[0091]
【表2】 [Table 2]
【0092】[0092]
【表3】 [Table 3]
【0093】[0093]
【表4】 [Table 4]
【0094】[0094]
【表5】 [Table 5]
【0095】[0095]
【表6】 [Table 6]
【0096】[0096]
【表7】 [Table 7]
【0097】[0097]
【表8】 [Table 8]
【0098】[0098]
【表9】 [Table 9]
【0099】[0099]
【表10】 [Table 10]
【0100】[0100]
【発明の効果】本発明の成形品は、従来品に比べ、機械
的強度、耐熱性が優れ、しかも導電性を有する。このた
め、本発明の成形品は、機械的強度、耐熱性が必要なハ
ウジングや電子回路の筺体などの電磁波シールド材やI
Cチップトレイなどの用途に最適である。The molded article of the present invention has excellent mechanical strength and heat resistance as compared to conventional articles, and has electrical conductivity. For this reason, the molded article of the present invention can be used for electromagnetic shielding materials such as housings and electronic circuit housings that require mechanical strength and heat resistance.
Ideal for applications such as C chip trays.
【0101】さらに、本発明の成形品用材料、成形品の
製造方法によれば、ガラス繊維の切断を防止し、しか
も、成形品中のガラス繊維および導電性材料の分散が均
一となり、上記した優れた特性を有する成形品を製造す
ることができる。Further, according to the material for a molded article and the method for producing the molded article of the present invention, the cutting of the glass fiber is prevented, and the dispersion of the glass fiber and the conductive material in the molded article becomes uniform. A molded article having excellent characteristics can be manufactured.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08K 9/08 C08K 9/08 H01B 1/20 H01B 1/20 Z H05K 9/00 H05K 9/00 M ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C08K 9/08 C08K 9/08 H01B 1/20 H01B 1/20 Z H05K 9/00 H05K 9/00 M
Claims (18)
を含有する熱可塑性樹脂成形品であって、該成形品中
に、長さ0.4mm 以上のガラス繊維を5〜60重量%、ガラ
ス繊維を合計量で5〜75重量%、導電性材料を3〜60重
量%含有することを特徴とする熱可塑性樹脂成形品。1. A molded article of a thermoplastic resin containing glass fibers, a conductive material and a thermoplastic resin, wherein the molded article contains 5 to 60% by weight of glass fibers having a length of 0.4 mm or more. Is a thermoplastic resin molded product containing 5 to 75% by weight in total and 3 to 60% by weight of a conductive material.
炭素繊維、ステンレス繊維、銅繊維および黄銅繊維の内
から選ばれる一種以上であることを特徴とする請求項1
記載の熱可塑性樹脂成形品。2. The method according to claim 1, wherein the conductive material is carbon black,
2. A carbon fiber, a stainless steel fiber, a copper fiber and a brass fiber selected from one or more.
The thermoplastic resin molded article according to the above.
樹脂、ポリアミド系樹脂、ポリスチレン系樹脂およびA
BS系樹脂の内から選ばれる一種以上であることを特徴
とする請求項1または2記載の熱可塑性樹脂成形品。3. The method according to claim 1, wherein the thermoplastic resin is a polyolefin resin, a polyamide resin, a polystyrene resin, and A
The thermoplastic resin molded product according to claim 1, wherein the thermoplastic resin molded product is at least one selected from BS resins.
されていることを特徴とする請求項1〜3いずれかに記
載の熱可塑性樹脂成形品。4. The thermoplastic resin molded article according to claim 1, wherein said glass fiber is treated with a coupling agent.
る熱可塑性樹脂ペレットを含む熱可塑性樹脂成形品用材
料であって、前記熱可塑性樹脂ペレット中のガラス繊維
の重量平均繊維長が1mm以上で、かつ前記熱可塑性樹脂
ペレット中のガラス繊維束が熱可塑性樹脂で含浸され、
前記熱可塑性樹脂成形品用材料中の全ガラス繊維の含有
量が5〜75重量%、導電性材料の含有量が3〜60重量%
であることを特徴とする熱可塑性樹脂成形品用材料。5. A thermoplastic resin molded material material comprising a thermoplastic resin pellet containing a glass fiber bundle and a conductive material, wherein the weight average fiber length of the glass fibers in the thermoplastic resin pellet is 1 mm or more. And, the glass fiber bundle in the thermoplastic resin pellets is impregnated with a thermoplastic resin,
The content of all glass fibers in the thermoplastic resin molding material is 5 to 75% by weight, and the content of the conductive material is 3 to 60% by weight.
A material for a thermoplastic resin molded product, which is:
る熱可塑性樹脂ペレットと、熱可塑性樹脂を含む熱可塑
性樹脂成形品用材料であって、前記熱可塑性樹脂ペレッ
ト中のガラス繊維の重量平均繊維長が1mm以上で、かつ
前記熱可塑性樹脂ペレット中のガラス繊維束が熱可塑性
樹脂で含浸され、前記熱可塑性樹脂成形品用材料中の全
ガラス繊維の含有量が5〜75重量%、導電性材料の含有
量が3〜60重量%であることを特徴とする熱可塑性樹脂
成形品用材料。6. A thermoplastic resin pellet containing a glass fiber bundle and a conductive material, and a material for a thermoplastic resin molded article containing a thermoplastic resin, wherein the weight average fiber of the glass fibers in the thermoplastic resin pellet is provided. A glass fiber bundle having a length of 1 mm or more and being impregnated with a thermoplastic resin in the thermoplastic resin pellets, wherein the content of all glass fibers in the thermoplastic resin molding material is 5 to 75% by weight; A material for a thermoplastic resin molded product, wherein the content of the material is 3 to 60% by weight.
レットと、導電性材料を含む熱可塑性樹脂成形品用材料
であって、前記熱可塑性樹脂ペレット中のガラス繊維の
重量平均繊維長が1mm以上で、かつ前記熱可塑性樹脂ペ
レット中のガラス繊維束が熱可塑性樹脂で含浸され、前
記熱可塑性樹脂成形品用材料中の全ガラス繊維の含有量
が5〜75重量%、導電性材料の含有量が3〜60重量%で
あることを特徴とする熱可塑性樹脂成形品用材料。7. A thermoplastic resin molding material containing a glass fiber bundle and a thermoplastic resin molded product containing a conductive material, wherein the weight average fiber length of the glass fibers in the thermoplastic resin pellet is 1 mm or more. And the glass fiber bundle in the thermoplastic resin pellets is impregnated with a thermoplastic resin, and the content of all glass fibers in the material for the thermoplastic resin molded product is 5 to 75% by weight, and the content of the conductive material. Is 3 to 60% by weight.
レットと、導電性材料と、熱可塑性樹脂とを含む熱可塑
性樹脂成形品用材料であって、前記熱可塑性樹脂ペレッ
ト中のガラス繊維の重量平均繊維長が1mm以上で、かつ
前記熱可塑性樹脂ペレット中のガラス繊維束が熱可塑性
樹脂で含浸され、前記熱可塑性樹脂成形品用材料中の全
ガラス繊維の含有量が5〜75重量%、導電性材料の含有
量が3〜60重量%であることを特徴とする熱可塑性樹脂
成形品用材料。8. A thermoplastic resin molding material containing a thermoplastic resin pellet containing a glass fiber bundle, a conductive material, and a thermoplastic resin, wherein the weight of the glass fiber in the thermoplastic resin pellet. The average fiber length is 1 mm or more, and the glass fiber bundle in the thermoplastic resin pellet is impregnated with a thermoplastic resin, and the content of all glass fibers in the thermoplastic resin molding material is 5 to 75% by weight, A material for a thermoplastic resin molded product, wherein the content of the conductive material is 3 to 60% by weight.
1〜150mm であり、該ペレット中のガラス繊維がペレッ
トの長さ方向に整列し、かつ、ガラス繊維が該ペレット
と実質的に同一長さを有することを特徴とする請求項5
〜8いずれかに記載の熱可塑性樹脂成形品用材料。9. The thermoplastic resin pellet has an average length of 1 to 150 mm, the glass fibers in the pellet are aligned in the length direction of the pellet, and the glass fiber has substantially the same length as the pellet. 6. The method according to claim 5, wherein
9. The material for a thermoplastic resin molded product according to any one of items 1 to 8.
熱可塑性樹脂ペレットを含む熱可塑性樹脂成形品用材料
であって、前記ガラス繊維強化熱可塑性樹脂ペレット
が、ガラス繊維束に熱可塑性樹脂を含浸し、切断して得
られるペレットで、かつ、ガラス繊維が実質的にペレッ
トと同一長さを有し、当該繊維同士が平行に整列し、ガ
ラス繊維含有率が10〜90重量%、繊維方向の平均長さが
1〜150mmのペレットであることを特徴とする熱可塑性
樹脂成形品用材料。10. A thermoplastic resin material comprising glass fiber reinforced thermoplastic resin pellets containing a conductive material, wherein said glass fiber reinforced thermoplastic resin pellets impregnate a glass fiber bundle with a thermoplastic resin. And pellets obtained by cutting, and the glass fibers have substantially the same length as the pellets, the fibers are aligned in parallel, the glass fiber content is 10 to 90% by weight, the fiber direction is A material for a thermoplastic resin molded product, which is a pellet having an average length of 1 to 150 mm.
熱可塑性樹脂ペレットと、熱可塑性樹脂を含む熱可塑性
樹脂成形品用材料であって、前記ガラス繊維強化熱可塑
性樹脂ペレットが、ガラス繊維束に熱可塑性樹脂を含浸
し、切断して得られるペレットで、かつ、ガラス繊維が
実質的にペレットと同一長さを有し、当該繊維同士が平
行に整列し、ガラス繊維含有率が10〜90重量%、繊維方
向の平均長さが1〜150 mmのペレットであることを特徴
とする熱可塑性樹脂成形品用材料。11. A glass fiber reinforced thermoplastic resin pellet containing a conductive material, and a material for a thermoplastic resin molded article containing a thermoplastic resin, wherein the glass fiber reinforced thermoplastic resin pellet is formed into a glass fiber bundle. A pellet obtained by impregnating and cutting a thermoplastic resin, and wherein the glass fibers have substantially the same length as the pellets, the fibers are aligned in parallel, and the glass fiber content is 10 to 90% by weight. %, Which is a pellet having an average length in the fiber direction of 1 to 150 mm.
と、導電性材料を含む熱可塑性樹脂成形品用材料であっ
て、前記ガラス繊維強化熱可塑性樹脂ペレットが、ガラ
ス繊維束に熱可塑性樹脂を含浸し、切断して得られるペ
レットで、かつ、ガラス繊維が実質的にペレットと同一
長さを有し、当該繊維同士が平行に整列し、ガラス繊維
含有率が10〜90重量%、繊維方向の平均長さが1〜150
mmのペレットであることを特徴とする熱可塑性樹脂成形
品用材料。12. A thermoplastic resin molded material containing a glass fiber reinforced thermoplastic resin pellet and a conductive material, wherein said glass fiber reinforced thermoplastic resin pellet impregnates a glass fiber bundle with a thermoplastic resin. A pellet obtained by cutting, and the glass fiber has substantially the same length as the pellet, the fibers are aligned in parallel, the glass fiber content is 10 to 90% by weight, the average in the fiber direction. Length 1 to 150
Material for thermoplastic resin molded products, characterized by being pellets of mm.
と、導電性材料を含有する熱可塑性樹脂ペレットを含む
熱可塑性樹脂成形品用材料であって、前記ガラス繊維強
化熱可塑性樹脂ペレットが、ガラス繊維束に熱可塑性樹
脂を含浸し、切断して得られるペレットで、かつ、ガラ
ス繊維が実質的にペレットと同一長さを有し、当該繊維
同士が平行に整列し、ガラス繊維含有率が10〜90重量
%、繊維方向の平均長さが1〜150 mmのペレットである
ことを特徴とする熱可塑性樹脂成形品用材料。13. A material for a thermoplastic resin molded article including a glass fiber reinforced thermoplastic resin pellet and a thermoplastic resin pellet containing a conductive material, wherein the glass fiber reinforced thermoplastic resin pellet is a glass fiber bundle. A pellet obtained by impregnating a thermoplastic resin and cutting, and the glass fiber has substantially the same length as the pellet, the fibers are aligned in parallel, and the glass fiber content is 10 to 90. A thermoplastic resin molding material characterized by being a pellet having a weight percentage of 1 to 150 mm in an average length in a fiber direction.
と、導電性材料と、熱可塑性樹脂を含む熱可塑性樹脂成
形品用材料であって、前記ガラス繊維強化熱可塑性樹脂
ペレットが、ガラス繊維束に熱可塑性樹脂を含浸し、切
断して得られるペレットで、かつ、ガラス繊維が実質的
にペレットと同一長さを有し、当該繊維同士が平行に整
列し、ガラス繊維含有率が10〜90重量%、繊維方向の平
均長さが1〜150 mmのペレットであることを特徴とする
熱可塑性樹脂成形品用材料。14. A material for a thermoplastic resin molded article containing a glass fiber reinforced thermoplastic resin pellet, a conductive material, and a thermoplastic resin, wherein the glass fiber reinforced thermoplastic resin pellet is heated by a glass fiber bundle. A pellet obtained by impregnating and cutting a plastic resin, and the glass fiber has substantially the same length as the pellet, the fibers are aligned in parallel, and the glass fiber content is 10 to 90% by weight. A thermoplastic resin molding material characterized by being a pellet having an average length in the fiber direction of 1 to 150 mm.
ク、炭素繊維、ステンレス繊維、銅繊維および黄銅繊維
の内から選ばれる一種以上であることを特徴とする請求
項5〜14いずれかに記載の熱可塑性樹脂成形品用材料。15. The heat according to claim 5, wherein the conductive material is at least one selected from carbon black, carbon fiber, stainless fiber, copper fiber and brass fiber. Material for molded plastic products.
系樹脂、ポリアミド系樹脂、ポリスチレン系樹脂および
ABS系樹脂の内から選ばれる一種以上であることを特
徴とする請求項5〜15いずれかに記載の熱可塑性樹脂成
形品用材料。16. The method according to claim 5, wherein the thermoplastic resin is at least one selected from a polyolefin-based resin, a polyamide-based resin, a polystyrene-based resin, and an ABS-based resin. Material for thermoplastic resin molded products.
で処理されたガラス繊維束であることを特徴とする請求
項5〜16いずれかに記載の熱可塑性樹脂成形品用材料。17. The thermoplastic resin molded product material according to claim 5, wherein the glass fiber bundle is a glass fiber bundle treated with a coupling agent.
可塑性樹脂成形品用材料を成形することを特徴とする熱
可塑性樹脂成形品の製造方法。18. A method for producing a thermoplastic resin molded article, comprising molding the material for a thermoplastic resin molded article according to any one of claims 5 to 17.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31365097A JP4160138B2 (en) | 1996-11-14 | 1997-11-14 | Thermoplastic resin molded product, material for molded product, and method for producing molded product |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30304296 | 1996-11-14 | ||
JP8-303042 | 1996-11-14 | ||
JP31365097A JP4160138B2 (en) | 1996-11-14 | 1997-11-14 | Thermoplastic resin molded product, material for molded product, and method for producing molded product |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10195311A true JPH10195311A (en) | 1998-07-28 |
JP4160138B2 JP4160138B2 (en) | 2008-10-01 |
Family
ID=26563362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31365097A Expired - Fee Related JP4160138B2 (en) | 1996-11-14 | 1997-11-14 | Thermoplastic resin molded product, material for molded product, and method for producing molded product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4160138B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990078700A (en) * | 1999-07-30 | 1999-11-05 | 김재원 | Compound, manufacturing method and product there of floor board for clean room |
KR20040009430A (en) * | 2002-07-23 | 2004-01-31 | 노바템스 주식회사 | Conductive polymer composite with used metal scrap and fabrication method thereof |
JP2006519886A (en) * | 2003-03-11 | 2006-08-31 | ロディア エンジニアリング プラスティックス ソシエテ ア レスポンサビリテ リミテー | Polyamide articles reinforced with long fibers |
JP2008156401A (en) * | 2006-12-21 | 2008-07-10 | Asahi Kasei Chemicals Corp | Mixture for molding conductive thermoplastic resin composition and molded article formed by molding the mixture |
JP2008540818A (en) * | 2005-06-10 | 2008-11-20 | ゼネラル・エレクトリック・カンパニイ | Thermoplastic long fiber composite, method for producing the same, and product obtained therefrom |
JP2009532867A (en) * | 2006-03-31 | 2009-09-10 | パーカー.ハニフィン.コーポレイション | Conductive article |
JP2010155993A (en) * | 2008-12-30 | 2010-07-15 | Cheil Industries Inc | Resin composition |
WO2010148383A1 (en) * | 2009-06-19 | 2010-12-23 | Sabic Innovative Plastics Ip B.V | Single conductive pellets of long glass fiber reinforced thermoplastic resin and manufacturing method thereof |
JP2011525703A (en) * | 2008-06-23 | 2011-09-22 | パーカー・ハニフィン・コーポレーション | EMI shielding material |
JP2012158648A (en) * | 2011-01-31 | 2012-08-23 | Japan Polypropylene Corp | Propylene-based resin composition for electromagnetic shielding, method for producing the same, and molded article |
JP2013530532A (en) * | 2010-06-14 | 2013-07-25 | ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム | Use of foaming agent to improve EMI shielding properties |
JP2014051587A (en) * | 2012-09-07 | 2014-03-20 | Daicel Polymer Ltd | Thermoplastic resin composition |
JP2015218323A (en) * | 2014-05-21 | 2015-12-07 | 三菱エンジニアリングプラスチックス株式会社 | Pellet, manufacturing method of pellet, resin molded product, and manufacturing method of resin molded product with plating layer |
JP2016117840A (en) * | 2014-12-22 | 2016-06-30 | ダイキョーニシカワ株式会社 | Molten molding pellet mixture and molding manufactured using the same |
US10266663B2 (en) | 2014-05-23 | 2019-04-23 | Lg Hausys, Ltd. | Continuous fiber reinforced composite and manufacturing method therefor |
JPWO2020071421A1 (en) * | 2018-10-05 | 2020-04-09 | ||
JP2020167387A (en) * | 2019-03-26 | 2020-10-08 | 三菱電線工業株式会社 | Electromagnetic wave shielding body and method for manufacturing the same |
-
1997
- 1997-11-14 JP JP31365097A patent/JP4160138B2/en not_active Expired - Fee Related
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990078700A (en) * | 1999-07-30 | 1999-11-05 | 김재원 | Compound, manufacturing method and product there of floor board for clean room |
KR20040009430A (en) * | 2002-07-23 | 2004-01-31 | 노바템스 주식회사 | Conductive polymer composite with used metal scrap and fabrication method thereof |
JP2006519886A (en) * | 2003-03-11 | 2006-08-31 | ロディア エンジニアリング プラスティックス ソシエテ ア レスポンサビリテ リミテー | Polyamide articles reinforced with long fibers |
JP2011174081A (en) * | 2005-06-10 | 2011-09-08 | Sabic Innovative Plastics Ip Bv | Thermoplastic long fiber composite and article obtained therefrom |
JP2008540818A (en) * | 2005-06-10 | 2008-11-20 | ゼネラル・エレクトリック・カンパニイ | Thermoplastic long fiber composite, method for producing the same, and product obtained therefrom |
JP4786711B2 (en) * | 2005-06-10 | 2011-10-05 | サビック イノベーティブ プラスチックス イーペー ベスローテン フェンノートシャップ | Method for producing conductive long fiber composite material |
JP2009532867A (en) * | 2006-03-31 | 2009-09-10 | パーカー.ハニフィン.コーポレイション | Conductive article |
JP2008156401A (en) * | 2006-12-21 | 2008-07-10 | Asahi Kasei Chemicals Corp | Mixture for molding conductive thermoplastic resin composition and molded article formed by molding the mixture |
JP2011525703A (en) * | 2008-06-23 | 2011-09-22 | パーカー・ハニフィン・コーポレーション | EMI shielding material |
JP2010155993A (en) * | 2008-12-30 | 2010-07-15 | Cheil Industries Inc | Resin composition |
US20100327235A1 (en) * | 2009-06-19 | 2010-12-30 | Sabic Innovative Plastics Ip B.V. | Single conductive pellets of long glass fiber reinforced thermoplastic resin and manufacturing method thereof |
WO2010148383A1 (en) * | 2009-06-19 | 2010-12-23 | Sabic Innovative Plastics Ip B.V | Single conductive pellets of long glass fiber reinforced thermoplastic resin and manufacturing method thereof |
US8524120B2 (en) * | 2009-06-19 | 2013-09-03 | Sabic Innovative Plastics Ip B.V. | Single conductive pellets of long glass fiber reinforced thermoplastic resin and manufacturing method thereof |
JP2013530532A (en) * | 2010-06-14 | 2013-07-25 | ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム | Use of foaming agent to improve EMI shielding properties |
JP2012158648A (en) * | 2011-01-31 | 2012-08-23 | Japan Polypropylene Corp | Propylene-based resin composition for electromagnetic shielding, method for producing the same, and molded article |
JP2014051587A (en) * | 2012-09-07 | 2014-03-20 | Daicel Polymer Ltd | Thermoplastic resin composition |
JP2015218323A (en) * | 2014-05-21 | 2015-12-07 | 三菱エンジニアリングプラスチックス株式会社 | Pellet, manufacturing method of pellet, resin molded product, and manufacturing method of resin molded product with plating layer |
US10266663B2 (en) | 2014-05-23 | 2019-04-23 | Lg Hausys, Ltd. | Continuous fiber reinforced composite and manufacturing method therefor |
JP2016117840A (en) * | 2014-12-22 | 2016-06-30 | ダイキョーニシカワ株式会社 | Molten molding pellet mixture and molding manufactured using the same |
JPWO2020071421A1 (en) * | 2018-10-05 | 2020-04-09 | ||
WO2020071421A1 (en) * | 2018-10-05 | 2020-04-09 | ダイセルポリマー株式会社 | Resin molded body |
CN112789311A (en) * | 2018-10-05 | 2021-05-11 | 大赛璐美华株式会社 | Resin molded article |
KR20210071005A (en) * | 2018-10-05 | 2021-06-15 | 다이셀미라이주 주식회사 | resin molded body |
TWI833818B (en) * | 2018-10-05 | 2024-03-01 | 日商大賽璐塑膠股份有限公司 | Resin molded body |
JP2020167387A (en) * | 2019-03-26 | 2020-10-08 | 三菱電線工業株式会社 | Electromagnetic wave shielding body and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP4160138B2 (en) | 2008-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4160138B2 (en) | Thermoplastic resin molded product, material for molded product, and method for producing molded product | |
EP2134783B1 (en) | Electrically conducting polymeric compositions, methods of manufacture thereof and articles comprising the same | |
US6153683A (en) | Glass long fiber-reinforced thermoplastic resin form having conductivity and manufacturing method thereof | |
US6231788B1 (en) | Carbon-reinforced PC-ABS composition and articles made from same | |
CN103013075B (en) | PET composite material, its preparation method and application | |
CN107746505B (en) | Coated carbon fiber reinforced ABS/PP electromagnetic shielding composite material and preparation method thereof | |
WO2023000608A1 (en) | High-impregnation long glass fiber reinforced polypropylene composite material and preparation method therefor | |
KR20050027124A (en) | Static dissipative thermoplastic polymer composition | |
CN107541049B (en) | Graphene-continuous glass fiber reinforced halogen-free flame-retardant weather-resistant PPO/HIPS alloy material and preparation method thereof | |
KR20110079103A (en) | Thermoplastic resin composition excellent in electromagnetic shielding | |
CN108384229A (en) | A kind of composite fibre reinforced nylon 6 reworked material and preparation method thereof | |
JP2002317384A (en) | Electrically conductive fiber bundle for filament pellet, filament pellet made thereof, and formed article produced by using the same | |
JP2007224209A (en) | Conductive thermoplastic resin molded article | |
JPH10204305A (en) | Electromagnetic wave shielding resin composition, and molded article using the composition | |
JP2002226713A (en) | Carbon fiber reinforced resin composition molding material and molded article made therefrom | |
JP4956974B2 (en) | Conductive thermoplastic resin composition and molded article | |
JP4670428B2 (en) | Electromagnetic wave shield molding | |
JP2005225126A (en) | Manufacturing method of molded parts of conductive thermoplastic resin | |
JPH0673248A (en) | Electromagnetic shielding resin composition | |
JP2001261975A (en) | Conductive thermoplastic resin composition | |
JP2003105676A (en) | Carbon fiber, carbon fiber-reinforced thermoplastic resin composition, molding material and molded product | |
KR20120105757A (en) | Polymer/hybridized conductive filler composite for automotive with high electromagnetic interference shielding efficiency and fabrication method for thereof | |
JP2002220786A (en) | Carbon fiber bundle, resin composition, molding compound and molded product using the same | |
JPH0697695A (en) | Resin molded product for electromagnetic wave shielding | |
CN118909417A (en) | PC composite material and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040528 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040615 |
|
RD12 | Notification of acceptance of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7432 Effective date: 20040615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040707 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061010 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20070110 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20070115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070410 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080414 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080529 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080617 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080717 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |