[go: up one dir, main page]

JPS6394559A - Spiral electrode for cylinder type nonaqueous electrolyte cell - Google Patents

Spiral electrode for cylinder type nonaqueous electrolyte cell

Info

Publication number
JPS6394559A
JPS6394559A JP23918186A JP23918186A JPS6394559A JP S6394559 A JPS6394559 A JP S6394559A JP 23918186 A JP23918186 A JP 23918186A JP 23918186 A JP23918186 A JP 23918186A JP S6394559 A JPS6394559 A JP S6394559A
Authority
JP
Japan
Prior art keywords
powder
graphite powder
positive electrode
particle size
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23918186A
Other languages
Japanese (ja)
Inventor
Osamu Takahashi
修 高橋
Kenichi Ochiwa
小知和 謙一
Koji Fujita
宏次 藤田
Naofumi Mushiaki
直文 虫明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP23918186A priority Critical patent/JPS6394559A/en
Publication of JPS6394559A publication Critical patent/JPS6394559A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the reaction utilization factor of MnO2 by specifying average grain sizes of MnO2 powder used as a positive electrode active material constituting a positive electrode black mix and two kinds of graphite powder used as a conductive agent. CONSTITUTION:Graphite powder consists of two kinds having different average grain sizes, the average grain size of one graphite powder is larger than that of the other graphite powder but smaller than that of manganese dioxide powder. The graphite powder having a smaller average grain size exists on the surface of MnO2 powder and forms electrochemical reaction type reaction sites on the surface of MnO2 powder. On the other hand, the graphite powder having a larger average grain size exists among the MnO2 powder holding the graphite powder having a smaller average grain size and forms a conductive passage. Accordingly, many reaction sites are formed, the electric conductivity of the whole positive electrode is increased, and the reaction utilization factor of MnO2 can be improved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、円筒形非水電解液電池の渦巻状電極に関し、
更に詳しくは、内部短絡がなく、正極活物質である二酸
化マンガン(Mn02)の反応利用率が高くなり、それ
ゆえ、放電容量が大きくなる円筒形非水電解液電池の渦
巻状電極に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a spiral electrode for a cylindrical non-aqueous electrolyte battery.
More specifically, the present invention relates to a spiral electrode for a cylindrical non-aqueous electrolyte battery that is free from internal short circuits, has a high reaction utilization rate of manganese dioxide (Mn02) as a positive electrode active material, and therefore has a large discharge capacity.

(従来の技術) 近年、円筒形非水電解液電池は、従来から利用されてい
る円筒形乾電池や円筒形アルカリ電池に代わるものとし
て急速にその需要が伸びている。
(Prior Art) In recent years, demand for cylindrical non-aqueous electrolyte batteries has been rapidly increasing as an alternative to conventionally used cylindrical dry batteries and cylindrical alkaline batteries.

このような円筒形非水電解液電池の構造をその一例とし
て、第1図に示した一部切欠縦断面図で説明する。
An example of the structure of such a cylindrical non-aqueous electrolyte battery will be described with reference to a partially cutaway longitudinal sectional view shown in FIG.

第1図において、1は正極であり、正極活物質であるM
 n O2粉末と導電剤である黒鉛粉末と結着剤である
例えば、ポリテトラフルオロエチレンとからなる正極合
剤のシートをパンチトメタルなどの集電体に支持したも
のである。2は、例えば、金属リチウムのシートからな
る負極である。
In FIG. 1, 1 is a positive electrode, and M is a positive electrode active material.
A sheet of a positive electrode mixture consisting of nO2 powder, graphite powder as a conductive agent, and a binder such as polytetrafluoroethylene is supported on a current collector such as punched metal. 2 is a negative electrode made of, for example, a sheet of metal lithium.

3は、ポリプロピレンなどの不織布からなるセパレータ
で、ここには、例えば、プロピレンカーボネートと1.
2−ジメトキシエタンの混合溶媒に過塩素酸リチウムの
ような電解質を所定濃度で溶解せしめた電解液が含浸さ
れている。4は、例えばニッケルメッキした鉄からなる
負極毎である。この負極毎4の中には正極1と負極2を
セパレータ3を介して重ね合わせた積層シートを正極集
電棒5を芯にして渦巻状に巻回した渦巻状電極が収納さ
れている。なお、この渦巻状電極において負極2の最外
周は負極毎4の内壁面と接触している。6は、例えば、
ポリプロピレンからなる絶縁板であり、負極毎4の内側
底面と正極集電棒5ならびに渦巻状電極との間に介在し
ている。
3 is a separator made of a nonwoven fabric such as polypropylene, which includes, for example, propylene carbonate and 1.
It is impregnated with an electrolyte solution in which an electrolyte such as lithium perchlorate is dissolved at a predetermined concentration in a mixed solvent of 2-dimethoxyethane. 4 is each negative electrode made of, for example, nickel-plated iron. Each negative electrode 4 houses a spiral electrode in which a laminated sheet in which a positive electrode 1 and a negative electrode 2 are stacked with a separator 3 interposed therebetween is spirally wound around a positive current collector rod 5 . In addition, in this spiral electrode, the outermost periphery of the negative electrode 2 is in contact with the inner wall surface of each negative electrode 4. 6 is, for example,
It is an insulating plate made of polypropylene, and is interposed between the inner bottom surface of each negative electrode 4, the positive electrode current collector rod 5, and the spiral electrode.

6′は、例えば、ポリプロピレンからなる絶縁体であり
、正極集電棒5ならびに渦巻状電極と正極端子を兼ねる
、例えば、5US304からなる封口板7、ならびに例
えば、ポリプロピレンからなる絶縁リング8との間に介
在している。
6' is an insulator made of, for example, polypropylene, and there is a gap between the positive electrode current collector rod 5, a sealing plate 7 made of, for example, 5US304, which also serves as the spiral electrode and the positive terminal, and an insulating ring 8 made of, for example, polypropylene. Intervening.

(発明が解決しようとする問題点) このように、円筒形非水電解液電池において、電池容器
内に渦巻状電極が収容されている。
(Problems to be Solved by the Invention) As described above, in the cylindrical non-aqueous electrolyte battery, the spiral electrode is housed within the battery container.

ところで、この渦巻状電極の場合、前述したように正極
合剤のシート、セパレータ及び負極シートを積層してい
なる積層シートを巻回して形成されているが、このとき
、セパレータ、負極はそれぞれその強度が大きいので損
壊等の現象は起こらない、しかし、正極合剤シートは、
粉末相互を結着した成形体シートであるため、この巻回
時に往々にして集電体から剥離する事態が生じて内部短
絡を招くことがある。
By the way, in the case of this spiral electrode, as mentioned above, it is formed by winding a laminated sheet consisting of a sheet of positive electrode mixture, a separator, and a negative electrode sheet, but at this time, the separator and negative electrode each have their own strength. However, the positive electrode mixture sheet is
Since it is a molded sheet made of powder bound together, it often peels off from the current collector during winding, which can lead to internal short circuits.

したがって、正極合剤には、巻回時に集電体から剥落し
ないことが求められている。そのことは、正極合剤が適
度に柔軟性を有することと同時にまた、機械的強度も大
であることを要求する。
Therefore, the positive electrode mixture is required to not peel off from the current collector during winding. This requires that the positive electrode mixture has appropriate flexibility and at the same time has high mechanical strength.

一方、正極合剤においては、活物質であるM n O2
粉末の反応利用率はできるだけ高いことが望ましい、こ
のことは、活物質と導電剤との存在形態によって規制さ
れる。すなわち、活物質の反応利用率は、導電剤がM 
n O2粉末の表面に存在して形成される電気化学的反
応サイトの数と、導電剤がMnO□粉末間に存在するこ
とで形成される導電経路によって規制される。
On the other hand, in the positive electrode mixture, the active material M n O2
It is desirable that the reaction utilization rate of the powder be as high as possible, and this is regulated by the existing forms of the active material and the conductive agent. In other words, the reaction utilization rate of the active material is
It is regulated by the number of electrochemical reaction sites formed on the surface of the nO2 powder and the conductive path formed by the presence of a conductive agent between the MnO□ powders.

したがって、M n O2の反応利用率を高めるという
観点に立てばM n 02粉末表面に存在する導電剤の
数が多いことと、放電反応の進行に伴って生起するM 
n O2の膨張により、M n 02間に導電経路を形
成している導電剤が互いに離隔して導電経路が崩壊しな
いことが求められている。
Therefore, from the viewpoint of increasing the reaction utilization rate of M n O2, it is important that there are a large number of conductive agents present on the surface of M n O2 powder, and that M n O2 generated as the discharge reaction progresses.
It is required that the expansion of nO2 does not cause the conductive agents forming the conductive path between Mn02 to separate from each other and cause the conductive path to collapse.

そこで、正極合剤に適度に柔軟性を持たせ、また、機械
的強度を大きくするためにM n O2粉末100重量
部、黒鉛粉末7〜12重量部、カーボンブラック0.5
〜1.5重量部を結着剤とともに混練した正極合剤を用
いることが開示されている(特開昭59−230257
号公報参照)。
Therefore, in order to give the positive electrode mixture appropriate flexibility and increase mechanical strength, 100 parts by weight of MnO2 powder, 7 to 12 parts by weight of graphite powder, and 0.5 parts by weight of carbon black were added.
It has been disclosed that a positive electrode mixture of ~1.5 parts by weight is kneaded with a binder (Japanese Patent Application Laid-Open No. 59-230257
(see publication).

しかしながら、カーボンブラックは、その構造から弾力
性があるため、カーボンブラックを添加した場合は、正
極板成形後、時間の経過とともに、その正極板の厚みが
大きくなってくる。したがって正極板の強度が高められ
ても、その厚みのコントロールという点で問題がある。
However, since carbon black has elasticity due to its structure, when carbon black is added, the thickness of the positive electrode plate increases over time after forming the positive electrode plate. Therefore, even if the strength of the positive electrode plate is increased, there is a problem in controlling its thickness.

更に、正極活物質であるM n O2の反応利用率を高
くするためにコイン形非水電解液電池について、(1)
平均粒径が104以下のM n O2粉末を利用するこ
とが(特開昭57μm、05964号公報参照)、更に
、(2)平均粒径が0.1〜30戸のM n 02粉末
と0.05〜5μ清の炭素粉末を混合することが(特開
昭55−49862号公報および特開昭59μm、60
962号公報をそれぞれ参照)、また更に、(3)平均
粒径が50μ贋と10−の2種類のM n O2粉末を
利用することが開示されている(特開昭57μm、05
963号公報参照)。
Furthermore, in order to increase the reaction utilization rate of M n O2, which is the positive electrode active material, regarding coin-shaped nonaqueous electrolyte batteries, (1)
It is possible to use M n O2 powder with an average particle size of 104 or less (see Japanese Patent Application Laid-open No. 57-05964), and (2) to use M n O2 powder with an average particle size of 0.1 to 30 and It is possible to mix carbon powder of .05 to 5 μm (Japanese Patent Application Laid-Open No. 55-49862 and Japanese Patent Application Laid-open No. 59-59 μm, 60).
962, respectively), and (3) the use of two types of M n O2 powders with average particle diameters of 50 μm and 10 μm (Japanese Patent Application Laid-open No. 57 μm, 05
(See Publication No. 963).

しかしながら、上記した(1)、(2)、 (3)の方
法を円筒形非水電解液電池の渦巻状電極に適用したとし
ても、コイン形のように正極合剤の密度を高くすること
ができないため、M n O2の反応利用率の向上はあ
まり期待できず、かつ正極合剤の巻回時での集電体から
の剥離についてはさらに悪化の車前を招く。
However, even if methods (1), (2), and (3) described above are applied to the spiral electrode of a cylindrical nonaqueous electrolyte battery, it is not possible to increase the density of the positive electrode mixture as in a coin-shaped battery. Therefore, it is not possible to expect much improvement in the reaction utilization rate of M n O2, and the peeling of the positive electrode mixture from the current collector during winding will further worsen.

本発明は、上記した問題点を解決し、内部短絡がなく、
正極活物質であるM n O2の反応利用率が高くなり
、それゆえ、放電容量の大きくなる円筒形非水電解液電
池の渦巻状電極を提供することを目的とする。
The present invention solves the above-mentioned problems, has no internal short circuit, and
It is an object of the present invention to provide a spiral electrode for a cylindrical non-aqueous electrolyte battery that has a high reaction utilization rate of MnO2, which is a positive electrode active material, and therefore has a large discharge capacity.

[発明の構成] (問題点を解決するための手段) 本発明者らは、上記目的を達成すべく鋭意研究を重ねた
結果、導電剤である黒鉛粉末として平均粒径の異なる2
種類の黒鉛粉末を用い、かつ黒鉛粉末よりも平均粒径の
大きいM n O2粉末を用いることでM n O2の
反応利用率が向上するとともに正極合剤の剥落も抑制さ
れることを見出し本発明を完成するに至った。
[Structure of the Invention] (Means for Solving the Problems) As a result of extensive research to achieve the above object, the present inventors have found that graphite powder, which is a conductive agent, has two different average particle sizes.
It was discovered that by using different types of graphite powder and M n O2 powder with a larger average particle size than the graphite powder, the reaction utilization rate of M n O2 was improved and the flaking of the positive electrode mixture was also suppressed. I was able to complete it.

すなわち、本発明の円筒形非水電解液電池の渦巻状電極
は、正極活物質である二酸化マンガン粉末、導電剤であ
る黒鉛粉末及び結着剤からなる正極合剤を集電体に支持
した正極;軽金属を負極活物質とする負極;正極及び負
極の間に介在せしめられたセパレータ;との積層シート
を巻回してなる円筒形非水電解液電池の渦巻状電極にお
いて、該黒鉛粉末が平均粒径の異なる2種類の黒鉛粉末
からなり、一方の黒鉛粉末(A)の平均粒径は他方の黒
鉛粉末(B)の平均粒径よりも大きく、かつ該二酸化マ
ンガン粉末の平均粒径より小さいことを特徴とする。
That is, the spiral electrode of the cylindrical non-aqueous electrolyte battery of the present invention is a positive electrode in which a positive electrode mixture consisting of manganese dioxide powder as a positive electrode active material, graphite powder as a conductive agent, and a binder is supported on a current collector. In a spiral electrode of a cylindrical non-aqueous electrolyte battery formed by winding a laminated sheet of; a negative electrode having a light metal as the negative electrode active material; a separator interposed between the positive electrode and the negative electrode, the graphite powder has an average particle size. Consisting of two types of graphite powders with different diameters, the average particle size of one graphite powder (A) is larger than the average particle size of the other graphite powder (B), and smaller than the average particle size of the manganese dioxide powder. It is characterized by

本発明の円筒形非水電解液電池の渦巻状電極は、正極合
剤を構成する正極活物質であるM n O2粉末及び導
電剤である2種類の黒鉛粉末の平均粒径を規定したこと
に特徴を有するものであって、他の要素は第1図に示し
た従来構造の電池と変わることはない。
The spiral electrode of the cylindrical non-aqueous electrolyte battery of the present invention is based on the fact that the average particle size of the MnO2 powder, which is the positive electrode active material, and the two types of graphite powder, which is the conductive agent, constituting the positive electrode mixture is defined. Other elements are the same as those of the conventional battery shown in FIG.

本発明にかかる正極活物質であるM n O2粉末は、
その平均粒径が15〜40−の範囲が好ましい。平均粒
径が40fi1Mを超えると、粒径が大きいためにMn
O2の内部まで電気化学反応が進まないので反応利用率
が低くなり、それゆえ放電容量が小さくなる。
The M n O2 powder which is the positive electrode active material according to the present invention is
The average particle size is preferably in the range of 15-40. When the average particle size exceeds 40fi1M, Mn
Since the electrochemical reaction does not proceed to the inside of O2, the reaction utilization rate becomes low, and therefore the discharge capacity becomes small.

15戸未満の場合には、これ以上反応利用率を高くする
ことができず、正極合剤の機械的強度が低下傾向を示し
、更には微粉製造時におけるコストが高くなってしまう
からである。更に好ましくは、20〜35戸である。
This is because if the number of units is less than 15, the reaction utilization rate cannot be increased any further, the mechanical strength of the positive electrode mixture tends to decrease, and furthermore, the cost during production of fine powder increases. More preferably, it is 20 to 35 units.

黒鉛粉末としては、M n O2粉末の反応利用率を高
くるために平均粒径の異なる2種類の黒鉛粉末を用いる
。平均粒径の小さい黒鉛粉末(B)は、M n O□粒
粉末表面に存在することによりM n O2粉末表面上
の電気化学反応的反応サイトを形成する。一方、平均粒
径の大きい黒鉛粉末(A)は、平均粒径の小さい黒鉛粉
末(B)を表面に保持しているM n 02粉末間に存
在して導電経路を形成する。よって多数の反応サイトの
形成と相俟って正極全体の電気伝導性は高くなり、結果
的にM n O2の反応利用率を高くすることができる
As the graphite powder, two types of graphite powder having different average particle sizes are used in order to increase the reaction utilization rate of the MnO2 powder. The graphite powder (B) having a small average particle size forms an electrochemical reaction site on the surface of the MnO2 powder by being present on the surface of the MnO□ grain powder. On the other hand, the graphite powder (A) with a large average particle size exists between the M n 02 powders holding the graphite powder (B) with a small average particle size on the surface to form a conductive path. Therefore, together with the formation of a large number of reaction sites, the electrical conductivity of the entire positive electrode increases, and as a result, the reaction utilization rate of M n O2 can be increased.

平均粒径の小さい黒鉛粉末(B)の平均粒径は0.1〜
2μmの範囲が好ましい、平均粒径が2μを超えるとM
 n 02表面に存在する黒鉛粉末の数が少なくなるの
でそれだけM n 02表面上の電気化学反応サイトが
少なくなり、その結果M n O2の反応利用率があま
り大きくならない、また。
The average particle size of the graphite powder (B) with a small average particle size is 0.1~
A range of 2 μm is preferable, and if the average particle size exceeds 2 μm, M
As the number of graphite powders present on the n 02 surface decreases, the number of electrochemical reaction sites on the M n 02 surface decreases, and as a result, the reaction utilization rate of M n O2 does not become very large.

0.1μm未満であると粒径が細かすぎて正極の機械的
強度が小さくなるからである。更に好ましくは、0.5
〜1.5μ清である。
This is because if the particle size is less than 0.1 μm, the particle size is too small and the mechanical strength of the positive electrode becomes low. More preferably, 0.5
~1.5μ clear.

平均粒径の大きい黒鉛粉末(A)の平均粒径は5〜2J
zmの範囲が好ましい、平均粒径が20−を超えると充
填される黒鉛粉末(A)の数が減少するので形成される
導電経路が少なくなる。よって、正極の電気伝導性が低
下し、結果的には、M n O2の反応利用率を高くす
ることができない。また、正極の機械的強度も小さくな
ってしまう、5戸未満になっても粒径が小さくなるので
正極の機械的強度が小さくなってしまう、更に好ましく
は、6〜10戸である。
The average particle size of graphite powder (A) with a large average particle size is 5 to 2J.
The range of zm is preferable; if the average particle size exceeds 20 -, the number of filled graphite powders (A) decreases, so the number of conductive paths formed decreases. Therefore, the electrical conductivity of the positive electrode decreases, and as a result, the reaction utilization rate of M n O2 cannot be increased. In addition, the mechanical strength of the positive electrode is also reduced.Even if the number of particles is less than 5, the particle size becomes small, so the mechanical strength of the positive electrode is reduced.More preferably, the number is 6 to 10.

本発明にかかる黒鉛粉末(A)及び黒鉛粉末(B)は、
それぞれ輪状黒鉛粉末であることが好ましい、@状黒鉛
粉末を用いることで正極全体に柔軟性を付与することが
でき、よって渦巻状に巻回するときに正極合剤が集電体
から剥離することが抑制される。また、粒径の大きい輪
状黒鉛粉末は、MnO2粉末を保持するので放電中にM
 n O2が膨張しても黒鉛が互いに離隔することがな
い、よって、正極全体の電気伝導性が低下することがな
く、結果的にM n O2の反応利用率を高くすること
ができる。
Graphite powder (A) and graphite powder (B) according to the present invention are:
By using @-shaped graphite powder, which is preferably ring-shaped graphite powder, flexibility can be imparted to the entire positive electrode, so that the positive electrode mixture does not peel off from the current collector when it is spirally wound. is suppressed. In addition, annular graphite powder with a large particle size retains MnO2 powder, so MnO2 powder is retained during discharge.
Even when n O2 expands, the graphite does not separate from each other, so the electrical conductivity of the entire positive electrode does not decrease, and as a result, the reaction utilization rate of M n O2 can be increased.

本発明にかかる結着剤としては、ポリテトラフルオロエ
チレン、ポリアクリル酸、スチレンブタジェンラバーテ
ックス、メチルセルロース、カルボキシメチルセルロー
ス等を用いることができ、特に、ポリテトラフルオロエ
チレン、ポリアクリル酸は好ましいものである。
As the binder according to the present invention, polytetrafluoroethylene, polyacrylic acid, styrene-butadiene rubbertex, methyl cellulose, carboxymethyl cellulose, etc. can be used, and polytetrafluoroethylene and polyacrylic acid are particularly preferred. be.

本発明にかかる正極合剤において、M n O2粉末と
黒鉛粉末(A)と黒鉛粉末(B)と結着剤の配合割合は
、M n O2粉末が85〜95重量部、黒鉛粉末(A
)が2〜12重量部、黒鉛粉末(B)が3〜10重量部
、結着剤がM n O2粉末と黒鉛粉末(A)と黒鉛粉
末(B)100重量部に対して3重量部以下であること
が好ましい。
In the positive electrode mixture according to the present invention, the blending ratio of M n O2 powder, graphite powder (A), graphite powder (B), and binder is such that M n O2 powder is 85 to 95 parts by weight, graphite powder (A) is
) is 2 to 12 parts by weight, graphite powder (B) is 3 to 10 parts by weight, and the binder is 3 parts by weight or less per 100 parts by weight of MnO2 powder, graphite powder (A), and graphite powder (B). It is preferable that

M n O2粉末が85重量部未満の場合は、得られた
正極合剤中の活物質量が少なくなるので電池としての放
電容量を低下せしめて好ましくない、逆に、95重量部
を超える場合には、黒鉛粉末、結着剤等の配合割合が少
なくなるのでM n 02の反応利用率の低下を招くと
ともに、なによりも、正極合剤の機械的強度が低下して
巻回時の剥落現象が多発する。
If the amount of M n O2 powder is less than 85 parts by weight, the amount of active material in the obtained positive electrode mixture will be reduced, which will reduce the discharge capacity of the battery, which is undesirable.On the contrary, if it exceeds 95 parts by weight, Since the blending ratio of graphite powder, binder, etc. is reduced, the reaction utilization rate of M n 02 is reduced, and above all, the mechanical strength of the positive electrode mixture is reduced, resulting in a peeling phenomenon during winding. occurs frequently.

更に好ましくは、87〜92重量部である。More preferably, it is 87 to 92 parts by weight.

一方、黒鉛粉末(A)が2重量部未満の場合は、M n
 02粉末を充分に保持できず、導電経路の形成が不充
分になると同時に正極合剤全体の機械的強度が低下し、
12重量部を超える場合は、これ以上MnO□の反応利
用率を高くすることができず、かつ、正極合剤全体の機
械的強度が低下する。更に好ましくは、4〜9重量部で
ある。また、黒鉛粉末(B)が3重量部未満の場合には
、M n O2粉末表面に着する量が少なくなる。すな
わち、電気化学的反応サイトの数が少なくなるのでM 
n O2の反応利用率を高めることが不充分となり、1
0重量部を超える場合には、M n O2の反応利用率
をこれ以上高くすることができず、かつ、粒径の細かい
黒鉛粉末が増加するので正極合剤全体の機械的強度が低
下してしまうからである。更に好ましくは、4〜9重量
部である。
On the other hand, when the graphite powder (A) is less than 2 parts by weight, M n
02 powder cannot be held sufficiently, the formation of conductive paths becomes insufficient, and at the same time, the mechanical strength of the entire positive electrode mixture decreases,
If it exceeds 12 parts by weight, the reaction utilization rate of MnO□ cannot be increased any further, and the mechanical strength of the entire positive electrode mixture decreases. More preferably, it is 4 to 9 parts by weight. Moreover, when the graphite powder (B) is less than 3 parts by weight, the amount that adheres to the surface of the M n O2 powder is reduced. In other words, since the number of electrochemical reaction sites is reduced, M
It becomes insufficient to increase the reaction utilization rate of n O2, and 1
If it exceeds 0 parts by weight, the reaction utilization rate of MnO2 cannot be increased any further, and the amount of graphite powder with a fine particle size increases, resulting in a decrease in the mechanical strength of the entire positive electrode mixture. This is because it will be put away. More preferably, it is 4 to 9 parts by weight.

更に結着剤の配合割合が、M n 02粉末と黒鉛粉末
(A)と黒鉛粉末(B)100重量部に対して3重量部
を超える場合には、正極合剤中に、結着剤がふえて、し
かも結着剤自体が、電気絶縁体のため、M n 02と
導電剤との接触が悪くなり、M n 02の利用率が下
がるからである。更に好ましくは、1.5〜3重量部で
ある。
Furthermore, if the blending ratio of the binder exceeds 3 parts by weight per 100 parts by weight of M n 02 powder, graphite powder (A), and graphite powder (B), the binder may not be present in the positive electrode mixture. Moreover, since the binder itself is an electrical insulator, the contact between M n 02 and the conductive agent becomes poor, and the utilization rate of M n 02 decreases. More preferably, it is 1.5 to 3 parts by weight.

次に、本発明にかかる正極は例えば、次のようにして製
造することができる。まず、所定の平均粒径を有するM
 n O2粉末、黒鉛粉末(A)及び黒鉛粉末(B)の
所定量に所定量の結着剤を配合後混練する0次に、得ら
れた正極合剤を集電体に塗布乾燥し、さらに例えば、ロ
ール成形してシートとすればよい。
Next, the positive electrode according to the present invention can be manufactured, for example, as follows. First, M with a predetermined average particle size
n A predetermined amount of a binder is mixed with a predetermined amount of O2 powder, graphite powder (A), and graphite powder (B) and then kneaded. Next, the obtained positive electrode mixture is applied to a current collector and dried, and further For example, it may be rolled into a sheet.

(実施例) 実施例 平均粒径25戸のM n O2粉末と、平均粒径10μ
mの輪状黒鉛粉末(A)及び平均粒径1戸の鱗状黒鉛粉
末(B)を1:1(重量比)で混合した黒鉛粉末とを第
2図、第3図に示した範囲内の配合割合で配合し、更に
、M n O2粉末と鱗状黒鉛粉末(A)と鱗状黒鉛粉
末(B)100重量部に対してポリテトラフルオロエチ
レンを3重量部配合後、混練した。得られた正極合剤を
集電体に塗布し乾燥したのちロール成形して縦26mm
、横230mm、厚み0.5■の長尺状の正極合剤シー
トとした0次に、負極として金属リチウムのシート、セ
パレータとしてポリプロピレンからなる不織布を用意し
、上記した正極合剤シートと共に巻回して渦巻状電極と
した。
(Example) Example M n O2 powder with an average particle size of 25 units and an average particle size of 10μ
A graphite powder obtained by mixing annular graphite powder (A) with an average particle size of m and a scale graphite powder (B) with an average particle size of 1:1 (weight ratio) within the range shown in Figures 2 and 3. Further, 3 parts by weight of polytetrafluoroethylene was mixed with 100 parts by weight of M n O2 powder, scaly graphite powder (A), and scaly graphite powder (B), and then kneaded. The obtained positive electrode mixture was applied to a current collector, dried, and then roll-formed to a length of 26 mm.
A long positive electrode mixture sheet with a width of 230 mm and a thickness of 0.5 cm was prepared. Next, a sheet of metallic lithium was prepared as a negative electrode, and a nonwoven fabric made of polypropylene was prepared as a separator, and the sheets were wound together with the above-mentioned positive electrode mixture sheet. It was made into a spiral electrode.

この巻回時に、正極合剤シートの集電体からの剥離現象
の有無を観察し、結果を第2図に示した。更に、高さ3
3mm、外径16mm、内径15.5mmのニッケルメ
ッキした鉄缶からなる円筒形の負極缶内部にポリプロピ
レンからなる絶縁板を載置後、ここに渦巻状電極を挿入
した0次にプロピレンカーボネートと1,2−ジメトキ
シエタンとの混合溶媒に過塩素酸リチウムを1モル/文
の濃度となるように溶解せしめた非水電解液を注入後、
渦巻状電極上に絶縁板を載置し、その上に、外周部に絶
縁リングを配したSUS 304からなる封口板を載置
した後、密封した。
During this winding, the presence or absence of a peeling phenomenon of the positive electrode mixture sheet from the current collector was observed, and the results are shown in FIG. Furthermore, height 3
After placing an insulating plate made of polypropylene inside a cylindrical negative electrode can made of a nickel-plated iron can with a diameter of 3 mm, an outer diameter of 16 mm, and an inner diameter of 15.5 mm, a 0-order propylene carbonate plate with a spiral electrode inserted therein and 1 After injecting a non-aqueous electrolyte in which lithium perchlorate was dissolved in a mixed solvent with ,2-dimethoxyethane to a concentration of 1 mol/state,
An insulating plate was placed on the spiral electrode, and a sealing plate made of SUS 304 with an insulating ring arranged around the outer periphery was placed on top of the insulating plate, followed by sealing.

この電池を用いて20℃において外部抵抗20Ωが定抵
抗放電を行なわせ放電容量を測定した。
Using this battery, constant resistance discharge was performed at 20° C. with an external resistance of 20Ω, and the discharge capacity was measured.

なお、放電容量は、平均粒径25戸のM n 02粉末
90重量部と、平均粒径10−の鱗状黒鉛粉末10重量
部と、ポリテトラフルオロエチレン(PTFE)をM 
n 02粉末と鱗状黒鉛粉末100重量部に対して3重
量部配合した正極合剤を用いたことを除いたは、上記の
電池と同様な構造の電池を製造し、この電池の放電容量
を基準として第3図に示した。
The discharge capacity was calculated using 90 parts by weight of M n 02 powder with an average particle size of 25, 10 parts by weight of scaly graphite powder with an average particle size of 10, and polytetrafluoroethylene (PTFE).
A battery with the same structure as the above battery was manufactured, except that a positive electrode mixture containing 3 parts by weight of n02 powder and 100 parts by weight of scaly graphite powder was used, and the discharge capacity of this battery was used as the standard. This is shown in Figure 3.

比較例1 導電剤として、平均粒径10μmの鱗状黒鉛粉末のみを
用いたことを除いては、実施例と同様にして電極および
電池を製造し、その評価を行なった。結果を第2図、第
3図に示した。
Comparative Example 1 An electrode and a battery were manufactured and evaluated in the same manner as in the example except that only scaly graphite powder with an average particle size of 10 μm was used as the conductive agent. The results are shown in Figures 2 and 3.

比較例2 導電剤として、平均粒径1−の鱗状黒鉛粉末のみを用い
たことを除いては、実施例と同様にして電極および電池
を製造し、その評価を行なった。
Comparative Example 2 An electrode and a battery were manufactured and evaluated in the same manner as in the example except that only scaly graphite powder with an average particle size of 1- was used as the conductive agent.

結果を第2図、第3図に示した。The results are shown in Figures 2 and 3.

[発明の効果] 以上の説明で明らかなように1本発明の円筒形非水電解
液電池の渦巻状電極を用いると、得られた電池は、内部
短絡がなく正極活物質であるM n O2の反応利用率
が高くなり、それゆえ放電容量が大きくなる。したがっ
て、その工業的価値は大である。
[Effects of the Invention] As is clear from the above description, when the spiral electrode of the cylindrical non-aqueous electrolyte battery of the present invention is used, the resulting battery has no internal short circuit and the positive electrode active material M n O2 The reaction utilization rate becomes higher and therefore the discharge capacity becomes larger. Therefore, its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の円筒形非水電解液電池の渦巻状電極
を用いた一実施例である円筒形二酸化マンガンリチウム
電池の一部切欠縦断面図、第2図は、本発明にかかる円
筒形非水電解液電池の正極を渦巻状に巻回したときに正
極合剤が集電体から剥離した割合を示す図、第3図は、
本発明にかかる円筒形非水電解液電池の放電容量を比較
例と共に示した図である。 1・・・・・・正極     2・・・・・・負極3・
・・・・・セパレータ  4・・・・・・負極缶5・・
・・・・正極集電棒  6.6′・・・・・・絶縁板7
・・・・・・封口板    8・・・・・・絶縁リング
4電剤の配合官lI会 第2図 第3図
FIG. 1 is a partially cutaway longitudinal cross-sectional view of a cylindrical lithium manganese dioxide battery, which is an example of a cylindrical non-aqueous electrolyte battery using a spiral electrode according to the present invention, and FIG. Figure 3 is a diagram showing the rate of separation of the positive electrode mixture from the current collector when the positive electrode of a cylindrical non-aqueous electrolyte battery is spirally wound.
FIG. 2 is a diagram showing the discharge capacity of a cylindrical nonaqueous electrolyte battery according to the present invention together with a comparative example. 1...Positive electrode 2...Negative electrode 3.
... Separator 4 ... Negative electrode can 5 ...
...Positive electrode current collector rod 6.6' ...Insulation plate 7
・・・・・・Sealing plate 8・・・・・・Insulation ring 4Electric agent compounding official II meeting Figure 2 Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)正極活物質である二酸化マンガン粉末、導電剤で
ある黒鉛粉末及び結着剤からなる正極合剤を集電体に支
持した正極;軽金属を負極活物質とする負極;正極及び
負極の間に介在せしめられたセパレータ;との積層シー
トを巻回してなる円筒形非水電解液電池の渦巻状電極に
おいて、該黒鉛粉末が平均粒径の異なる2種類の黒鉛粉
末からなり、一方の黒鉛粉末(A)の平均粒径は他方の
黒鉛粉末(B)の平均粒径よりも大きく、かつ該二酸化
マンガン粉末の平均粒径より小さいことを特徴とする円
筒形非水電解液電池渦巻状電極。
(1) A positive electrode in which a positive electrode mixture consisting of manganese dioxide powder as a positive electrode active material, graphite powder as a conductive agent, and a binder is supported on a current collector; A negative electrode in which a light metal is used as a negative electrode active material; Between the positive and negative electrodes In a spiral electrode of a cylindrical non-aqueous electrolyte battery formed by winding a laminated sheet with a separator interposed between A spiral electrode for a cylindrical non-aqueous electrolyte battery, characterized in that the average particle size of (A) is larger than the average particle size of the other graphite powder (B) and smaller than the average particle size of the manganese dioxide powder.
(2)該二酸化マンガン粉末の平均粒径が15〜40μ
m、該黒鉛粉末(A)の平均粒径が5〜20μm、該黒
鉛粉末(B)の平均粒径が0.1〜2μmである特許請
求の範囲第1項記載の円筒形非水電解液電池の渦巻状電
極。
(2) The average particle size of the manganese dioxide powder is 15 to 40μ
m, the average particle size of the graphite powder (A) is 5 to 20 μm, and the average particle size of the graphite powder (B) is 0.1 to 2 μm. The spiral electrode of a battery.
(3)該正極合剤の配合割合が、該二酸化マンガン粉末
85〜95重量部、該黒鉛粉末(A)2〜12重量部、
該黒鉛粉末(B)3〜10重量部、及び該結着剤が該二
酸化マンガン粉末と該黒鉛粉末(A)と該黒鉛粉末(B
)100重量部に対して3重量部以下である特許請求の
範囲第1項記載の円筒形非水電解液電池の渦巻状電極。
(3) The mixing ratio of the positive electrode mixture is 85 to 95 parts by weight of the manganese dioxide powder, 2 to 12 parts by weight of the graphite powder (A),
3 to 10 parts by weight of the graphite powder (B), and the binder contains the manganese dioxide powder, the graphite powder (A), and the graphite powder (B).
) The spiral electrode for a cylindrical non-aqueous electrolyte battery according to claim 1, wherein the amount is 3 parts by weight or less per 100 parts by weight.
(4)該黒鉛粉末(A)と該黒鉛粉末(B)が、それぞ
れ鱗状黒鉛の粉末である特許請求の範囲第1項〜第3項
のいずれかに記載の円筒形非水電解液電池の渦巻状電極
(4) The cylindrical non-aqueous electrolyte battery according to any one of claims 1 to 3, wherein the graphite powder (A) and the graphite powder (B) are flaky graphite powders, respectively. Spiral electrode.
JP23918186A 1986-10-09 1986-10-09 Spiral electrode for cylinder type nonaqueous electrolyte cell Pending JPS6394559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23918186A JPS6394559A (en) 1986-10-09 1986-10-09 Spiral electrode for cylinder type nonaqueous electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23918186A JPS6394559A (en) 1986-10-09 1986-10-09 Spiral electrode for cylinder type nonaqueous electrolyte cell

Publications (1)

Publication Number Publication Date
JPS6394559A true JPS6394559A (en) 1988-04-25

Family

ID=17040925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23918186A Pending JPS6394559A (en) 1986-10-09 1986-10-09 Spiral electrode for cylinder type nonaqueous electrolyte cell

Country Status (1)

Country Link
JP (1) JPS6394559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1042829A1 (en) * 1997-12-31 2000-10-11 Duracell Inc. Battery cathode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1042829A1 (en) * 1997-12-31 2000-10-11 Duracell Inc. Battery cathode
EP1042829A4 (en) * 1997-12-31 2004-07-14 Duracell Inc BATTERY CATHODE

Similar Documents

Publication Publication Date Title
JP3111791B2 (en) Non-aqueous electrolyte secondary battery
JP3585122B2 (en) Non-aqueous secondary battery and its manufacturing method
EP0789410A1 (en) Batteries and a manufacturing method of postitive active material for the batteries
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US6114065A (en) Secondary battery
JPH10312811A (en) Nonaqeous electrolyte secondary battery
JPH113710A (en) Lithium secondary battery
JPH0745304A (en) Organic electrolyte secondary battery
JP3582823B2 (en) Positive electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP3475759B2 (en) Non-aqueous electrolyte secondary battery
JPS6394559A (en) Spiral electrode for cylinder type nonaqueous electrolyte cell
JP2000133245A (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this as positive electrode
JPS63138646A (en) Cylindrical nonaqueous electrolyte cell
JPH0536401A (en) Lithium secondary battery
JP3139174B2 (en) Manufacturing method of thin non-aqueous electrolyte battery
JP3489381B2 (en) Non-aqueous electrolyte secondary battery
JP7617539B2 (en) Lithium primary battery
JPH0982364A (en) Nonaqueous electrolyte secondary battery
JP2004139909A (en) Sealed nickel-zinc primary battery
JPS63245856A (en) Spiral electrode of cylindrical nonaqueous electrolyte battery
JP2002164049A (en) Lithium ion secondary battery
JPH09161770A (en) Nonaqueous electrolyte secondary battery and manufacture of its positive electrode
JPH1125986A (en) Non-aqueous electrolyte secondary battery
JPH03112070A (en) Lithium secondary battery
JPH0433249A (en) Nonaqueous solvent secondary battery