[go: up one dir, main page]

JPS5935403A - Method of forming ni-cr thin film resistor - Google Patents

Method of forming ni-cr thin film resistor

Info

Publication number
JPS5935403A
JPS5935403A JP57146544A JP14654482A JPS5935403A JP S5935403 A JPS5935403 A JP S5935403A JP 57146544 A JP57146544 A JP 57146544A JP 14654482 A JP14654482 A JP 14654482A JP S5935403 A JPS5935403 A JP S5935403A
Authority
JP
Japan
Prior art keywords
thin film
film resistor
alloy
forming
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57146544A
Other languages
Japanese (ja)
Other versions
JPS639731B2 (en
Inventor
吉川 義隆
北崎 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57146544A priority Critical patent/JPS5935403A/en
Publication of JPS5935403A publication Critical patent/JPS5935403A/en
Publication of JPS639731B2 publication Critical patent/JPS639731B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はNi−Cr薄膜抵抗体の形成方法に関するもの
であり、高精度で且つ安定したNi−Cr薄膜抵抗体を
提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for forming a Ni--Cr thin film resistor, and aims to provide a highly accurate and stable Ni--Cr thin film resistor.

従来例の構成とその問題点 一般に市販されているNi−Cr合金は蒸着用として9
19%程度の純度のものが多い。ところがこの純度は地
金のNi及びCrの純度であシ、Ni−Cr合金として
の純度ではない、′第1表に蒸着用として最も一般的な
8ONi−20Cr合金の元素分析結果の一例を示す。
Structure of the conventional example and its problems Generally commercially available Ni-Cr alloys are used for vapor deposition.
Many have a purity of around 19%. However, this purity refers to the purity of Ni and Cr in the base metal, not the purity of the Ni-Cr alloy.'Table 1 shows an example of the elemental analysis results of the 8ONi-20Cr alloy, which is the most common material for vapor deposition. .

購入したばかυのNk−Cr合金を使用して薄膜抵抗体
を形成しても純粋なNi−Cr簿膜抵抗体が得られず、
又元素によって蒸気圧が異なる〔第2表参照〕ために安
定したNi−Cr薄膜抵抗体が得られなかった。そのた
め、Ni−Cr1lE膜抵抗体の特長(T、C,Rが小
さい、安定した電気特性が得られ上記以外にCo、Nb
、Mo、V、Si等を含むる等)が十分に発揮させられ
なかった。
Even if you form a thin film resistor using the stupidly purchased Nk-Cr alloy, you will not be able to obtain a pure Ni-Cr film resistor.
Furthermore, since the vapor pressure differs depending on the element (see Table 2), a stable Ni--Cr thin film resistor could not be obtained. Therefore, the features of the Ni-Cr11E film resistor (T, C, R are small, stable electrical characteristics are obtained, and in addition to the above, Co, Nb
, Mo, V, Si, etc.) were not fully exhibited.

発明の目的 本発明は上記従来の欠点を解消するもので、高精度で且
つ安定したNi−Cr薄膜抵抗体を提供することを目的
とする。
OBJECTS OF THE INVENTION The present invention eliminates the above-mentioned conventional drawbacks, and aims to provide a highly accurate and stable Ni--Cr thin film resistor.

発明の構成 上記目的を達成するため、本発明のN i −Cr薄膜
抵抗体の形成方法はNi−Cr薄膜抵抗体を絶縁基板上
に形成する工程において、被蒸着物であるNi−Cr&
金の表面を洗浄した後、電子ビーム蒸着装置を用い真空
中でビームを走査しなからNi−Cr合金を一様に溶か
し、Ni−Cr合金の体積がNmt−であれば最低でも
500.; (1〜2)・N倍以上の量を消費させたN
i−Cr合金を被蒸着物として絶縁基板上に蒸着し、 
Ni−Cr抵抗膜を形成するものである。
Structure of the Invention In order to achieve the above object, the method for forming a Ni-Cr thin film resistor of the present invention includes a method for forming a Ni-Cr thin film resistor on an insulating substrate.
After cleaning the gold surface, use an electron beam evaporator to scan the beam in vacuum to uniformly melt the Ni-Cr alloy, and if the volume of the Ni-Cr alloy is Nmt-, at least 500. ; (1~2)・N that consumed more than N times the amount
Depositing an i-Cr alloy on an insulating substrate as a deposition target,
This is to form a Ni-Cr resistance film.

実施例の説明 以下1本発明に係るNi−Cr薄膜抵抗体形成方法の実
施例として14ビット几4.コンバータ用薄膜ラダー抵
抗の形成方法について図面に基づき説明する。Ni−C
r合金(ドライパー691社製、電熱線第一種品)をト
リクロールエチレンで超音波洗浄を行なった後、Ni−
Crエツチング液(商品名TFCボクスイプフウン社よ
り入手)で約1紛間浸して表面の不純物や酸化物を除去
した。次に、電子ビーム蒸着装置を廟い、10−”To
rr以上の真空度中でNi−Cr合金全体に電子ビーム
が尚るように走査しなからNi−Cr合金全体を一様に
溶がした(溶がし始めてからのNi−Cr合金の消費量
が150OAになるまで行なった。)。以上の処理を級
友Ni−Cr合金で200A蒸着した。その上に電極用
どしてA/、を蒸着し%Sl基板上のAt及びNi−C
r薄膜をフォトリソ法によってバターニングを行なった
。最後に保護膜を形成した後、Ni−Cr薄膜抵抗体を
安定化させるための熱処理を行なった。このようにして
得られたN i −Cr薄膜抵抗体は14ピツ) D/
ムコンパータ用フダー抵抗としての特性を十分に満足さ
せられるものであった。
DESCRIPTION OF EMBODIMENTS 1. A 14-bit structure as an embodiment of the method for forming a Ni--Cr thin film resistor according to the present invention. A method for forming a thin film ladder resistor for a converter will be explained based on the drawings. Ni-C
After ultrasonically cleaning r-alloy (manufactured by Dryper 691, heating wire type 1 product) with trichlorethylene, Ni-
Impurities and oxides on the surface were removed by dipping about 1 drop in a Cr etching solution (trade name: TFC, obtained from Boxipfun Co., Ltd.). Next, the electron beam evaporation equipment was installed, and the 10-”To
The entire Ni-Cr alloy was melted uniformly by scanning the electron beam so that it covered the entire Ni-Cr alloy in a vacuum of rr or higher (Consumption amount of Ni-Cr alloy after starting melting) (This was done until the value reached 150OA.) Through the above treatment, a 200A vapor deposition was performed using a classmate Ni-Cr alloy. On top of that, A/, was evaporated as an electrode, and At and Ni-C were deposited on the %Sl substrate.
The r thin film was patterned by photolithography. Finally, after forming a protective film, heat treatment was performed to stabilize the Ni--Cr thin film resistor. The Ni-Cr thin film resistor thus obtained has 14 pins) D/
The characteristics as a fuser resistor for a mucomparter were sufficiently satisfied.

次にN i −Cr薄膜抵抗体の形成条件の設定理由に
ついて述べる。
Next, the reason for setting the conditions for forming the Ni-Cr thin film resistor will be described.

先ず第1に、 N1−Cr合金を電子ビームを走査させ
ながら一様に溶かし始めてから1500λ消費させるの
は、Ni−Cr合金を一様に藩がしてからSi基板上に
200Aずつ蒸着した場合、その着膜形成がNiとCr
だけ(他の元素拡α5wt%以下)で構成されるまでに
必要な消費量であり、且つ14ピツ) D/Aコンバー
タ用薄膜ラダー抵抗としての特性を十分に満足させるに
消費しなければならない量である。
First of all, the reason why the N1-Cr alloy starts to be uniformly melted while scanning the electron beam and then consumes 1500λ is when the Ni-Cr alloy is uniformly melted and then evaporated at 200A each onto the Si substrate. , the film formation is Ni and Cr
This is the amount required to be consumed to fully satisfy the characteristics as a thin film ladder resistor for a D/A converter. It is.

第1図にNi−Cr合金の消費量と基板上に着膜された
組成比を示し、第2図にNi−Cr合金の消amとD/
Aコンバータとしての評価方法の一つである重ね合せ誤
差との相関を示している。第1図から分かるようにNi
−Cr合金の消費量が少ないときにはNiとCr以外に
Mnが非常に多く着膜しており、純粋&Ni−Cr薄膜
抵抗体として形成されておらず、約1500A以上消費
するとNiとCrの純粋な膜が形成されることが分かる
(不純物としてのFe、Cuは共にα5wt%以下であ
りたので図中に入れていない。入又第2図からは、ル値
コンバータとしての特性評価の一つである恵ね合せ誤差
も%Ni−Cr合金の消費量が150OA以上になると
14ピツ)精度((LOO3%)を満足するNi−Cr
薄膜抵抗体が得られることが分かる。但し、これらのデ
ータはNi−Cr合金の体積が’:A7ml/)場合で
あル%Ni−Cr合金の体積によってはNi−Cr合金
の消費量は異なるものである。例え以上であった。
Figure 1 shows the consumption of Ni-Cr alloy and the composition ratio of the film deposited on the substrate, and Figure 2 shows the extinction and D/
It shows the correlation with overlay error, which is one of the evaluation methods for an A converter. As can be seen from Figure 1, Ni
- When the consumption of Cr alloy is small, a large amount of Mn is deposited in addition to Ni and Cr, and it is not formed as a pure & Ni-Cr thin film resistor. It can be seen that a film is formed (Fe and Cu as impurities are not included in the figure because they are both less than α5wt%.) From Figure 2, it is one of the characteristics evaluation as a value converter. Ni-Cr which satisfies the accuracy ((LOO3%)) when the consumption of Ni-Cr alloy becomes 150OA or more
It can be seen that a thin film resistor can be obtained. However, these data are based on the case where the volume of the Ni-Cr alloy is ':A7ml/).The consumption amount of the Ni-Cr alloy varies depending on the volume of the Ni-Cr alloy. It was more than an example.

第2に、81基板の加熱を実施例では300℃で行なっ
ているが、これについては350℃以下であれば良い。
Second, although the 81 substrate is heated at 300° C. in the embodiment, it may be heated at 350° C. or lower.

それは第3図にSi基板の加熱温度と14ピツ) D/
A/Aコンバータi−Cr薄膜ラダー抵抗の上位7ビツ
トの抵抗体の温度係数を示しているが。
It is shown in Figure 3 that the heating temperature of the Si substrate and 14 pins) D/
It shows the temperature coefficient of the upper 7 bits of the A/A converter i-Cr thin film ladder resistor.

Si基板を400℃で蒸着したものについてはビット抵
抗間のばらつきが大きく、350℃以下の加熱温度であ
れば絶対値に多少の差はあるが、ビット抵抗間のばらつ
きは非常に小さくなっている。もう一つの特性評価方法
として、14ピツ) D/Aコンバータの重ね合せ誤差
があるが、これについてはSi基板加熱温度による影咎
はほとんどなく、測定誤差範囲のばらつきでアリ、何れ
の条件下でも14ビット精度を充分に満足している。
For Si substrates deposited at 400°C, the variation between bit resistances is large, and if the heating temperature is 350°C or less, there is some difference in absolute value, but the variation between bit resistances is very small. . Another characteristic evaluation method is the overlay error of the D/A converter (14 pins), but this is hardly affected by the Si substrate heating temperature and is due to variations in the measurement error range, under any conditions. It fully satisfies 14-bit precision.

第3にSi基板上への着膜速度を実施例では2A/秒で
行なったが、5A/秒以下の速度であれば良い。第4図
はSi基板を室温% 150℃、350℃に加熱した上
にNi−Crを2X/秒゛、5^/秒、8^/秒のそれ
ぞれの着膜速度で形成し、14ピツ) D/Aコンバー
タ用のNi−Cr薄膜ラダー抵抗の重ね合せ誤差との相
関を示している。Si基板加熱温度が350℃以下であ
れば、14ビツトD/Aコンバータ用Ni−Cr薄膜ラ
ダー抵抗としての精度を満足する着膜速度は第4図から
5AI秒以下でなければならないことが分かる。
Thirdly, although the film was deposited on the Si substrate at a rate of 2 A/sec in the example, it may be at a rate of 5 A/sec or less. Figure 4 shows a Si substrate heated to 150°C and 350°C at room temperature, and then Ni-Cr deposited at film deposition rates of 2X/sec, 5^/sec, and 8^/sec, respectively. It shows the correlation with the overlay error of Ni-Cr thin film ladder resistors for D/A converters. It can be seen from FIG. 4 that if the Si substrate heating temperature is 350 DEG C. or less, the film deposition rate that satisfies the accuracy of the Ni--Cr thin film ladder resistor for a 14-bit D/A converter must be 5 AI seconds or less.

最後に絶縁基板上に着膜したNiとCrの比率であるが
、実施例に月いたNi−Cr合金(8ONi 、 20
Cr )でもSi基板上への着膜組成はNi40wt%
、 Cr60wt%程度の比率になる。ところが、蒸着
回数を増して行くにつれ、 Ni−Cr合金中のCrの
量が早く減少するためI/cS i基板上の膜組成も徐
々にNiの比が増してくる。Nlが増してくると抵抗体
の温度係数も大きくなり、第5図から明らかなようにS
i基板上への着膜組成でNiが60wt%以上になると
Ni−Cr薄膜抵抗体の温度係数が急に大きくなる。逆
にCrが60wt%以上の比率をしめるNi−Cr薄膜
抵抗体では、第5図から分かるように負の大きな温度係
数を示す。
Finally, the ratio of Ni and Cr deposited on the insulating substrate is as follows: Ni-Cr alloy (8ONi, 20
Cr), but the composition of the film deposited on the Si substrate is Ni40wt%.
, the ratio of Cr is about 60wt%. However, as the number of evaporations increases, the amount of Cr in the Ni-Cr alloy decreases rapidly, and the film composition on the I/cSi substrate gradually increases the Ni ratio. As Nl increases, the temperature coefficient of the resistor also increases, and as is clear from Figure 5, S
When the Ni content in the film deposited on the i-substrate exceeds 60 wt%, the temperature coefficient of the Ni--Cr thin film resistor suddenly increases. On the contrary, a Ni--Cr thin film resistor in which the Cr content is 60 wt% or more exhibits a large negative temperature coefficient, as can be seen from FIG.

従って温度係数の小さなNi−Cr薄膜抵抗体を得るた
めにN3が40−60wt%、 Crが60〜40wt
%の範囲にあることが望ましい。なお、いかなるNi−
Cr合金でも本発明による消費量を施こしたNi−Cr
合金を被蒸着物として用いて絶縁基板上に着膜させNi
−Cr薄膜抵抗体を形成する場合、温度係数の絶対値さ
え無視すれば安定したNi−Cr薄膜抵抗体が得られる
ものである0例えば、Ni30wt%、 Cr70wt
%の組成からなるNi−Cr薄膜抵抗体でも、14ピツ
) D/Aコンバータ用ラプラダ−抵抗ての特性を十分
に満足するものが得られるし、逆にNi 75wt%、
 (r25wt%の組成からなるNi−Cr薄膜抵抗体
でも14ビツトD/Aコンバータ用ラダー抵抗としての
特性を十分に満足するものが得られる。
Therefore, in order to obtain a Ni-Cr thin film resistor with a small temperature coefficient, N3 should be 40-60 wt% and Cr should be 60-40 wt%.
% range is desirable. In addition, any Ni-
Even in Cr alloys, Ni-Cr is subjected to the consumption according to the present invention.
Ni is deposited on an insulating substrate using an alloy as a deposition target.
When forming a -Cr thin film resistor, a stable Ni-Cr thin film resistor can be obtained by ignoring the absolute value of the temperature coefficient. For example, 30wt% Ni, 70wt% Cr.
Even a Ni-Cr thin film resistor with a composition of 75wt% Ni can be obtained that fully satisfies the characteristics of a lapladder resistor for a D/A converter (14 pins);
(Even a Ni--Cr thin film resistor having a composition of 25 wt% r can be obtained that fully satisfies the characteristics as a ladder resistor for a 14-bit D/A converter.

発明の効果 以上のように本発明によれば、被蒸着物であるNi−C
r合金を電子ビーム蒸着装置を用い、真空中で電子ビー
ムを走査させながら、 NmtのNi−Cr合金を少な
くとも(500XaXN) Aの社(aは1〜2の値を
持つ)だけ消費させたものを被蒸着物とし。
Effects of the Invention As described above, according to the present invention, Ni-C, which is a material to be deposited,
R alloy is consumed by at least (500 Xa is the object to be deposited.

着膜速度を制御することによって、高精度で且つ安定し
九Ni−Cr薄膜抵抗体を形成することが可能となった
By controlling the film deposition rate, it became possible to form a Ni--Cr thin film resistor with high precision and stability.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図はNi−Cr合金
の消費量と基板上の着膜組成比を示すグラフ。 第2図はNi−Cr合金の消費量と重ね合せ誤差との相
関を示すグラフ、第3図は基板加熱温度を変(tsさせ
て蒸着したNi−Cr薄膜抵抗体の温度係数を示すグラ
フ、第4図はNi−Crの着膜速度と凧ね合せ誤差との
相関を示すグラフ、第5図は基板上の着膜組成と抵抗体
の温度係数の相関を示すグラフである。 代理人  森 本 義 弘 第1図 第2図 ML−Cp金剣)貴量 第3図 t:v ト抵*NO 第4図
The drawings show examples of the present invention, and FIG. 1 is a graph showing the consumption amount of Ni-Cr alloy and the composition ratio of the film deposited on the substrate. Fig. 2 is a graph showing the correlation between Ni-Cr alloy consumption and overlay error, Fig. 3 is a graph showing the temperature coefficient of Ni-Cr thin film resistors deposited by varying the substrate heating temperature (ts), Figure 4 is a graph showing the correlation between Ni-Cr film deposition rate and kite alignment error, and Figure 5 is a graph showing the correlation between the film composition on the substrate and the temperature coefficient of the resistor. Agent: Mori Yoshihiro Moto Figure 1 Figure 2 ML-Cp Gold Sword) Precious Figure 3 t:v To resistance *NO Figure 4

Claims (1)

【特許請求の範囲】 L  Ni −Cr @模似抗体を絶縁基板上に形成す
る工程において、被蒸着物であるNi−Cr合金の表面
を洗浄した後、電子ビーム蒸着装置を用い真空中でビー
ムを走査しなからNi−Cr合金を一様に溶かし、 N
i−Cr合金の体積がNゴであれば最低でも500Aの
(1〜2)・8倍以上の量を消費させ九Ni−Cr合金
を被蒸着物として絶縁基板上に蒸着し、Ni−Cr抵抗
膜を形成するNi−Cr薄膜抵抗体の形成方法。 2 絶縁基板上に着膜されたNi−Cr薄膜抵抗体の組
成がNi(40−60wt%)、Cr(60〜40wt
%)の範囲内である特許請求の範囲第1項記載のNi−
Cr薄膜抵抗体の形成方法。 aNi−Cr薄膜抵抗体を絶縁基−板上に形成する際、
基板の温度を350℃μ下に保つ特許請求の範囲第1項
記載のNi−Cr薄膜抵抗体の形成方法。 4  Ni−Crの蒸着速度を5A/秒以下にした特許
請求の範囲第1項記載のNi−Cr薄膜抵抗体の形成方
法。
[Claims] In the step of forming L Ni -Cr @mimetic antibody on an insulating substrate, after cleaning the surface of the Ni-Cr alloy that is the object to be deposited, an electron beam evaporator is used to evaporate the Ni-Cr alloy in a vacuum. The Ni-Cr alloy is uniformly melted without scanning the N
If the volume of the i-Cr alloy is N, at least 500A (1 to 2). A method for forming a Ni-Cr thin film resistor forming a resistive film. 2 The composition of the Ni-Cr thin film resistor deposited on the insulating substrate is Ni (40-60 wt%) and Cr (60-40 wt%).
%) within the range of Ni-
Method for forming a Cr thin film resistor. When forming aNi-Cr thin film resistor on an insulating substrate,
A method for forming a Ni--Cr thin film resistor according to claim 1, wherein the temperature of the substrate is maintained below 350[deg.]C. 4. The method of forming a Ni-Cr thin film resistor according to claim 1, wherein the Ni-Cr vapor deposition rate is 5 A/sec or less.
JP57146544A 1982-08-23 1982-08-23 Method of forming ni-cr thin film resistor Granted JPS5935403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57146544A JPS5935403A (en) 1982-08-23 1982-08-23 Method of forming ni-cr thin film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57146544A JPS5935403A (en) 1982-08-23 1982-08-23 Method of forming ni-cr thin film resistor

Publications (2)

Publication Number Publication Date
JPS5935403A true JPS5935403A (en) 1984-02-27
JPS639731B2 JPS639731B2 (en) 1988-03-01

Family

ID=15410050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57146544A Granted JPS5935403A (en) 1982-08-23 1982-08-23 Method of forming ni-cr thin film resistor

Country Status (1)

Country Link
JP (1) JPS5935403A (en)

Also Published As

Publication number Publication date
JPS639731B2 (en) 1988-03-01

Similar Documents

Publication Publication Date Title
JPS6323305A (en) Highly stable metal film and manufacture of the same
JPS61179501A (en) Resistor and manufacture thereof
JPH06158272A (en) Resistance film and production thereof
Van Den Broek et al. Metal film precision resistors: Resistive metal films and a new resistor concept
JPS5935403A (en) Method of forming ni-cr thin film resistor
JPS634321B2 (en)
JPH0252403A (en) Electronic parts
JPH04370901A (en) Electric resistance material
JPS62293701A (en) Thin film temperature sensor and manufacture of the same
JPH071722B2 (en) Thin film resistor
DE2720049C3 (en) Thin film thermistor and process for its manufacture
JPH0620803A (en) Thin film resistor and manufacture thereof
JPH044722B2 (en)
DD223002A1 (en) METHOD FOR PRODUCING DENSITY COAT RESISTIVES OF HIGH PRECISION
JPS62202753A (en) Thin film type thermal head
JP3288241B2 (en) Resistive material and resistive material thin film
JP4752075B2 (en) Resistor and its manufacturing method
JPS63135260A (en) Thermal head
JPS6395601A (en) Resistance thin film
JPH0287501A (en) Electric resistance material
JPH045241B2 (en)
JPS6395603A (en) Resistance thin film
JPS6236622B2 (en)
JPS6337602A (en) Manufacture of thin film resistance unit
JPH04170002A (en) Thin-film thermistor and its manufacture