[go: up one dir, main page]

JPS6386426A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPS6386426A
JPS6386426A JP22973786A JP22973786A JPS6386426A JP S6386426 A JPS6386426 A JP S6386426A JP 22973786 A JP22973786 A JP 22973786A JP 22973786 A JP22973786 A JP 22973786A JP S6386426 A JPS6386426 A JP S6386426A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
compound semiconductor
deposited
bpsg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22973786A
Other languages
Japanese (ja)
Inventor
Kazuya Nishibori
一弥 西堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22973786A priority Critical patent/JPS6386426A/en
Publication of JPS6386426A publication Critical patent/JPS6386426A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To reduce stress and to suppress the external diffusion of Ga and As from a GaAs substrate by a method wherein a laminated film, on which a PSG or BPSG film is deposited on the lower layer as a protective film and a plasma Si3N4 film is deposited on the upper layer, is used on the title semiconductor device. CONSTITUTION:An ion-implanted layer 12 is formed on a semiinsulating GaAs substrate 11 by implanting Si<+> ions. Then, a BPSG film 13 of 1000Angstrom or less in thickness is deposited by performing a CVD method. The concentration of B and the concentration of P of the BPSG film is set at 6% and 7% respectively, and the condition wherein a reflowing will be started at 700 deg.C is used. Then, after a plasma Si3N4 film 14 has been deposited, a heat treatment is performed in an N2 atmosphere. d.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は化合物半導体装置の製造方法に係り、特にGa
Asショットキーゲート型電界効果トランジスタ(ME
SFET)の製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a compound semiconductor device, and particularly relates to a method for manufacturing a compound semiconductor device.
As Schottky gate field effect transistor (ME
SFET) manufacturing method.

(従来の技術) GaAsデバイスは高周波増a器や発振器などを構成す
る個別半導体素子として広く使われている。
(Prior Art) GaAs devices are widely used as individual semiconductor elements constituting high frequency amplifiers, oscillators, and the like.

また最近ではGaAs高速論理回路やメモリの基本素、
  子としても重要な役割を果たしつつある。これらの
GaAsデバイスにおいては通常イオン注入によっ、 
 てドーパントをGaAs基板に打ち込み熱処理を行っ
てn型ないしはp型の活性層を形成する。例えばn型の
場合1代表的なドーパントはSLであり、この場合の熱
処理温度は750℃〜850℃程度必要である。
Recently, GaAs high-speed logic circuits and basic elements of memory,
They are also playing an important role as children. In these GaAs devices, ion implantation is usually used to
A dopant is implanted into the GaAs substrate and heat treatment is performed to form an n-type or p-type active layer. For example, in the case of n-type, a typical dopant is SL, and the heat treatment temperature in this case needs to be about 750°C to 850°C.

(発明が解決しようとする問題点) GaAs中にイオン注入されたドーパントを十分活性化
させるためには750℃以上で熱処理を行うことが必要
である。このような高温ではGaAs中のAsが解離し
てしまい良好な素子が作製できないので。
(Problems to be Solved by the Invention) In order to sufficiently activate the dopants ion-implanted into GaAs, it is necessary to perform heat treatment at 750° C. or higher. At such high temperatures, As in GaAs dissociates, making it impossible to produce a good device.

保護膜を堆積して熱処理を行うのが普通である。It is common to deposit a protective film and perform heat treatment.

この保護膜としてはCVD Sin、膜が広く知られて
いるが、アニール時GaAsからGaが5in2膜を通
して外部拡散するのが問題である。リンやボロンをSi
n。
CVD Sin film is widely known as this protective film, but the problem is that Ga from GaAs diffuses out through the 5in2 film during annealing. Phosphorus and boron are Si
n.

にドーピングして高温でリフローするようにしたPSG
膜、 BPSG膜の場合にも、 このような事情は変ら
ない、  RFプラズマ成長によるSL3N、膜もGa
Asのアニール保護膜に用いられる。  Si3N4膜
の場合はGaAsからのGaやAsの外部拡散は全くな
く、そのブロッキング効果は優れたものがある。しかし
、膨張係数がGaAsと異なるこの膜をプラズマ成長な
どのような比較的低温で成長した場合、高温アニール時
、膜と結晶間での大きな応力のため、膜に気泡やクラッ
クが発生、膜ははげやすくなる。
PSG is doped and reflowed at high temperature.
This situation does not change in the case of the BPSG film, SL3N film grown by RF plasma, and the film is also made of Ga.
Used as an annealing protective film for As. In the case of the Si3N4 film, there is no outward diffusion of Ga or As from GaAs, and its blocking effect is excellent. However, when this film, which has a different coefficient of expansion than GaAs, is grown at a relatively low temperature such as by plasma growth, bubbles and cracks occur in the film due to the large stress between the film and the crystals during high-temperature annealing. It becomes easy to bald.

本発明は上記の如き難点を解決し、応力が小さくしかも
GaAs基板からGaやAsの外部拡散を抑制できるG
aAsデバイスの製造方法を提供することを目的とする
The present invention solves the above-mentioned difficulties and provides a G
The present invention aims to provide a method for manufacturing an aAs device.

(発明の構成〕 (問題点を解決するための手段) 本発明はGaAs基板にイオン注入を行い、保護膜を堆
積して熱処理することにより活性層を形成する工程を含
むGaAsデバイス製造方法において、前記保ill膜
としてPSGないしはBPSGIIlKを下層に、プラ
ズマ5i3N4 gを上層に堆積した積層膜を用いるこ
とを特徴とする。
(Structure of the Invention) (Means for Solving the Problems) The present invention provides a GaAs device manufacturing method including a step of implanting ions into a GaAs substrate, depositing a protective film, and forming an active layer by heat treatment. The present invention is characterized in that a laminated film in which PSG or BPSG IIlK is deposited as a lower layer and plasma 5i3N4g is deposited as an upper layer is used as the illumination film.

(作 用) 本発明によれば、 プラズマ5xaN4vAとGaAs
基板との間に高温でリフローする膜を極く薄くはさんで
やることにより、 GaAs基板とプラズマSi、 N
、膜の膨張係数の差から生じる応力を緩和することがで
きるので、 GaASからGaやAsの外部拡散を抑止
したままはがれやクラックの生じない保護膜でアニール
することが可能になる。
(Function) According to the present invention, plasma 5xaN4vA and GaAs
By sandwiching an extremely thin film that reflows at high temperature between the substrate and the substrate, the GaAs substrate and plasma Si, N
Since the stress caused by the difference in expansion coefficients of the films can be alleviated, it becomes possible to anneal with a protective film that does not peel or crack while suppressing the external diffusion of Ga and As from GaAS.

(実施例) 以下第1図(8)〜(C)を参照して本発明の詳細な説
明する。
(Example) The present invention will be described in detail below with reference to FIGS. 1(8) to 1(C).

まず第1図(a)に示すように半絶縁性GaAs基板1
1にSL十のイオン注入により、イオン注入層12を形
成する0次に第1図(b)に示すようにBPSG膜13
を700人、 CVD法により堆積する。 BPSG膜
のB′a度。
First, as shown in FIG. 1(a), a semi-insulating GaAs substrate 1
As shown in FIG. 1(b), an ion-implanted layer 12 is formed by ion implantation of SL0 in 1. As shown in FIG.
700 people, deposited by CVD method. B'a degree of BPSG film.

P濃度は6%、7%とし、700℃ですでにリフローが
始まるような条件を用いる0次に第1図(c)に示すよ
うにプラズマSi、 N4膜14を2000人堆積した
後3N2雰囲気中で800℃60分間の熱処理を行う。
The P concentration was set to 6% and 7%, and the conditions were such that reflow already started at 700°C.After depositing 2000 plasma Si and N4 films 14 as shown in FIG. 1(c), a 3N2 atmosphere was used. Heat treatment is performed at 800° C. for 60 minutes in the inside.

第2図は上層膜の5i3Ns [の膜厚を2000人に
固定し、下層のBPSG膜13を100人、300人、
700人。
In Figure 2, the thickness of the upper layer 5i3Ns is fixed at 2000, and the thickness of the lower BPSG film 13 is 100, 300,
700 people.

2000人、 5000人と変化させて、n型活性層の
シート抵抗を測定したものである。イオン注入条件は、
180KeVの3 X 10’″a1−”とした、 B
PSGIII 100人では。
The sheet resistance of the n-type active layer was measured by changing the number of people to 2,000 and 5,000 people. The ion implantation conditions are
3 x 10'''a1-'' of 180 KeV, B
PSGIII 100 people.

膜にクラックを生じ、300人では気泡がII察された
。また膜厚を2000Å以上にすると、BPSGII中
へのGaの拡散によると想われるシート抵抗の減少が見
られた。従ってSi、 N4膜と基板の間にはさむ膜は
少なくとも1000Å以下である必要がある。
Cracks occurred in the membrane, and bubbles were observed in 300 people. Further, when the film thickness was increased to 2000 Å or more, a decrease in sheet resistance was observed, which was thought to be due to the diffusion of Ga into BPSGII. Therefore, the thickness of the film sandwiched between the Si or N4 film and the substrate must be at least 1000 Å or less.

第3図はSi、 N、膜と基板の間にはさむ膜として。Figure 3 shows Si, N, as a film sandwiched between the film and the substrate.

5in2膜を用いた場合と、BPSG膜を用いた場合の
キャリア濃度プロファイルを比較したものである。
The carrier concentration profiles are compared when a 5in2 film is used and when a BPSG film is used.

熱処理条件などは前と同じである。各々の場合について
上層Si、 N、膜の膜厚を1000人、 2000人
The heat treatment conditions etc. are the same as before. In each case, the thickness of the upper layer Si, N, and film was 1000 and 2000.

4000人と変化させ、S10.膜とBPSG膜は50
0人一定とした* Sio、膜を用いた場合、キャリア
濃度プロファイルにSi3N、膜の膜厚依存性が認めら
れるのに対し、BPSG膜を用いた場合にはSi、 N
4膜厚依存性が小さくなっている。これはBPSG膜が
上層の81J4膜の応力を緩和していることを示してい
るためと考えられる。
Changed to 4000 people, S10. The membrane and BPSG membrane are 50
*When using a Sio film, the carrier concentration profile is dependent on Si3N and film thickness, whereas when using a BPSG film, Si, N
4. Dependency on film thickness is small. This is considered to be because the BPSG film relaxes the stress of the upper 81J4 film.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように本発明によれば、GaAsデバイ
スの熱処理保護膜としてキャップ効果や電気的特性に優
れたものを得ることができる。
As explained above, according to the present invention, it is possible to obtain a heat-treated protective film for GaAs devices that has excellent capping effects and electrical characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明する為の工程断面図、
第2図及び第3図は本発明の効果を活性層の電気的特性
により説明する為の図である。 11・・・半絶縁性GaAs基板 12・・・イオン注入層 13・・・BPSG膜 14・・・Si3N、膜 代理人 弁理士  則 近 憲 佑 同     竹 花 喜久男 C(aIQs遵猥 第1図 Bpsrr腋屡(スフ 第2図 0  0、I   Q2 0.j   O,4−0,5
060,7D五P7H(%aン 第  3  図
FIG. 1 is a process sectional view for explaining one embodiment of the present invention.
FIGS. 2 and 3 are diagrams for explaining the effects of the present invention using the electrical characteristics of the active layer. 11... Semi-insulating GaAs substrate 12... Ion implantation layer 13... BPSG film 14... Si3N, film agent Patent attorney Nori Chika Yudo Kikuo Takehana C (aIQs Junshi Figure 1 Bpsrr Armpit (Sufu 2 0 0, I Q2 0.j O, 4-0, 5
060,7D5P7H (%a Figure 3

Claims (4)

【特許請求の範囲】[Claims] (1)化合物半導体基板にドーパントのイオン注入を行
った後、これに保護膜を堆積して熱処理を行う工程を含
む化合物半導体装置の製造方法において、前記保護膜に
PSG膜ないしはBPSG膜とSi_3N_4膜の二重
層を用いることを特徴とする化合物半導体装置の製造方
法。
(1) In a method for manufacturing a compound semiconductor device, which includes a step of implanting dopant ions into a compound semiconductor substrate, depositing a protective film thereon, and performing heat treatment, the protective film includes a PSG film or a BPSG film and a Si_3N_4 film. 1. A method for manufacturing a compound semiconductor device characterized by using a double layer of.
(2)前記保護膜は、下層がPSGないしはBPSG膜
、上層がSi_3N_4膜であることを特徴とする特許
請求の範囲第1項記載の化合物半導体装置の製造方法。
(2) The method for manufacturing a compound semiconductor device according to claim 1, wherein the protective film has a PSG or BPSG film as a lower layer and a Si_3N_4 film as an upper layer.
(3)前記PSGないしはBPSG膜は700℃以上で
リフローすることを特徴とする特許請求の範囲第2項記
載の化合物半導体装置の製造方法。
(3) The method for manufacturing a compound semiconductor device according to claim 2, wherein the PSG or BPSG film is reflowed at a temperature of 700° C. or higher.
(4)前記PSGないしはBPSG膜は1000Å以下
であることを特徴とする特許請求の範囲第1項記載の化
合物半導体装置の製造方法。
(4) The method for manufacturing a compound semiconductor device according to claim 1, wherein the PSG or BPSG film has a thickness of 1000 Å or less.
JP22973786A 1986-09-30 1986-09-30 Manufacture of compound semiconductor device Pending JPS6386426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22973786A JPS6386426A (en) 1986-09-30 1986-09-30 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22973786A JPS6386426A (en) 1986-09-30 1986-09-30 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS6386426A true JPS6386426A (en) 1988-04-16

Family

ID=16896897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22973786A Pending JPS6386426A (en) 1986-09-30 1986-09-30 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS6386426A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218009A (en) * 1991-10-30 1993-08-27 Samsung Electron Co Ltd Formation method of interlayer insulating film of semiconductor device
US5652187A (en) * 1991-10-30 1997-07-29 Samsung Electronics Co., Ltd. Method for fabricating doped interlayer-dielectric film of semiconductor device using a plasma treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218009A (en) * 1991-10-30 1993-08-27 Samsung Electron Co Ltd Formation method of interlayer insulating film of semiconductor device
US5405489A (en) * 1991-10-30 1995-04-11 Samsung Electronics Co., Ltd. Method for fabricating an interlayer-dielectric film of a semiconductor device by using a plasma treatment prior to reflow
US5652187A (en) * 1991-10-30 1997-07-29 Samsung Electronics Co., Ltd. Method for fabricating doped interlayer-dielectric film of semiconductor device using a plasma treatment

Similar Documents

Publication Publication Date Title
CN101176194B (en) Semiconductor device and method for manufacturing same
KR19990072884A (en) Method for producing a polycrystalline silicon structure
US4057824A (en) P+ Silicon integrated circuit interconnection lines
JPS6386426A (en) Manufacture of compound semiconductor device
JPH0521448A (en) Method for manufacturing semiconductor device
US6440829B1 (en) N-profile engineering at the poly/gate oxide and gate oxide/SI interfaces through NH3 annealing of a layered poly/amorphous-silicon structure
CA1131797A (en) Fabrication of a semiconductor device in a simulated epitaxial layer
JPH0443646A (en) Semiconductor device and its preparation
JPS63236310A (en) Semiconductor device and manufacture thereof
JPH01151232A (en) Manufacture of semiconductor device
JPS60137072A (en) Manufacturing method of junction field effect transistor
JPH03205820A (en) Manufacture of semiconductor device
JPS63124520A (en) Manufacture of semiconductor device
JPS61121326A (en) Manufacture of semiconductor device
JPH023916A (en) Manufacture of semiconductor device
JPH0533527B2 (en)
JPH03265131A (en) Manufacture of semiconductor device
JPH02208940A (en) Manufacture of semiconductor device
JPS5954222A (en) Manufacture of semiconductor device
JPH0494120A (en) Manufacturing method of semiconductor device
JPS58148462A (en) Manufacture of compound semiconductor memory element
JPH02224326A (en) Manufacture of semiconductor device
JPS61156820A (en) Manufacture of semiconductor device
JPS62177930A (en) High speed oxidation method for semiconductor substrate
JPH0547693A (en) Manufacture of semiconductor element