[go: up one dir, main page]

JPS639731B2 - - Google Patents

Info

Publication number
JPS639731B2
JPS639731B2 JP57146544A JP14654482A JPS639731B2 JP S639731 B2 JPS639731 B2 JP S639731B2 JP 57146544 A JP57146544 A JP 57146544A JP 14654482 A JP14654482 A JP 14654482A JP S639731 B2 JPS639731 B2 JP S639731B2
Authority
JP
Japan
Prior art keywords
thin film
alloy
film resistor
resistor
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57146544A
Other languages
Japanese (ja)
Other versions
JPS5935403A (en
Inventor
Yoshitaka Yoshikawa
Hiroshi Kitazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57146544A priority Critical patent/JPS5935403A/en
Publication of JPS5935403A publication Critical patent/JPS5935403A/en
Publication of JPS639731B2 publication Critical patent/JPS639731B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はNi−Cr薄膜抵抗体の形成方法に関す
るものであり、高精度で且つ安定したNi−Cr薄
膜抵抗体を提供しようとするものである。 従来例の構成とその問題点 一般に市販されているNi−Cr合金は蒸着用と
して99.9%程度の純度のものが多い。ところがこ
の純度は地金のNi及びCrの純度であり、Ni−Cr
合金としての純度ではない。第1表に蒸着用とし
て最も一般的な80Ni−20Cr合金の元素分析結果
の一例を示す。購入したばかりのNi−Cr合金を
使用して薄膜抵抗体を形成しても純枠なNi−Cr
薄膜抵抗体が得られず、又元素によつて蒸気圧が
異なる〔第2表参照〕ために安定したNi−Cr薄
膜抵抗体が得られなかつた。そのため、Ni−Cr
薄膜抵抗体の特長(T.C.Rが小さい、安定した電
気特性が得られ
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for forming a Ni-Cr thin film resistor, and aims to provide a highly accurate and stable Ni-Cr thin film resistor. Structure of conventional example and its problems Most commercially available Ni-Cr alloys have a purity of about 99.9% for use in vapor deposition. However, this purity is the purity of Ni and Cr in the base metal, and Ni−Cr
It is not pure as an alloy. Table 1 shows an example of the elemental analysis results of 80Ni-20Cr alloy, which is the most common material for vapor deposition. Even if you use a newly purchased Ni-Cr alloy to form a thin film resistor, it will still be a pure Ni-Cr alloy.
A thin film resistor could not be obtained, and a stable Ni--Cr thin film resistor could not be obtained because the vapor pressure differed depending on the element (see Table 2). Therefore, Ni−Cr
Features of thin film resistors (low TCR, stable electrical characteristics

【表】 上記以外にCo、Nb、Mo、V、Si等を含む【table】 Contains Co, Nb, Mo, V, Si, etc. in addition to the above

【表】 る等)が十分に発揮させられなかつた。 発明の目的 本発明は上記従来の欠点を解消するもので、高
精度で且つ安定したNi−Cr薄膜抵抗体を提供す
ることを目的とする。 発明の構成 上記目的を達成するため、本発明のNi−Cr薄
膜抵抗体の形成方法はNi−Cr薄膜抵抗体を絶縁
基板上に形成する工程において、被蒸着物である
Ni−Cr合金の表面を洗浄した後、電子ビーム蒸
着装置を用い真空中でビームを走査しながらNi
−Cr合金を一様に溶かし、Ni−Cr合金の体積が
Nmlであれば最低でも500Åの(1〜2)・N倍以
上の量を消費させたNi−Cr合金を被蒸着物とし
て絶縁基板上に蒸着し、Ni−Cr抵抗膜を形成す
るものである。 実施例の説明 以下、本発明に係るNi−Cr薄膜抵抗体形成方
法の実施例として14ビツトD/Aコンバータ用薄
膜ラダー抵抗の形成方法について図面に基づき説
明する。Ni−Cr合金(ドライバーハリス社製、
電熱線第一種品)をトリクロールエチレンで超音
波洗浄を行なつた後、Ni−Crエツチング液(商
品名TFCボクスイブラウン社より入手)で約10
分間浸して表面の不純物や酸化物を除去した。次
に、電子ビーム蒸着装置を用い、10-5Torr以上
の真空度中でNi−Cr合金全体に電子ビームが当
るように走査しながらNi−Cr合金全体を一様に
溶かした(溶かし始めてからのNi−Cr合金の消
費量が1500Åになるまで行なつた。)。以上の処理
を経たNi−Cr合金を被蒸着物として300℃に加熱
したSi基板(表面に熱酸化膜を約800Å形成)上
に2Å/秒の速度で200Å蒸着した。その上に電
極用としてAlを蒸着し、Si基板上のAl及びNi−
Cr薄膜をフオトリソ法によつてパターニングを
行なつた。最後に保護膜を形成した後、Ni−Cr
薄膜抵抗体を安定化させるための熱処理を行なつ
た。このようにして得られたNi−Cr薄膜抵抗体
は14ビツトD/Aコンバータ用ラダー抵抗として
の特性を十分に満足させられるものであつた。 次にNi−Cr薄膜抵抗体の形成条件の設定理由
について述べる。 先ず第1に、Ni−Cr合金を電子ビームを走査
させながら一様に溶かし始めてから1500Å消費さ
せるのは、Ni−Cr合金を一様に溶かしてからSi
基板上に200Åずつ蒸着した場合、その着膜形成
がNiとCrだけ(他の元素は0.5wt%以下)で構成
されるまでに必要な消費量であり、且つ14ビツト
D/Aコンバータ用薄膜ラダー抵抗としての特性
を十分に満足させるに消費しなければならない量
である。第1図にNi−Cr合金の消費量と基板上
に着膜された組成比を示し、第2図にNi−Cr合
金の消費量とD/Aコンバータとしての評価方法
の一つである重ね合せ誤差との相関を示してい
る。第1図から分かるようにNi−Cr合金の消費
量が少ないときにはNiとCr以外にMnが非常に多
く着膜しており、純枠なNi−Cr薄膜抵抗体とし
て形成されておらず、約1500Å以上消費すると
NiとCrの純枠な膜が形成されることが分かる
(不純物としてのFe、Cuは共に0.5wt%以下であ
つたので図中に入れていない。)。又第2図から
は、D/Aコンバータとしての特性評価の一つで
ある重ね合せ誤差も、Ni−Cr合金の消費量が
1500Å以上になると14ビツト精度(0.003%)を
満足するNi−Cr薄膜抵抗体が得られることが分
かる。但し、これらのデータはNi−Cr合金の体
積が2.7mlの場合であり、Ni−Cr合金の体積によ
つてはNi−Cr合金の消費量は異なるものである。
例えば5.0mlであれば3000Å以上、10mlであれば
6500Å以上であつた。 第2に、Si基板の加熱を実施例では300℃で行
なつているが、これについては350℃以下であれ
ば良い。それは第3図にSi基板の加熱温度と14ビ
ツトD/Aコンバータ用Ni−Cr薄膜ラダー抵抗
の上位7ビツトの抵抗体の温度係数を示している
が、Si基板を400℃で蒸着したものについてはビ
ツト抵抗間のばらつきが大きく、350℃以下の加
熱温度であれば絶対値に多少の差はあるが、ビツ
ト抵抗間のばらつきは非常に小さくなつている。
もう一つの特性評価方法として、14ビツトD/A
コンバータの重ね合せ誤差があるが、これについ
てはSi基板加熱温度による影響はほとんどなく、
測定誤差範囲のばらつきであり、何れの条件下で
も14ビツト精度を充分に満足している。 第3にSi基板上への着膜速度を実施例では2
Å/秒で行なつたが、5Å/秒以下の速度であれ
ば良い。第4図はSi基板を室温、150℃、350℃に
加熱した上にNi−Crを2Å/秒、5Å/秒、8
Å/秒のそれぞれの着膜速度で形成し、14ビツト
D/Aコンバータ用のNi−Cr薄膜ラダー抵抗の
重ね合せ誤差との相関を示している。Si基板加熱
温度が350℃以下であれば、14ビツトD/Aコン
バータ用Ni−Cr薄膜ラダー抵抗としての精度を
満足する着膜速度は第4図から5Å/秒以下でな
ければならないことが分かる。 最後に絶縁基板上に着膜したNiとCrの比率で
あるが、実施例に用いたNi−Cr合金(80Ni、
20Cr)でもSi基板上への着膜組成はNi40wt%、
Cr60wt%程度の比率になる。ところが、蒸着回
数を増して行くにつれ、Ni−Cr合金中のCrの量
が早く減少するためにSi基板上の膜組成も徐々に
Niの比が増してくる。Niが増してくると抵抗体
の温度係数も大きくなり、第5図から明らかなよ
うにSi基板上への着膜組成でNiが60wt%以上に
なるとNi−Cr薄膜抵抗体の温度係数が急に大き
くなる。逆にCrが60wt%以上の比率をしめるNi
−Cr薄膜抵抗体では、第5図から分かるように
負の大きな温度係数を示す。従つて温度係数の小
さなNi−Cr薄膜抵抗体を得るためにNiが40〜
60wt%、Crが60〜40wt%の範囲にあることが望
ましい。なお、いかなるNi−Cr合金でも本発明
による消費量を施こしたNi−Cr合金を被蒸着物
として用いて絶縁基板上に着膜させNi−Cr薄膜
抵抗体を形成する場合、温度係数の絶対値さえ無
視すれば安定したNi−Cr薄膜抵抗体が得られる
ものである。例えば、Ni30wt%、Cr70wt%の組
成からなるNi−Cr薄膜抵抗体でも、14ビツト
D/Aコンバータ用ラダー抵抗としての特性を十
分に満足するものが得られるし、逆にNi75wt%、
Cr25wt%の組成からなるNi−Cr薄膜抵抗体でも
14ビツトD/Aコンバータ用ラダー抵抗としての
特性を十分に満足するものが得られる。 発明の効果 以上のように本発明によれば、被蒸着物である
Ni−Cr合金を電子ビーム蒸着装置を用い、真空
中で電子ビームを走査させながら、NmlのNi−
Cr合金を少なくとも(500×a×N)Åの量(a
は1〜2の値を持つ)だけ消費させたものを被蒸
着物とし、着膜速度を制御することによつて、高
精度で且つ安定したNi−Cr薄膜抵抗体を形成す
ることが可能となつた。
[Table] ru, etc.) were not fully demonstrated. OBJECTS OF THE INVENTION The present invention eliminates the above-mentioned conventional drawbacks, and aims to provide a highly accurate and stable Ni-Cr thin film resistor. Structure of the Invention In order to achieve the above object, the method for forming a Ni-Cr thin film resistor of the present invention includes a method for forming a Ni-Cr thin film resistor on an insulating substrate.
After cleaning the surface of the Ni-Cr alloy, use an electron beam evaporator to deposit Ni while scanning the beam in vacuum.
- Cr alloy is uniformly melted, and if the volume of the Ni-Cr alloy is Nml, the amount of the Ni-Cr alloy consumed is at least 500 Å (1 to 2) N times or more, and the Ni-Cr alloy is deposited on an insulating substrate. It is deposited on top to form a Ni-Cr resistive film. DESCRIPTION OF EMBODIMENTS As an embodiment of the method for forming a Ni--Cr thin film resistor according to the present invention, a method for forming a thin film ladder resistor for a 14-bit D/A converter will be described below with reference to the drawings. Ni-Cr alloy (manufactured by Driver Harris,
After ultrasonically cleaning the heating wire (class 1 heating wire) with trichlorethylene, it was cleaned with Ni-Cr etching solution (trade name: TFC, obtained from Boxui Brown Co., Ltd.) for approximately 10 minutes.
It was soaked for a minute to remove surface impurities and oxides. Next, using an electron beam evaporator, the entire Ni-Cr alloy was melted uniformly in a vacuum of 10 -5 Torr or higher while scanning the electron beam so that it hit the entire Ni-Cr alloy (after starting melting) (This process was continued until the amount of Ni-Cr alloy consumed reached 1500 Å.) The Ni-Cr alloy subjected to the above treatment was evaporated to a thickness of 200 Å at a rate of 2 Å/sec onto a Si substrate heated to 300°C (with a thermal oxide film of about 800 Å formed on the surface). On top of that, Al was vapor-deposited for electrodes, and Al and Ni− on the Si substrate were deposited.
A Cr thin film was patterned by photolithography. Finally, after forming a protective film, Ni-Cr
Heat treatment was performed to stabilize the thin film resistor. The Ni--Cr thin film resistor thus obtained had sufficient characteristics as a ladder resistor for a 14-bit D/A converter. Next, the reason for setting the conditions for forming the Ni-Cr thin film resistor will be described. First of all, the reason for uniformly melting the Ni-Cr alloy while scanning the electron beam and then consuming 1500Å is to melt the Ni-Cr alloy uniformly and then start melting the Si.
When deposited on a substrate in 200 Å increments, this is the amount of consumption necessary for the deposited film to consist of only Ni and Cr (other elements are less than 0.5 wt%), and it is also sufficient to form a thin film for a 14-bit D/A converter. This is the amount that must be consumed to fully satisfy the characteristics as a ladder resistor. Figure 1 shows the consumption of Ni-Cr alloy and the composition ratio of the film deposited on the substrate. It shows the correlation with alignment error. As can be seen from Figure 1, when the consumption of Ni-Cr alloy is small, a large amount of Mn is deposited in addition to Ni and Cr, and the film is not formed as a pure Ni-Cr thin film resistor, and approximately When consuming more than 1500Å
It can be seen that a pure film of Ni and Cr is formed (Fe and Cu as impurities are not included in the figure because they were both less than 0.5 wt%). Also, from Figure 2, the overlay error, which is one of the characteristic evaluations of a D/A converter, is also affected by the consumption of Ni-Cr alloy.
It can be seen that a Ni-Cr thin film resistor satisfying 14-bit accuracy (0.003%) can be obtained when the thickness is 1500 Å or more. However, these data are for the case where the volume of the Ni-Cr alloy is 2.7 ml, and the consumption amount of the Ni-Cr alloy varies depending on the volume of the Ni-Cr alloy.
For example, if it is 5.0ml, it will be more than 3000Å, if it is 10ml, it will be more than 3000Å.
It was over 6500Å. Second, although the Si substrate is heated at 300°C in the example, it may be heated to 350°C or less. Figure 3 shows the heating temperature of the Si substrate and the temperature coefficient of the upper 7 bits of the Ni-Cr thin film ladder resistor for a 14-bit D/A converter. The variation between bit resistances is large, and although there are some differences in absolute values at heating temperatures below 350°C, the variation between bit resistances is extremely small.
As another characteristic evaluation method, 14-bit D/A
There is an overlay error in the converter, but this is hardly affected by the Si substrate heating temperature.
This is due to the variation in the measurement error range, and it satisfies 14-bit accuracy under all conditions. Thirdly, the film deposition speed on the Si substrate was set at 2 in the example.
Although this was done at a speed of 5 Å/second, any speed of 5 Å/second or less may be used. Figure 4 shows a Si substrate heated to room temperature, 150°C, and 350°C, and Ni-Cr coated at 2 Å/sec, 5 Å/sec, and 8 Å/sec.
The graph shows the correlation with the overlay error of the Ni--Cr thin film ladder resistor for a 14-bit D/A converter formed at a deposition rate of Å/sec. If the Si substrate heating temperature is 350°C or less, it can be seen from Figure 4 that the film deposition rate must be 5 Å/sec or less to satisfy the accuracy as a Ni-Cr thin film ladder resistor for a 14-bit D/A converter. . Finally, the ratio of Ni and Cr deposited on the insulating substrate is the Ni-Cr alloy (80Ni, 80Ni,
20Cr), the composition of the film deposited on the Si substrate is Ni40wt%,
The ratio will be around 60wt% Cr. However, as the number of evaporations increases, the amount of Cr in the Ni-Cr alloy decreases quickly, and the composition of the film on the Si substrate gradually changes.
The ratio of Ni increases. As the Ni content increases, the temperature coefficient of the resistor increases, and as is clear from Figure 5, when the Ni content exceeds 60wt% in the composition of the film deposited on the Si substrate, the temperature coefficient of the Ni-Cr thin film resistor increases rapidly. becomes larger. Conversely, Ni with a Cr content of 60wt% or more
As can be seen from FIG. 5, the -Cr thin film resistor exhibits a large negative temperature coefficient. Therefore, in order to obtain a Ni-Cr thin film resistor with a small temperature coefficient, Ni should be
60wt%, and Cr is preferably in the range of 60 to 40wt%. In addition, when forming a Ni-Cr thin film resistor by depositing any Ni-Cr alloy on an insulating substrate using the Ni-Cr alloy subjected to the consumption according to the present invention as a deposition target, the absolute value of the temperature coefficient If the value is ignored, a stable Ni-Cr thin film resistor can be obtained. For example, a Ni-Cr thin film resistor with a composition of 30wt% Ni and 70wt% Cr can be used to sufficiently satisfy the characteristics as a ladder resistor for a 14-bit D/A converter, and conversely, a resistor with a composition of 75wt% Ni and 70wt% Cr can be obtained.
Even a Ni-Cr thin film resistor with a composition of 25wt% Cr
A resistor that fully satisfies the characteristics of a ladder resistor for a 14-bit D/A converter can be obtained. Effects of the Invention As described above, according to the present invention, the deposition target
Ni-Cr alloy was deposited using an electron beam evaporator, and Nml of Ni-Cr was deposited while scanning the electron beam in vacuum.
Cr alloy in an amount (a
It is possible to form a highly accurate and stable Ni-Cr thin film resistor by controlling the deposition rate by using a material that has been consumed as much as 1 to 2) and controlling the deposition rate. Summer.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図はNi−
Cr合金の消費量と基板上の着膜組成比を示すグ
ラフ、第2図はNi−Cr合金の消費量と重ね合せ
誤差との相関を示すグラフ、第3図は基板加熱温
度を変化させて蒸着したNi−Cr薄膜抵抗体の温
度係数を示すグラフ、第4図はNi−Crの着膜速
度と重ね合せ誤差との相関を示すグラフ、第5図
は基板上の着膜組成と抵抗体の温度係数の相関を
示すグラフである。
The drawings show an embodiment of the present invention, and FIG.
A graph showing the consumption amount of Cr alloy and the composition ratio of the film deposited on the substrate. Figure 2 is a graph showing the correlation between the consumption amount of Ni-Cr alloy and the overlay error. Figure 3 is a graph showing the correlation between the consumption amount of Ni-Cr alloy and the overlay error. A graph showing the temperature coefficient of the deposited Ni-Cr thin film resistor. Fig. 4 is a graph showing the correlation between the Ni-Cr film deposition speed and overlay error. Fig. 5 shows the composition of the deposited film on the substrate and the resistor. It is a graph which shows the correlation of the temperature coefficient of.

Claims (1)

【特許請求の範囲】 1 Ni−Cr薄膜抵抗体を絶縁基板上に形成する
工程において、被蒸着物であるNi−Cr合金の表
面を洗浄した後、電子ビーム蒸着装置を用い真空
中でビームを走査しながらNi−Cr合金を一様に
溶かし、Ni−Cr合金の体積がNmlであれば最低
でも500Åの(1〜2)・N倍以上の量を消費させ
たNi−Cr合金を被蒸着物として絶縁基板上に蒸
着し、Ni−Cr抵抗膜を形成するNi−Cr薄膜抵抗
体の形成方法。 2 絶縁基板上に着膜されたNi−Cr薄膜抵抗体
の組成がNi(40〜60wt%)、Cr(60〜40wt%)の
範囲内である特許請求の範囲第1項記載のNi−
Cr薄膜抵抗体の形成方法。 3 Ni−Cr薄膜抵抗体を絶縁基板上に形成する
際、基板の温度を350℃以下に保つ特許請求の範
囲第1項記載のNi−Cr薄膜抵抗体の形成方法。 4 Ni−Crの蒸着速度を5Å/秒以下にした特
許請求の範囲第1項記載のNi−Cr薄膜抵抗体の
形成方法。
[Claims] 1. In the process of forming a Ni-Cr thin film resistor on an insulating substrate, after cleaning the surface of the Ni-Cr alloy to be deposited, a beam is applied in vacuum using an electron beam evaporator. Melt the Ni-Cr alloy uniformly while scanning, and if the volume of the Ni-Cr alloy is Nml, deposit the Ni-Cr alloy in an amount that is at least 500 Å (1 to 2) N times or more. A method for forming a Ni-Cr thin film resistor, which is deposited on an insulating substrate to form a Ni-Cr resistor film. 2. The Ni-Cr thin film resistor according to claim 1, wherein the composition of the Ni-Cr thin film resistor deposited on the insulating substrate is within the range of Ni (40 to 60 wt%) and Cr (60 to 40 wt%).
Method of forming Cr thin film resistor. 3. A method for forming a Ni-Cr thin film resistor according to claim 1, wherein the temperature of the substrate is maintained at 350° C. or lower when forming the Ni-Cr thin film resistor on an insulating substrate. 4. A method for forming a Ni-Cr thin film resistor according to claim 1, wherein the Ni-Cr deposition rate is 5 Å/sec or less.
JP57146544A 1982-08-23 1982-08-23 Method of forming ni-cr thin film resistor Granted JPS5935403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57146544A JPS5935403A (en) 1982-08-23 1982-08-23 Method of forming ni-cr thin film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57146544A JPS5935403A (en) 1982-08-23 1982-08-23 Method of forming ni-cr thin film resistor

Publications (2)

Publication Number Publication Date
JPS5935403A JPS5935403A (en) 1984-02-27
JPS639731B2 true JPS639731B2 (en) 1988-03-01

Family

ID=15410050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57146544A Granted JPS5935403A (en) 1982-08-23 1982-08-23 Method of forming ni-cr thin film resistor

Country Status (1)

Country Link
JP (1) JPS5935403A (en)

Also Published As

Publication number Publication date
JPS5935403A (en) 1984-02-27

Similar Documents

Publication Publication Date Title
US4746896A (en) Layered film resistor with high resistance and high stability
KR830001873B1 (en) Resistor composition
JPH06158272A (en) Resistance film and production thereof
JPS634321B2 (en)
JPS639731B2 (en)
US5543208A (en) Resistive film
JPH0620803A (en) Thin film resistor and manufacture thereof
JPH071722B2 (en) Thin film resistor
DE2720049C3 (en) Thin film thermistor and process for its manufacture
JPH04370901A (en) Electric resistance material
JPS63135260A (en) Thermal head
JPS63147305A (en) Metal thin-film resistor
JPH044722B2 (en)
JPH047561B2 (en)
CN114807859A (en) Platinum film with high resistance temperature coefficient and preparation method thereof
JPH0712692B2 (en) Thin-film thermal head
JPS63229802A (en) Manufacture of amorphous two-component alloy thin film resistor
JPS6236622B2 (en)
EP2100313B1 (en) High resistivity thin film composition and fabrication method
JPH04170002A (en) Thin-film thermistor and its manufacture
JPS6395603A (en) Resistance thin film
JPS58143501A (en) Film resistor
JPS6337602A (en) Manufacture of thin film resistance unit
JPS6024561B2 (en) resistive film thin
JPH0287501A (en) Electric resistance material