[go: up one dir, main page]

JPS63124520A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63124520A
JPS63124520A JP27117486A JP27117486A JPS63124520A JP S63124520 A JPS63124520 A JP S63124520A JP 27117486 A JP27117486 A JP 27117486A JP 27117486 A JP27117486 A JP 27117486A JP S63124520 A JPS63124520 A JP S63124520A
Authority
JP
Japan
Prior art keywords
layer
polycrystalline silicon
silicon layer
ions
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27117486A
Other languages
Japanese (ja)
Inventor
Masaaki Ohira
正明 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27117486A priority Critical patent/JPS63124520A/en
Publication of JPS63124520A publication Critical patent/JPS63124520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To reduce the irregularity of electric characteristics of a semiconductor device by once damaging a crystal of silicon by implanting rare gas ions, and then again returning it by a short time heat treatment to a polycrystal, thereby making uniform crystal grain sizes of a polycrystalline silicon layer. CONSTITUTION:A polycrystalline silicon layer 5 is formed on a semiconductor wafer 10 by a vapor phase growth method, and argon ions 11 are then implanted to the layer 5. Then, the ions 11 are implanted in a normal distribution state into the layer 5 to damage the crystal of the layer 4 to convert it to an amorphous silicon layer 7. Then, when a halogen lamp is irradiated for a short time in argon gas to anneal it, the layer 7 is returned to a polycrystalline silicon layer 8 with a uniform bonding strength of crystal grain size and atoms. Further, n-type impurity ions 12 are similarly implanted into the layer 8 to perform similar heat treatment in argon gas. The layer 8 becomes an n-type polycrystalline silicon layer 9 by this heat treatment, and the part adjacent to the layer 9 in the layer 4 forms an n-type impurity layer 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a semiconductor device.

〔従来の技術〕[Conventional technology]

近来の半導体ICの高性能化および高集積化にともない
、多結晶シリコン技術が広く用いられてきた。
2. Description of the Related Art Polycrystalline silicon technology has been widely used as semiconductor ICs have become more sophisticated and highly integrated in recent years.

第2図(a)及び(b)は、従来の半導体装置の製造方
法を説明するための工程順に示した半導体チップの断面
図である。
FIGS. 2(a) and 2(b) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a conventional method of manufacturing a semiconductor device.

第2図(a)に示すように、半導体ウェーハ10は、半
導体p形基板1の上にコレクタ領域となるn型不純物層
をエピタキシアル成長法により形成した後、LOCO3
法によってシリコン酸化膜3を形成し、その後ベース領
域となるp彫工鈍物層4を形成し、さらにホトリソグラ
フィ技術を用いてエミッタ領域となる部分を開孔する工
程で形成される。
As shown in FIG. 2(a), the semiconductor wafer 10 is manufactured by forming an n-type impurity layer that will become a collector region on the semiconductor p-type substrate 1 by epitaxial growth, and then using LOCO3.
It is formed by forming a silicon oxide film 3 by a method, then forming a p-etching blunt layer 4 which will become a base region, and then opening a hole in a portion which will become an emitter region using photolithography technology.

次に、気相成長工程によって150nm程度の厚さの多
結晶シリコン層5を半導体ウェーハ10の表面に形成す
る。
Next, a polycrystalline silicon layer 5 with a thickness of about 150 nm is formed on the surface of the semiconductor wafer 10 by a vapor phase growth process.

第2図(b)に示すように、この多結晶シリコン層5に
n彫工鈍物イオン12を注入し、その後に不活性ガス中
で熱処理を行い多結晶シリコン層5をn形多結晶シリコ
ン層9に形成すると同時に、p彫工鈍物層4の間にエミ
ッタ領域となるn彫工鈍物領域6を形成する。
As shown in FIG. 2(b), n-type carving blunt ions 12 are implanted into this polycrystalline silicon layer 5, and then heat treatment is performed in an inert gas to transform the polycrystalline silicon layer 5 into an n-type polycrystalline silicon layer. At the same time as the formation of the N-carving blunt region 9, an N-carving blunt region 6 which will become an emitter region is formed between the P-carving blunt layer 4.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体装置の製造方法は、多結晶シリコ
ン層形成時の気相成長工程の条件及びシリコン基板の結
晶状態によって、多結晶シリコン層中の結晶粒径及びシ
リコン原子の結合力が大きく変るので、多結晶シリコン
中の拡散係数は大きく変化する。
In the conventional semiconductor device manufacturing method described above, the crystal grain size and the bonding strength of silicon atoms in the polycrystalline silicon layer vary greatly depending on the conditions of the vapor phase growth process when forming the polycrystalline silicon layer and the crystalline state of the silicon substrate. Therefore, the diffusion coefficient in polycrystalline silicon varies greatly.

この多結晶シリコン層に不純物イオンを注入し、そして
加熱して形成されたー導電形多結晶シリコン層及び隣接
するシリコン基板内の同−導電形不純物領域の素子特性
値がばらつき、品質及び歩留低下という問題があった。
Implanting impurity ions into this polycrystalline silicon layer and heating it to form a conductive polycrystalline silicon layer and the same conductive type impurity region in the adjacent silicon substrate have variations in device characteristic values, resulting in poor quality and yield. There was a problem of decline.

本発明の目的は、多結晶シリコン層の結晶粒径の均一化
を図り、電気的特性のばらつきを小さくした半導体装置
の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a semiconductor device in which the crystal grain size of a polycrystalline silicon layer is made uniform and variations in electrical characteristics are reduced.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、不純物領域及び該不
純物領域との接触開口部を有する絶縁膜が形成されてい
る半導体ウェーハ上に多結晶シリコン層を堆積する工程
と、希ガスイオンを注入して前記多結晶シリコン層を非
結晶層に変換せしめる工程と、不活性ガス中で熱処理し
て前記非結晶シリコン層を多結晶シリコン層に変換せし
める工程とを有している。
The method for manufacturing a semiconductor device of the present invention includes the steps of depositing a polycrystalline silicon layer on a semiconductor wafer on which an impurity region and an insulating film having a contact opening with the impurity region are formed, and implanting rare gas ions. and a step of converting the amorphous silicon layer into a polycrystalline silicon layer by heat treatment in an inert gas.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(d)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図である。
FIGS. 1(a) to 1(d) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining one embodiment of the present invention.

まず、第1図(a>に示すように、半導体ウェーハ10
は、第2図(a)の半導体ウェーハ10と同一であり、
前述の従来の工程で形成される。
First, as shown in FIG. 1(a), a semiconductor wafer 10
is the same as the semiconductor wafer 10 in FIG. 2(a),
It is formed using the conventional process described above.

さらに気相成長法を用いて、半導体ウェーハ10の表面
に150nm程度の厚さの多結晶シリコン層5を形成す
る。
Furthermore, a polycrystalline silicon layer 5 with a thickness of about 150 nm is formed on the surface of the semiconductor wafer 10 using a vapor phase growth method.

次に、第1図(b)に示すように、ドーズ量6×104
オン/c112.加速エネルギー70keVの條件で、
多結晶シリコン層5にアルゴンイオン11を注入する。
Next, as shown in FIG. 1(b), the dose amount is 6×104
On/c112. Under the condition of acceleration energy 70keV,
Argon ions 11 are implanted into the polycrystalline silicon layer 5.

そこで、多結晶シリコン層5の内部に、表面から飛行程
Rpが69.2nmで標準偏差σp 29.2nmの正
規分布状にアルゴンイオン13が打込まれて、多結晶シ
リコン層5の結晶が壊されて非晶質シリコン層7に変換
する。
Therefore, argon ions 13 are implanted into the polycrystalline silicon layer 5 in a normal distribution with a flight distance Rp of 69.2 nm from the surface and a standard deviation σp of 29.2 nm, and the crystals of the polycrystalline silicon layer 5 are destroyed. and converted into an amorphous silicon layer 7.

次に、第1図(C)に示すように、アルゴンガス中でハ
ロゲンランプを短時間照射して、900℃で10秒間の
アニールを行うと、非晶質シリコン層は結晶粒径と原子
の結合力の均一な多結晶シリコン層8に戻される。
Next, as shown in Figure 1 (C), when annealing is performed at 900°C for 10 seconds by irradiating a halogen lamp in argon gas for a short time, the amorphous silicon layer is It is returned to the polycrystalline silicon layer 8 with uniform bonding strength.

さらに、第1図(d)に示すように、この多結晶シリコ
ン層8にn彫工鈍物イオン12を注入し、ついで同じく
アルゴンガス中で従来と同じ温度と時間の熱処理を行う
Furthermore, as shown in FIG. 1(d), n-carving blunt ions 12 are implanted into this polycrystalline silicon layer 8, and then heat treatment is performed in the same argon gas at the same temperature and time as the conventional method.

この熱処理により多結晶シリコン層8はn形多結晶シリ
コン層9となり、またp彫工鈍物層4内のn形多結晶シ
リコン層9に隣接した部分はn彫工鈍物層6を形成する
Through this heat treatment, the polycrystalline silicon layer 8 becomes an n-type polycrystalline silicon layer 9, and a portion of the p-type carving blunt layer 4 adjacent to the n-type polycrystalline silicon layer 9 forms an n-type carving blunt layer 6.

本実施例によって形成された多結晶シリコン層8は従来
の多結晶シリコン層5に比べて結晶状態が均一で、従っ
て拡散係数も均一となるために、n形多結晶シリコン層
9の抵抗特性も、またバイポーラトランジスタのエミッ
タ領域となるn彫工鈍物層6の特性も均一となる。
The polycrystalline silicon layer 8 formed according to this embodiment has a more uniform crystal state than the conventional polycrystalline silicon layer 5, and therefore has a uniform diffusion coefficient, so that the resistance characteristics of the n-type polycrystalline silicon layer 9 also improve. Furthermore, the characteristics of the N-carving blunt layer 6, which becomes the emitter region of the bipolar transistor, also become uniform.

なお上述の実施例において、バイポーラトランジスタの
製造工程を説明したが、半導体ウェーハ10の上層に絶
縁層を有する半導体基板として、その表面の多結晶シリ
コン層に本発明を適用しても良い。
Although the manufacturing process of a bipolar transistor has been described in the above embodiment, the present invention may be applied to a polycrystalline silicon layer on the surface of the semiconductor wafer 10 as a semiconductor substrate having an insulating layer as an upper layer.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、希ガスのイオン
注入によりシリコンの結晶を一旦壊し、次に短時間熱処
理で再び多結晶に戻すことで、結晶粒径と結合力の均一
な多結晶シリコン層が得られ、不純物拡散を均一にする
ことにより、拡散に起因する素子特性のばらつきを小さ
くできる効果がある。
As explained above, according to the present invention, silicon crystals are once broken by rare gas ion implantation, and then returned to polycrystalline form by short-term heat treatment. A silicon layer is obtained and impurity diffusion is made uniform, which has the effect of reducing variations in device characteristics caused by diffusion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の一実施例を説明するた
めの工程順に示した半導体チップの断面図、第2図(a
>及び(b)は従来の半導体装置の製造方法を説明する
ための工程順に示した半導体チップの断面図である。 1・・・p形半導体基板、2・・・n彫工鈍物層、3・
・・シリコン酸化膜、4・・・p彫工鈍物層、5・・・
多結晶シリコン、6・・・n彫工鈍物層、7・・・非晶
質シリコン°層、8・・・多結晶シリコン層、9・・・
n形多結晶シリコン層、10・・・半導体ウェーハ、1
1・・・アルゴンイオン、12・・・n彫工鈍物イオン
。 呵1回
1(a) to 1(d) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining one embodiment of the present invention, and FIG. 2(a)
> and (b) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a conventional method of manufacturing a semiconductor device. DESCRIPTION OF SYMBOLS 1...p-type semiconductor substrate, 2...n carving blunt layer, 3...
...Silicon oxide film, 4...P carving blunt layer, 5...
Polycrystalline silicon, 6...n carving blunt layer, 7... amorphous silicon ° layer, 8... polycrystalline silicon layer, 9...
n-type polycrystalline silicon layer, 10... semiconductor wafer, 1
1...Argon ion, 12...n carver's blunt ion. 1 time

Claims (1)

【特許請求の範囲】[Claims]  不純物領域及び該不純物領域との接触開口部を有する
絶縁膜が形成されている半導体ウェーハ上に多結晶シリ
コン層を堆積する工程と、希ガスイオンを注入して前記
多結晶シリコン層を非結晶層に変換せしめる工程と、不
活性、ガス中で熱処理して前記非結晶シリコン層を多結
晶シリコン層に変換せしめる工程とを含むことを特徴と
する半導体装置の製造方法。
Depositing a polycrystalline silicon layer on a semiconductor wafer on which an insulating film having an impurity region and a contact opening with the impurity region is formed, and converting the polycrystalline silicon layer into an amorphous layer by implanting rare gas ions. 1. A method for manufacturing a semiconductor device, comprising the steps of converting the amorphous silicon layer into a polycrystalline silicon layer by heat treatment in an inert gas atmosphere.
JP27117486A 1986-11-14 1986-11-14 Manufacture of semiconductor device Pending JPS63124520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27117486A JPS63124520A (en) 1986-11-14 1986-11-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27117486A JPS63124520A (en) 1986-11-14 1986-11-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63124520A true JPS63124520A (en) 1988-05-28

Family

ID=17496372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27117486A Pending JPS63124520A (en) 1986-11-14 1986-11-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63124520A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151018A (en) * 1986-12-16 1988-06-23 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
US5137839A (en) * 1990-05-28 1992-08-11 Kabushiki Kaisha Toshiba Method of manufacturing a bipolar transistor having polysilicon layer which serves as an emitter electrode and passivating dangling bonds
JPH06318559A (en) * 1993-05-07 1994-11-15 Hitachi Ltd Manufacture of semiconductor device by high energy ion implantation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151018A (en) * 1986-12-16 1988-06-23 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
US5137839A (en) * 1990-05-28 1992-08-11 Kabushiki Kaisha Toshiba Method of manufacturing a bipolar transistor having polysilicon layer which serves as an emitter electrode and passivating dangling bonds
JPH06318559A (en) * 1993-05-07 1994-11-15 Hitachi Ltd Manufacture of semiconductor device by high energy ion implantation

Similar Documents

Publication Publication Date Title
EP0165971B1 (en) Method of making a bipolar junction transistor
JP3184320B2 (en) Diamond field effect transistor
JPS58182259A (en) Method of forming polysilicon resistor
JPH0777259B2 (en) Method for manufacturing polycrystalline silicon resistor having desired temperature coefficient
JPS62203380A (en) Semiconductor device and manufacture of the same
US6001711A (en) Process of fabricating semiconductor device having gettering site layer between insulating layer and active semiconductor layer
JPH05308069A (en) Method of manufacturing embedded insulation layer
US6686255B2 (en) Amorphizing ion implant local oxidation of silicon (LOCOS) method for forming an isolation region
JPS63124520A (en) Manufacture of semiconductor device
US5382549A (en) Method of manufacturing polycrystalline silicon having columnar orientation
JPS6325508B2 (en)
JPH0645340A (en) Semiconductor device and manufacturing method thereof
JPS6095969A (en) Manufacturing method of semiconductor integrated circuit
JPH0212924A (en) Manufacture of bipolar transistor
JPH0193132A (en) Manufacture of semiconductor device
JPS63236310A (en) Semiconductor device and manufacture thereof
JP3359925B2 (en) Method for manufacturing semiconductor device
JP2797200B2 (en) Polycrystalline silicon electrode and method of manufacturing the same
JPH05259075A (en) Method for manufacturing semiconductor device
JPS63224324A (en) Manufacture of semiconductor device
JPS60175416A (en) Manufacture of semiconductor device
JPS6341029A (en) Manufacture of semiconductor device
JP3237800B2 (en) Semiconductor resistor manufacturing method
JPS60213019A (en) Manufacture of semiconductor device
JPH0350823A (en) Manufacture of semiconductor device