[go: up one dir, main page]

JPS6390172A - Field effect transistor and manufacture thereof - Google Patents

Field effect transistor and manufacture thereof

Info

Publication number
JPS6390172A
JPS6390172A JP61235634A JP23563486A JPS6390172A JP S6390172 A JPS6390172 A JP S6390172A JP 61235634 A JP61235634 A JP 61235634A JP 23563486 A JP23563486 A JP 23563486A JP S6390172 A JPS6390172 A JP S6390172A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
field effect
effect transistor
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61235634A
Other languages
Japanese (ja)
Inventor
Hironobu Miyamoto
広信 宮本
Tomohiro Ito
伊東 朋弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61235634A priority Critical patent/JPS6390172A/en
Publication of JPS6390172A publication Critical patent/JPS6390172A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • H10D30/471High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
    • H10D30/475High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
    • H10D30/4755High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs having wide bandgap charge-carrier supplying layers, e.g. modulation doped HEMTs such as n-AlGaAs/GaAs HEMTs

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果トランジスタ及びその製造方法に関し
、特にヘテロ接合界面における二次元電子チャネルを利
用した高速の電界効果トランジスタ及びその製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field effect transistor and a method for manufacturing the same, and more particularly to a high-speed field effect transistor that utilizes a two-dimensional electron channel at a heterojunction interface and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

GaAsとAe GaAsとのへテロ界面の二次元電子
チャネルを利用した高速の電界効果1〜ランジスタ(以
降FETと称す)は、現在すでに広く使われているGa
Asを用いたショットキー接合型のFETよりも、更に
高速・高性能な特性が期待され、低雑音素子や高速IC
等への応用が盛んに研究されている。
A high-speed field effect transistor (hereinafter referred to as FET) that utilizes a two-dimensional electron channel at the hetero interface between GaAs and Ae GaAs is a GaAs transistor that is already widely used today.
It is expected to have faster and higher performance characteristics than Schottky junction FETs using As, and will be used as low-noise devices and high-speed ICs.
Applications are being actively researched.

第3は従来のFETの一例の模式的断面図である。The third is a schematic cross-sectional view of an example of a conventional FET.

この例は、G、xAsの高抵抗基板1上に順次形成した
高純度のGaAsからなる半導体層2とドナー不純物原
子を含まない高純度のke GaAsからなる半導体層
4と高濃度のn型GaAsからなる不純物層5のゲート
とを備え、かつソース及びドレイン電極8′及び9′が
高濃度のn型の不純物層7′を介して半導体層2の上に
設けられたいわゆる5IS(半導体/絶縁物/半導体)
構造のFETである。
In this example, a semiconductor layer 2 made of high-purity GaAs, a semiconductor layer 4 made of high-purity ke GaAs containing no donor impurity atoms, and a high-concentration n-type GaAs semiconductor layer 2 formed sequentially on a high-resistance substrate 1 made of G and xAs are formed. The so-called 5IS (semiconductor/insulator) is provided with a gate of an impurity layer 5 consisting of material/semiconductor)
It is a FET with a structure like this.

又、この例は、半導体層4の厚さに無関係に、半導体層
2と不純物層5のゲートとの電子親和力の差によって、
しきい電圧が決まるので、両者を適切に選択することに
よってしきい電圧値を決めることができ、しきい電圧値
の制御性が良い。
Moreover, in this example, regardless of the thickness of the semiconductor layer 4, due to the difference in electron affinity between the semiconductor layer 2 and the gate of the impurity layer 5,
Since the threshold voltage is determined, the threshold voltage value can be determined by appropriately selecting both, and the controllability of the threshold voltage value is good.

更に、この例は、kl GaAsからなる半導体層4の
中に不純物原子による深いエネルギー準位が存在しない
ので、特性も安定している。
Further, in this example, since there is no deep energy level due to impurity atoms in the semiconductor layer 4 made of kl GaAs, the characteristics are also stable.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述した従来の電界効果トランジスタで
は、高純度AffGaAsからなる半導体層4の厚さが
数百オングストロームと薄いため、このような薄い部分
と下のアンドープのGaAsからなる半導体層2の表面
の部分に高ドーズイオンの注入によって高濃度の不純物
層7′を形成するのは難しく従ってシート抵抗の小さい
低ソース抵抗のものが得にくいという欠点がある。
However, in the above-mentioned conventional field effect transistor, the thickness of the semiconductor layer 4 made of high-purity AffGaAs is as thin as several hundred angstroms, so that such a thin part and the surface part of the underlying semiconductor layer 2 made of undoped GaAs are However, it is difficult to form a highly concentrated impurity layer 7' by implanting high-dose ions, and therefore it is difficult to obtain a low source resistance with a small sheet resistance.

反対に、シート抵抗を小さくしようとして半導体層2の
深い部分までイオン注入すれば、ソース及びドレインの
不純物層7′同士の間の距離が短い短チヤネル素子では
、両方からひろがった空乏層がつながりアンドープGa
Asからなる半導体層2の中に注入された電子によって
空間電荷制限電流l5ubとして I sob = 9ε3μ。A V o 2/ 8 L
 3  ・・・<1)で表わせる電流が流れる。ここで
、ε3は半導体の誘電率、μ。は電子の移動度、Aは電
子を注入するn+型の不純物層の面積、VDはドレイン
電圧、Lはゲート長である。従って、今度は、ドレイン
コンダクタンスの増大、しきい電圧の変化等いわゆる短
チヤネル効果による特性劣化が起こる。
On the other hand, if ions are implanted deep into the semiconductor layer 2 in order to reduce the sheet resistance, in a short channel device where the distance between the source and drain impurity layers 7' is short, the depletion layers extending from both sides will connect and become undoped. Ga
I sob = 9ε3μ as a space charge limited current l5ub due to electrons injected into the semiconductor layer 2 made of As. A V o 2/8 L
3...A current expressed as <1) flows. Here, ε3 is the dielectric constant of the semiconductor, μ. is the electron mobility, A is the area of the n+ type impurity layer into which electrons are injected, VD is the drain voltage, and L is the gate length. Therefore, characteristic deterioration occurs due to the so-called short channel effect, such as an increase in drain conductance and a change in threshold voltage.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電界効果トランジスタは、高抵抗基板上に堆積
した高純度の第1の半導体層と、該第1の半導体層上に
堆積した前記第1の半導体層より電子親和力の小さい半
導体層を含む所定のパターンの第2の半導体層と、該第
2の半導体層上に形成したゲーI−と、前記第2の半導
体層を挟み前記第1の半導体層上に選択的に堆積した高
濃度の不純物層からなるソース及びドレインとを含んで
成る。
The field effect transistor of the present invention includes a high-purity first semiconductor layer deposited on a high-resistance substrate, and a semiconductor layer deposited on the first semiconductor layer and having a lower electron affinity than the first semiconductor layer. A second semiconductor layer having a predetermined pattern, a gate I- formed on the second semiconductor layer, and a high concentration semiconductor layer selectively deposited on the first semiconductor layer with the second semiconductor layer in between. It includes a source and a drain made of impurity layers.

本発明の電界効果トランジスタの製造方法は、高抵抗基
板上に順次堆積した高純度の第1の半導体層及び該第1
の半導体層より電子親和力の小さい半導体層を含む第2
の半導体層の上に所定のパターンのゲートを形成する工
程と、該ゲートをマスクとして前記第2の半導体層を除
去して前記第1の半導体層表面を露出する工程と、前記
第1の半導体層表面の露出した部分に高濃度の不純物層
からなるソース及びドレインを形成する工程とを含んで
構成される。
A method for manufacturing a field effect transistor according to the present invention includes a first semiconductor layer of high purity sequentially deposited on a high resistance substrate and a first semiconductor layer of high purity deposited on a high resistance substrate;
A second semiconductor layer including a semiconductor layer having a lower electron affinity than the semiconductor layer of
forming a gate with a predetermined pattern on the semiconductor layer; removing the second semiconductor layer using the gate as a mask to expose the surface of the first semiconductor layer; The method includes a step of forming a source and a drain made of a high concentration impurity layer on the exposed portion of the layer surface.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明のFETの一実施例の模式的断面図であ
る。
FIG. 1 is a schematic cross-sectional view of an embodiment of the FET of the present invention.

この実施例は、III−V族fヒ合物のGaAsからな
る高抵抗基板1の上に分子線エピタキシャル法によりキ
ャリヤ密度的I X 10 ”個/CI!13、厚さ1
μmのp型GaAsからなる半導体層2を設け、その上
に所定のパターンで厚さ300人の人!。、5GaO,
5Asからなる半導体N4厚さ200人キャリヤ密度5
×10′8個/ C113のn型GaAs層からなる不
純物層5及びWSiからなる耐熱性のゲート電極を設け
、半導体層4の両側の半導体層2の露出面上に厚さ10
00人キャリヤ密度1×101019l1/CIa3n
型GaAsからなる高濃度の不純物層7を設け、更にそ
の上にソース電極8及びドレイン電極9を設けている。
In this embodiment, a high-resistance substrate 1 made of GaAs, a group III-V compound, is coated with a carrier density of I x 10''/CI!13 and a thickness of 1 by molecular beam epitaxial method.
A semiconductor layer 2 made of p-type GaAs of μm is provided, and a predetermined pattern is formed on the semiconductor layer 2 to a thickness of 300 people! . ,5GaO,
Semiconductor consisting of 5As N4 thickness 200 people carrier density 5
×10'8 pieces/An impurity layer 5 made of an n-type GaAs layer of C113 and a heat-resistant gate electrode made of WSi are provided on the exposed surface of the semiconductor layer 2 on both sides of the semiconductor layer 4 to a thickness of 10'.
00 people carrier density 1×101019l1/CIa3n
A highly concentrated impurity layer 7 made of GaAs type is provided, and a source electrode 8 and a drain electrode 9 are further provided thereon.

ここで、電子はチャネル領域の二次元電子チャネル3を
流れる。
Here, electrons flow through a two-dimensional electron channel 3 in the channel region.

従って、1000人と厚いn型GaAsの高濃度の不純
物層7によってシート抵抗が非常に小さくなり、ソース
抵抗も低減する。又、素子を微細化しても、高濃度のべ
不純物層7がn型GaAsからなる半導体層2に入り込
んでおらず従って電子を注入するn“層の面積Aが小さ
くなりしかも流れる距離が大きくなるため、n型GaA
sからなる半導体層2を流れる(1)式で表わされる空
間電荷制限電流I mobは、減少する。
Therefore, the sheet resistance becomes extremely small due to the high concentration impurity layer 7 of n-type GaAs, which is 1000 thick, and the source resistance is also reduced. Furthermore, even if the device is miniaturized, the highly concentrated impurity layer 7 does not penetrate into the semiconductor layer 2 made of n-type GaAs, so the area A of the n'' layer into which electrons are injected becomes smaller, and the distance through which electrons flow becomes larger. Therefore, n-type GaA
The space charge limited current I mob, expressed by equation (1), flowing through the semiconductor layer 2 made of s decreases.

このことにより、ゲート長を30μm、10μm、3μ
m、1μm、0.5μmと微細にしても短チヤネル効果
による特性劣化はわずかじか現われず、しかも高濃度不
純物n型GaAs層からなる半導体層7は2次元電子チ
ャネルと直接接触しているため、ソース抵抗は小さくな
り、良好な特性が得られる。
This allows the gate length to be set to 30μm, 10μm, 3μm.
Even when miniaturized to m, 1 μm, or 0.5 μm, characteristic deterioration due to the short channel effect appears only slightly, and moreover, the semiconductor layer 7 made of a highly doped n-type GaAs layer is in direct contact with the two-dimensional electron channel. , the source resistance becomes small and good characteristics can be obtained.

第2図(a)〜(d)は本発明のFETの製造方法の一
実施例を説明するための工程順に示した半導体チップの
模式的断面図である。
FIGS. 2(a) to 2(d) are schematic cross-sectional views of a semiconductor chip shown in order of steps for explaining an embodiment of the FET manufacturing method of the present invention.

この実施例は、第2図(a)に示すように、■−V族の
GaAsからなる高抵抗基板1の上に分子線エピタキシ
ャル成長法によりキャリヤ密度約1×10′4個/C1
13、厚さ1μmのn型GaAsからなる半導体層2を
形成した後、続いて、この上に厚さ300人のアンドー
プのAI! g、5Ga、)、5Asからなる半導体層
4及び厚さ200人キャリヤ濃度ら×1018個/ c
ra ’のn型GaAsからなる半導体層5を順次形成
し、更にその上部に所定のパターンの厚さ4000人の
WSiからなる耐熱性のゲート電極6を形成する。そし
て、ゲート電極6をマスクとして先ずNH40H−11
202−1120のエツチング液でn型GaAsからな
る半導体層5のみを除去する。
In this embodiment, as shown in FIG. 2(a), a carrier density of about 1×10'4/C1 is grown by molecular beam epitaxial growth on a high-resistance substrate 1 made of GaAs of the ■-V group.
13. After forming a semiconductor layer 2 made of n-type GaAs with a thickness of 1 μm, an undoped AI layer 2 with a thickness of 300 layers is formed on this layer. Semiconductor layer 4 made of g, 5Ga, ), 5As and a thickness of 200 carriers concentration x 1018 pieces/c
A semiconductor layer 5 made of n-type GaAs of ra' is sequentially formed, and a heat-resistant gate electrode 6 made of WSi having a thickness of 4000 nm in a predetermined pattern is further formed on top of the semiconductor layer 5. Then, using the gate electrode 6 as a mask, first NH40H-11
Only the semiconductor layer 5 made of n-type GaAs is removed using an etching solution No. 202-1120.

次に、第2図(b)に示すように、厚さ3000人のS
iO□膜10全10して覆った後、パターニングしてゲ
ート電極6、ソース及びドレイン形成領域上を開口する
Next, as shown in Figure 2(b), the S
After covering the entire iO□ film 10, patterning is performed to form openings over the gate electrode 6, source and drain formation regions.

次に、第2図(C)に示すように、ゲート電極6及び5
i02膜10をマスクとして^l o、5Gag、5A
sからなる半導体層4のみを、A2の組成比が0.4以
上であることを利用して、H3PO4−8202のエツ
チング液を用い除去し、n型GaAs層からなる半導体
層2の表面を露出する。
Next, as shown in FIG. 2(C), the gate electrodes 6 and 5
Using i02 film 10 as a mask ^lo, 5Gag, 5A
Only the semiconductor layer 4 made of s is removed using an etching solution of H3PO4-8202, taking advantage of the fact that the composition ratio of A2 is 0.4 or more, and the surface of the semiconductor layer 2 made of an n-type GaAs layer is exposed. do.

次に、第2図(d)に示すように、耐熱性のゲート電極
6とSiO□膜10全10クとして、半導体層2の上に
、Seを不純物として600℃で選択再成長を行い、厚
さ1000人、キャリヤ濃度1x 1 () 19個/
C112のn型GaAsからなる半導体層7を形成する
Next, as shown in FIG. 2(d), a heat-resistant gate electrode 6 and a SiO□ film 10 are selectively regrown on the semiconductor layer 2 at 600° C. with Se as an impurity. Thickness 1000, carrier concentration 1x 1 () 19 pieces/
A semiconductor layer 7 made of C112 n-type GaAs is formed.

最後に、不純物層7の上に所定のパターンのAuGe合
金層を堆積すると共に不純物層7のGaAsとの間を合
金化することによってソース及びドレイン電極8及び9
を形成すれば、第1図に示すようなFETができる。
Finally, an AuGe alloy layer with a predetermined pattern is deposited on the impurity layer 7 and the impurity layer 7 is alloyed with GaAs to form source and drain electrodes 8 and 9.
By forming this, an FET as shown in FIG. 1 can be obtained.

この例では、半導体層4を、選択エツチングによって除
去するので、半導体層2の表面で自動的に停止しエツチ
ングの再現性が非常に良い。
In this example, since the semiconductor layer 4 is removed by selective etching, the etching automatically stops at the surface of the semiconductor layer 2 and the reproducibility of the etching is very good.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、半導体層2上にソース及
びドレインの高濃度の不純物層7を設けることにより、
ソース抵抗が小さくかつ短チヤネル効果による特性劣化
を起こさない微細な構造で高性能のFETが実現できる
という効果がある。
As explained above, the present invention provides high concentration impurity layers 7 for the source and drain on the semiconductor layer 2.
This has the advantage that a high-performance FET can be realized with a fine structure that has a small source resistance and does not suffer from characteristic deterioration due to the short channel effect.

又、この構造を実現する方法として半導体層2と半導体
層4とのエツチング液に対する選択性を利用して第2の
半導体層をエツチングすると共に選択再成長で高濃度の
不純物層を形成することにより、ソース抵抗の小さい高
性能のFETが再現性よく製造できるという効果もある
In addition, as a method for realizing this structure, the second semiconductor layer is etched using the selectivity of the semiconductor layer 2 and the semiconductor layer 4 with respect to the etching solution, and a highly concentrated impurity layer is formed by selective regrowth. Another advantage is that high-performance FETs with low source resistance can be manufactured with good reproducibility.

更に又、本発明を、I−V族化合物の高抵抗基板1とし
てFeドープのInP 、半導体層2として高純度ke
 0.48caO−52Asを5000人及び高純度G
ao、471ng、53Asを1000人、半導体層4
として高純度A!!0.48”ao、52Asを30.
0人、不純物層5としてSiをドープした2 X 10
18cra−’、n型Gao、471no、53As及
び不純物層7としてSiをドープした4X1018cI
l−3、n型Ga、)、47In、)、53Asを用い
たFETに適用した場合にも、同様の効果が認められた
Furthermore, the present invention can be applied to Fe-doped InP as the high-resistance substrate 1 of the IV group compound, and high-purity ke as the semiconductor layer 2.
0.48caO-52As 5000 people and high purity G
ao, 471ng, 53As for 1000 people, semiconductor layer 4
As high purity A! ! 0.48”ao, 52As to 30.
0, 2×10 doped with Si as impurity layer 5
18cra-', n-type Gao, 471no, 53As and 4X1018cI doped with Si as impurity layer 7
Similar effects were observed when applied to FETs using 1-3, n-type Ga, ), 47In, ), and 53As.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のFETの一実施例の模式的断面図、第
2図(a)〜(d)は本発明のFETの製造方法の一実
施例を説明するための工程順に示した半導体チップの模
式的断面図、第3図は従来のFETの一例の模式的断面
図である。 1・・・高抵抗基板、2・・・半導体層、3・・・二次
元電子チャネル、4・・・半導体層、5・・・不純物層
、6・・・ゲート電極、7.7′・・・不純物層、8.
8′・・・ソース電極、9.9′・・・ドレイン電極、
10・・・SiO□膜。 第1 図 *3 回
FIG. 1 is a schematic cross-sectional view of an embodiment of the FET of the present invention, and FIGS. 2(a) to 2(d) are semiconductors shown in order of steps for explaining an embodiment of the FET manufacturing method of the present invention. A schematic cross-sectional view of the chip, FIG. 3 is a schematic cross-sectional view of an example of a conventional FET. DESCRIPTION OF SYMBOLS 1... High resistance substrate, 2... Semiconductor layer, 3... Two-dimensional electron channel, 4... Semiconductor layer, 5... Impurity layer, 6... Gate electrode, 7.7'. ... impurity layer, 8.
8'...source electrode, 9.9'...drain electrode,
10...SiO□ film. Figure 1 *3 times

Claims (2)

【特許請求の範囲】[Claims] (1)高抵抗基板上に堆積した高純度の第1の半導体層
と、該第1の半導体層上に堆積した前記第1の半導体層
より電子親和力の小さい半導体層を含む所定のパターン
の第2の半導体層と、該第2の半導体層上に形成したゲ
ートと、前記第2の半導体層を挟み前記第1の半導体層
上に選択的に堆積した高濃度の不純物層からなるソース
及びドレインとを含むことを特徴とする電界効果トラン
ジスタ。
(1) A first semiconductor layer of a predetermined pattern including a high-purity first semiconductor layer deposited on a high-resistance substrate and a semiconductor layer having a lower electron affinity than the first semiconductor layer deposited on the first semiconductor layer. a source and drain consisting of a second semiconductor layer, a gate formed on the second semiconductor layer, and a high concentration impurity layer selectively deposited on the first semiconductor layer with the second semiconductor layer in between. A field effect transistor comprising:
(2)高抵抗基板上に順次堆積した高純度の第1の半導
体層及び該第1の半導体層より電子親和力の小さい半導
体層を含む第2の半導体層の上に所定のパターンのゲー
トを形成する工程と、該ゲートをマスクとして前記第2
の半導体層を除去して前記第1の半導体層表面を露出す
る工程と、前記第1の半導体層表面の露出した部分に高
濃度の不純物層からなるソース及びドレインを形成する
工程とを含むことを特徴とする電界効果トランジスタの
製造方法。
(2) A gate in a predetermined pattern is formed on a high-purity first semiconductor layer and a second semiconductor layer including a semiconductor layer having a lower electron affinity than the first semiconductor layer, which are sequentially deposited on a high-resistance substrate. and using the gate as a mask.
the step of removing the semiconductor layer to expose the surface of the first semiconductor layer; and the step of forming a source and a drain made of a highly concentrated impurity layer on the exposed portion of the surface of the first semiconductor layer. A method for manufacturing a field effect transistor characterized by:
JP61235634A 1986-10-02 1986-10-02 Field effect transistor and manufacture thereof Pending JPS6390172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61235634A JPS6390172A (en) 1986-10-02 1986-10-02 Field effect transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61235634A JPS6390172A (en) 1986-10-02 1986-10-02 Field effect transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6390172A true JPS6390172A (en) 1988-04-21

Family

ID=16988925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61235634A Pending JPS6390172A (en) 1986-10-02 1986-10-02 Field effect transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6390172A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350744A (en) * 1989-07-18 1991-03-05 Hitachi Cable Ltd Manufacture of field-effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350744A (en) * 1989-07-18 1991-03-05 Hitachi Cable Ltd Manufacture of field-effect transistor

Similar Documents

Publication Publication Date Title
US5798540A (en) Electronic devices with InAlAsSb/AlSb barrier
JP2604349B2 (en) Semiconductor device
JPS61121369A (en) Semiconductor device
JPH024140B2 (en)
JP3177951B2 (en) Field effect transistor and method of manufacturing the same
JPH10209434A (en) Heterojunction field effect transistor and method of manufacturing the same
JP3368449B2 (en) Semiconductor device and manufacturing method thereof
JP3119248B2 (en) Field effect transistor and method of manufacturing the same
JP2002009253A (en) Semiconductor device and its manufacturing method
JPS6390172A (en) Field effect transistor and manufacture thereof
JP2723901B2 (en) Semiconductor device and its application circuit
JP3633587B2 (en) Manufacturing method of semiconductor device
JPS5828753B2 (en) Method of manufacturing vertical field effect transistor
JPH04277680A (en) Tunnel transistor and manufacture of the same
JP2551427B2 (en) Semiconductor device and manufacturing method thereof
JP2745624B2 (en) Method for manufacturing field effect transistor
JPH0523497B2 (en)
JP2611474B2 (en) Method for manufacturing compound semiconductor device
JP2776825B2 (en) Semiconductor device
JPH07297408A (en) Tunnel transistor and its manufacture
JP2695832B2 (en) Heterojunction field effect transistor
JPS6390865A (en) Manufacture of field-effect transistor
JPS60176275A (en) Integrated type semiconductor device
JPH07283396A (en) Heterojunction field-effect transistor
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof