JPS6377749A - Surface-coated cermet dot wire - Google Patents
Surface-coated cermet dot wireInfo
- Publication number
- JPS6377749A JPS6377749A JP22247186A JP22247186A JPS6377749A JP S6377749 A JPS6377749 A JP S6377749A JP 22247186 A JP22247186 A JP 22247186A JP 22247186 A JP22247186 A JP 22247186A JP S6377749 A JPS6377749 A JP S6377749A
- Authority
- JP
- Japan
- Prior art keywords
- dot wire
- metals
- coated cermet
- dot
- cermet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011195 cermet Substances 0.000 title claims abstract description 15
- 239000010936 titanium Substances 0.000 claims abstract description 19
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 10
- 239000000956 alloy Substances 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 5
- 150000002739 metals Chemical class 0.000 claims abstract 4
- 229910052782 aluminium Inorganic materials 0.000 claims abstract 3
- 229910052802 copper Inorganic materials 0.000 claims abstract 3
- 239000012535 impurity Substances 0.000 claims abstract 2
- 239000011230 binding agent Substances 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 7
- 229910052702 rhenium Inorganic materials 0.000 claims description 4
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- -1 iron group metals Chemical class 0.000 claims 1
- 230000000737 periodic effect Effects 0.000 claims 1
- 230000007797 corrosion Effects 0.000 abstract description 14
- 238000005260 corrosion Methods 0.000 abstract description 14
- 239000011248 coating agent Substances 0.000 abstract description 4
- 238000000576 coating method Methods 0.000 abstract description 4
- 230000008878 coupling Effects 0.000 abstract 2
- 238000010168 coupling process Methods 0.000 abstract 2
- 238000005859 coupling reaction Methods 0.000 abstract 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract 1
- CYKMNKXPYXUVPR-UHFFFAOYSA-N [C].[Ti] Chemical compound [C].[Ti] CYKMNKXPYXUVPR-UHFFFAOYSA-N 0.000 abstract 1
- 239000002131 composite material Substances 0.000 abstract 1
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 abstract 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910000601 superalloy Inorganic materials 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910001067 superalloy steel Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/22—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material
- B41J2/23—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material using print wires
- B41J2/27—Actuators for print wires
- B41J2/28—Actuators for print wires of spring charge type, i.e. with mechanical power under electro-magnetic control
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/04—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
- Impact Printers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はドツトプリンターに使用される1−ツ1〜ワイ
ヤーにおける耐摩耗性、 iJ蝕性、耐欠損性の改善に
関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in the wear resistance, iJ corrosion resistance, and chipping resistance of 1-to-1 wires used in dot printers.
従来ドツトワイヤーとしてはハイス、炭化タングステン
(WC)超超硬合金が主に使用されている。ハイスはそ
の耐蝕性、耐摩耗性がWC基超超合今に比べ劣るため、
WCC超超硬合金移向しつつある。一方WC基超硬合金
はハイスに比へれば耐蝕性、耐摩耗性はあるもののイン
クの種類によってはi]蝕性が問題になる場合がある。Conventionally, high speed steel and tungsten carbide (WC) cemented carbide are mainly used as dot wires. Since high speed steel has inferior corrosion resistance and abrasion resistance compared to WC-based super-alloy steel,
There is a shift towards WCC cemented carbide. On the other hand, although WC-based cemented carbide has corrosion resistance and abrasion resistance compared to high speed steel, depending on the type of ink, corrosion resistance may become a problem.
又、比重が13〜14g/cnjと高く慣性力が大きく
プリントの高速化に追従し得ない欠点を持つ。In addition, it has a high specific gravity of 13 to 14 g/cnj, and has a large inertial force, making it unable to keep up with higher printing speeds.
本発明は上記WCC超超硬合金製ドツトワイヤー耐摩耗
性、耐蝕性を更に改良し、且つ、高速化へ追従するため
に重量を軽くすることを目的とする。The object of the present invention is to further improve the abrasion resistance and corrosion resistance of the WCC cemented carbide dot wire, and to reduce the weight in order to keep pace with higher speeds.
耐摩耗性、耐蝕性を改善するため、従来のWC基超超合
今に代わり炭窒化チタンTj(CN)基サーメットの検
討を行なった。Ti(CN)基サーメットは比重も6〜
9g/a&と小さく、高速化への追従も可能であるし、
又、耐摩耗性、耐蝕性もWCC超超硬合金り優れている
。しかしながらT”1(CN)基サーメットはWC基超
超合今に比べその主成分である炭化物の性質上、靭性に
欠く欠点をもっているため、これまで小径のドラ1〜ワ
イヤー等に使用することは不可能であった。In order to improve wear resistance and corrosion resistance, we investigated a titanium carbonitride Tj (CN)-based cermet instead of the conventional WC-based super-superalloy. The specific gravity of Ti(CN)-based cermet is also 6~
It is small at 9g/a&, and can keep up with higher speeds.
WCC cemented carbide also has superior wear resistance and corrosion resistance. However, T"1 (CN)-based cermets have the disadvantage of lacking toughness compared to WC-based superalloys due to the nature of the carbide that is their main component, so they have not been used for small diameter drive wires, etc. It was impossible.
本発明者は上述のTj(CN)基サーメットが靭性に欠
ける原因を追求、検討した結果、次のような事実を得た
。The present inventor pursued and studied the cause of the above-mentioned Tj(CN)-based cermet lacking in toughness, and as a result, the following facts were obtained.
’I’1(CN)基サーメットは、結合相と炭窒化均相
のぬれ性を改善するためMo、W、Ta等を添加するの
が一般的となっている。しかしこれら添加物の挙動を調
べると第1図(A)に示すようにTi(CN)粒子の周
辺にMo + W + T a等を多量に含むいわゆる
周辺組織を形成する。この周辺組織はその成分の関係F
、Ti(CN)に比べ結合相に対するぬれ性が良く、T
i(ON)基サーメソ1への靭性を改善させるのである
が、反面第1図(r3)に示すように炭窒化物粒子同志
を接触させる傾向にある。この炭窒化物粒子同志の接触
(以下スケルトンと称す。)は、クラックの伝播抵抗を
下げ、靭性が更に改善されない最大の要因となっている
。例えば、同一体積率(15Vo1%)の結合相におい
て、Ti(CN)基サーメットとWCC超超硬合金スケ
ルトンの度合いを実際の組織写真から定量的に測定して
みると、Ti(CN)基サーメットでは全炭窒化物粒子
の表面積に対し、接触部の面積は30〜40%であり、
WCC超超硬合金同10〜15%に比べ格段と高い値と
なっている。本発明者は以I−の観点から炭窒化物のス
ケルトンを抑制すべく種々検討した結果、例えば周辺組
織形成元素を前もってTi(CN)と固溶せしめた原料
を使い、周辺組織形成量を減少させることが可能である
こと等を見出した。あるいは原料に制約をつけなくとも
炭窒化物粒度、結合相量、焼結条件等でスケルトンの形
成量を抑制することも可能である。このように製造条件
を種々留意したTi、(CN)基サーメットは前述のス
ケ用1−ンの比率は10〜]5%であり、WCC超超硬
合金優れるとも劣らぬ靭性を得ることが明らかとなった
。このように靭性を改善したサーメットドラ1〜ワイヤ
ーはWCC超超硬合金ドツトワイヤー比べ、T i (
CN)の耐摩耗性、耐蝕性に優れる利点より高寿命であ
り、且つ軽量のため今後の高速化にも追従し得るもので
ある。'I'1(CN)-based cermets are generally added with Mo, W, Ta, etc. in order to improve the wettability of the bonding phase and the carbonitrided homogeneous phase. However, when the behavior of these additives is investigated, as shown in FIG. 1(A), a so-called peripheral structure containing a large amount of Mo + W + Ta etc. is formed around the Ti(CN) particles. This surrounding tissue is related to its components F
, has better wettability to the binder phase than Ti(CN), and T
This improves the toughness of the i(ON)-based Thermeso 1, but on the other hand, it tends to bring the carbonitride particles into contact with each other, as shown in FIG. 1 (r3). This contact between carbonitride particles (hereinafter referred to as skeleton) lowers crack propagation resistance and is the biggest factor in preventing further improvement of toughness. For example, when we quantitatively measured the degree of Ti(CN)-based cermet and WCC cemented carbide skeleton from actual microstructure photographs in the binder phase with the same volume fraction (15Vo1%), we found that Ti(CN)-based cermet Then, the area of the contact part is 30 to 40% of the total surface area of carbonitride particles,
This is a much higher value than the 10-15% for WCC cemented carbide. As a result of various studies in order to suppress the skeleton of carbonitrides from the viewpoint of I-, the present inventors have found that, for example, by using a raw material in which peripheral structure-forming elements are dissolved in Ti (CN) in advance, the amount of peripheral structure formation can be reduced. We have discovered that it is possible to Alternatively, it is also possible to suppress the amount of skeleton formation by adjusting the carbonitride particle size, amount of binder phase, sintering conditions, etc. without placing any restrictions on the raw materials. It is clear that the Ti, (CN) based cermet, which has been manufactured with various manufacturing conditions in mind, has a ratio of 10 to 5% for the scale mentioned above, and has a toughness comparable to that of WCC cemented carbide. It became. The cermet driver 1~ wire with improved toughness has a higher T i (
It has the advantage of being superior in wear resistance and corrosion resistance to CN), has a long life, and is lightweight, so it can support future speed increases.
本発明者はこのサーメットドツトワイヤーの靭性だけで
なく更に疲労強度を改善すべく検討を重ねた結果、疲労
強度は合金の靭性だけでなくドツトワイヤーの表面性状
に左右される知見を見出した。その結果表面に軟金属を
コーティングすることにより表面に生ずる疲労クラック
の発生を抑制し、疲労強度を向−1−するに至った。又
、更に耐蝕性を向上すべく数十種の添加元素を検討した
結果レニウムとクロムがサーメットの耐蝕性を向−1ニ
させる結果を得た。更に分散相の複炭化物の粒度を検討
し、1μ以下の微粒であれば靭性が更に向−卜する結果
を得た。これは微粒はど表面積が広く、同一量の周辺組
織形成の場合、周辺組織の厚みが減少し、前述のスケ用
1−ン形成の割合が少なくなるためである。As a result of repeated studies to improve not only the toughness but also the fatigue strength of this cermet dot wire, the present inventor discovered that fatigue strength is influenced not only by the toughness of the alloy but also by the surface properties of the dot wire. As a result, by coating the surface with a soft metal, the occurrence of fatigue cracks on the surface was suppressed and the fatigue strength was improved. Furthermore, in order to further improve the corrosion resistance, we investigated several dozen additive elements and found that rhenium and chromium improved the corrosion resistance of cermet by -1. Furthermore, we examined the particle size of the double carbide in the dispersed phase and found that fine particles of 1 μm or less can further improve toughness. This is because the fine grains have a wide surface area, and when the same amount of surrounding tissue is formed, the thickness of the surrounding tissue decreases, and the proportion of the above-mentioned skeleton formation decreases.
次に数値と限定した理由について述べる。Next, we will discuss the numerical values and the reasons for the limitations.
複炭窒化物の量は50%未満だと所望の耐摩耗性が得ら
れなく、90%を越えて含有すると合金の靭性を損なう
ため50〜90%とした。If the amount of double carbonitride is less than 50%, the desired wear resistance cannot be obtained, and if it exceeds 90%, the toughness of the alloy will be impaired, so the amount is set at 50 to 90%.
Tiを除<4a、5a、6a属の置換量は10%未満だ
とT i (CN)と結合相のぬれ性を改善する効果が
少なく、70%を越えて含有するとTi(CN)本来の
耐摩耗性、耐蝕性が劣化するため10〜70%とした。If the substitution amount of <4a, 5a, and 6a groups excluding Ti is less than 10%, it will have little effect on improving the wettability of Ti (CN) and the binder phase, and if it is contained in more than 70%, the original Ti (CN) Since wear resistance and corrosion resistance deteriorate, it was set at 10 to 70%.
結合相は10%未満では合金の耐欠損性が悪く、又、5
0%を越えて含有すると耐摩耗性を損なうため10〜5
0%とした。If the binder phase is less than 10%, the fracture resistance of the alloy is poor;
If the content exceeds 0%, wear resistance will be impaired, so 10 to 5
It was set to 0%.
表面コーティングの厚みは0.5μ未満では疲労強度改
善の効果が少なく、50μを越えると耐摩耗性を劣化す
るため、0.5〜50μとした。If the thickness of the surface coating is less than 0.5μ, the effect of improving fatigue strength will be small, and if it exceeds 50μ, the wear resistance will deteriorate, so it was set to 0.5 to 50μ.
レニウムは0.5%未満では耐蝕性の向トが認められず
、5%を越えて含有すると合金の焼結性を劣化するため
、0.5〜5%とした。If rhenium is contained in an amount less than 0.5%, no improvement in corrosion resistance is observed, and if it is contained in an amount exceeding 5%, the sinterability of the alloy is deteriorated, so the content is set at 0.5 to 5%.
クロムは0.5%未満だと同じく耐蝕性の向」二が認め
られず、15%を越えると合金の靭性を劣化するため、
0.5〜15%とした。粒度は前述の理由で1μ以下に
すれば更に合金の靭性が向上するため1μ以下とした。If chromium is less than 0.5%, no improvement in corrosion resistance is observed, and if it exceeds 15%, it deteriorates the toughness of the alloy.
The content was set at 0.5 to 15%. The grain size was set to 1 μm or less for the above-mentioned reason, since the toughness of the alloy is further improved if the grain size is set to 1 μm or less.
次に本発明サーメッ1−製ドッ1−ワイヤーを実施例に
より比較ドラ1〜ワイヤーと対比しながら説明する。Next, the dot 1-wire made of cermet 1 according to the present invention will be explained using examples while comparing it with the comparative dot 1-wire.
原料粉末をC/N=3として第1表の組成になるようボ
ールミルで96 h r混合粉砕をし、可塑剤添加の後
、混錬を行いφ0.5mnで押出成型した。次に脱脂し
、1350℃で30分焼結を行いワイヤーを作成した。The raw material powder was mixed and ground in a ball mill for 96 hours to have the composition shown in Table 1 with C/N=3, and after adding a plasticizer, it was kneaded and extruded to a diameter of 0.5 mm. Next, it was degreased and sintered at 1350°C for 30 minutes to create a wire.
次にこのワイヤーをφ0.31ff11にセンタレス研
削をし、次に真空蒸着によりT’i、AQを3μコー1
−シ、ドラ1−ワイヤーを作成した。この合金の物性を
第1表に併記する。抗折力はスパンキヨリ10III1
1の3点曲げテス1−による結果である。Next, this wire was centerless ground to φ0.31ff11, and then T'i and AQ were coated with 3μ coats by vacuum evaporation.
-C, Drawer 1-Wire was created. The physical properties of this alloy are also listed in Table 1. Transverse rupture strength is Span Kiyori 10III1
These are the results of the three-point bending test 1-.
次に片持ちで振幅4wl、50Hz、応力130kg/
lInI2で疲労テストを10回行ない欠損した疲労回
数の平均を求めこれを第2表に示す。又、実装テストを
行ない先端の摩耗量を第2図に従い測定した結果を第3
表に示す。Next, with a cantilever, amplitude 4wl, 50Hz, stress 130kg/
A fatigue test was conducted 10 times using lInI2, and the average number of fatigue failures was determined and is shown in Table 2. In addition, we conducted a mounting test and measured the amount of wear on the tip according to Figure 2, and the results are shown in Figure 3.
Shown in the table.
以−4−の結果より本発明サーメソ1へ製ドッ1−ワイ
ヤーは、靭性の劣化なく著しく耐摩耗性を向−1−シ得
ることが明らかである。尚、本発明勺−メッ1〜は密度
も6.0〜9.0g/a#程度でWCC超超硬合金約半
分であり、今後の高速化に十分に追従し得るものである
。From the results of 4-4 below, it is clear that the dot-wire manufactured by the present invention can significantly improve wear resistance without deterioration of toughness. Incidentally, the density of the present invention is approximately 6.0 to 9.0 g/a#, which is about half that of WCC cemented carbide, and can sufficiently follow future high speeds.
40図面の[、Qj−な説明
第1図は周辺組織と周辺組織による炭窒化物の接触を模
式的に示した図で、第2図は摩耗量の測定位置を示す。[, Qj- Explanation of Drawings 40] Fig. 1 is a diagram schematically showing contact between surrounding tissues and carbonitrides by the surrounding tissues, and Fig. 2 shows the measurement position of the amount of wear.
a:摩耗量a: Amount of wear
Claims (1)
窒化チタンにおけるTiの一部を10〜70重量%の範
囲でTiを除く周期律表の4a、5a及び6a族金属の
うち1種又は2種以上で置換した複炭窒化物50〜90
重量%と、残部50〜10重量%が鉄族金属のうち1種
又は2種以上及び不可避不純物よりなる結合相であり、
更に表面を0.5〜 50μの範囲でAl、Cu、Ti等の1種又は2種以上
の金属でコーティングしたことを特徴とする表面被覆サ
ーメット製ドットワイヤー。 2)特許請求の範囲第1項記載の合金において、結合相
全体に対し0.5〜5%のレニウム又は0.5〜15%
のクロムを含むことを特徴とする表面被覆サーメット製
ドットワイヤー。 3)特許請求の範囲第1項記載の合金において分散相で
ある複炭窒化物の平均粒度が1μ以下であることを特徴
とする表面被覆サーメット製ドットワイヤー。[Scope of Claims] 1) Part of Ti in titanium carbonitride having a C/N ratio of 1 or more as a dispersed phase forming component is excluded from Ti in the range of 10 to 70% by weight from 4a and 5a of the periodic table. and double carbonitrides substituted with one or more of group 6a metals 50 to 90
% by weight, and the remaining 50 to 10% by weight is a binder phase consisting of one or more iron group metals and unavoidable impurities,
A surface-coated cermet dot wire characterized in that the surface is coated with one or more metals such as Al, Cu, and Ti to a thickness of 0.5 to 50μ. 2) In the alloy according to claim 1, 0.5-5% rhenium or 0.5-15% rhenium based on the entire binder phase.
A surface-coated cermet dot wire characterized by containing chromium. 3) A surface-coated cermet dot wire characterized in that the average particle size of the double carbonitride as a dispersed phase in the alloy according to claim 1 is 1 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22247186A JPS6377749A (en) | 1986-09-20 | 1986-09-20 | Surface-coated cermet dot wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22247186A JPS6377749A (en) | 1986-09-20 | 1986-09-20 | Surface-coated cermet dot wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6377749A true JPS6377749A (en) | 1988-04-07 |
JPH0476310B2 JPH0476310B2 (en) | 1992-12-03 |
Family
ID=16782933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22247186A Granted JPS6377749A (en) | 1986-09-20 | 1986-09-20 | Surface-coated cermet dot wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6377749A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008503650A (en) * | 2004-03-17 | 2008-02-07 | ジーニアス メタル インコーポレーテッド | High performance cemented carbide material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5278569A (en) * | 1975-12-24 | 1977-07-01 | Brother Ind Ltd | Wire for printing wire printer |
JPS5438238A (en) * | 1977-08-31 | 1979-03-22 | Pilot Pen Co Ltd | Printing wire for dot printer and method of making same |
JPS5898261A (en) * | 1981-12-08 | 1983-06-11 | Nachi Fujikoshi Corp | Hard cover treated pin |
JPS60124258A (en) * | 1983-12-08 | 1985-07-03 | Mitsubishi Metal Corp | Dot pin for surface coating printing |
JPS61143550A (en) * | 1984-12-13 | 1986-07-01 | Hitachi Choko Kk | Dot wire made of cermet |
-
1986
- 1986-09-20 JP JP22247186A patent/JPS6377749A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5278569A (en) * | 1975-12-24 | 1977-07-01 | Brother Ind Ltd | Wire for printing wire printer |
JPS5438238A (en) * | 1977-08-31 | 1979-03-22 | Pilot Pen Co Ltd | Printing wire for dot printer and method of making same |
JPS5898261A (en) * | 1981-12-08 | 1983-06-11 | Nachi Fujikoshi Corp | Hard cover treated pin |
JPS60124258A (en) * | 1983-12-08 | 1985-07-03 | Mitsubishi Metal Corp | Dot pin for surface coating printing |
JPS61143550A (en) * | 1984-12-13 | 1986-07-01 | Hitachi Choko Kk | Dot wire made of cermet |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008503650A (en) * | 2004-03-17 | 2008-02-07 | ジーニアス メタル インコーポレーテッド | High performance cemented carbide material |
Also Published As
Publication number | Publication date |
---|---|
JPH0476310B2 (en) | 1992-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9725794B2 (en) | Cemented carbide articles and applications thereof | |
KR100231267B1 (en) | Hard alloy and production thereof | |
US3811961A (en) | Boridized steel-bonded carbides | |
JP2000514722A (en) | Cemented carbide inserts for turning, milling and drilling | |
US5288676A (en) | Cemented carbide | |
US10336654B2 (en) | Cemented carbide with cobalt-molybdenum alloy binder | |
US12152294B2 (en) | Cemented carbide compositions and applications thereof | |
US3677722A (en) | Cemented carbide composition and method of preparation | |
JPH0273946A (en) | Sintered hard alloy and duplex coated sintered hard alloy composed by forming film on surface of same alloy | |
JP4351453B2 (en) | Cemented carbide and drill using the same | |
JPS6377749A (en) | Surface-coated cermet dot wire | |
JP3341776B2 (en) | Super hard alloy | |
JPH0519908B2 (en) | ||
JP7209216B2 (en) | WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance | |
JPS61143550A (en) | Dot wire made of cermet | |
JPS61194146A (en) | Cermet wire for dot printer | |
JP2001049378A (en) | Wear resistant cemented carbide sintered compact and its manufacture | |
JPH0222438A (en) | End mill made of tungsten carbide-base sintered hard alloy having excellent chipping resistance | |
JP4107908B2 (en) | Corrosion-resistant cemented carbide penball | |
JPS61177350A (en) | Cermet wire for dot printer | |
JPS61199047A (en) | Wire made of cermet for dot printer | |
JP7473871B2 (en) | WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool | |
JPH08253836A (en) | Wear resistant tungsten carbide-base cemented carbide having excellent toughness | |
JPH0564695B2 (en) | ||
JP2925899B2 (en) | Ceramic cutting tool and its manufacturing method |