JPS637022B2 - - Google Patents
Info
- Publication number
- JPS637022B2 JPS637022B2 JP3506680A JP3506680A JPS637022B2 JP S637022 B2 JPS637022 B2 JP S637022B2 JP 3506680 A JP3506680 A JP 3506680A JP 3506680 A JP3506680 A JP 3506680A JP S637022 B2 JPS637022 B2 JP S637022B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- compound semiconductor
- semiconductor crystal
- crystal
- laser annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000013078 crystal Substances 0.000 claims description 30
- 239000004065 semiconductor Substances 0.000 claims description 19
- 238000005224 laser annealing Methods 0.000 claims description 16
- 150000001875 compounds Chemical class 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 239000011574 phosphorus Substances 0.000 claims description 8
- 239000000470 constituent Substances 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 6
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 claims description 5
- 230000008020 evaporation Effects 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims description 2
- 239000000758 substrate Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000002161 passivation Methods 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- -1 InP crystal Chemical compound 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/268—Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Recrystallisation Techniques (AREA)
Description
【発明の詳細な説明】
本発明はイオン注入した半導体装置のレーザア
ニールに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to laser annealing of ion-implanted semiconductor devices.
イオン注入装置を用いて半導体結晶に所望の不
純物を注入する。この不純物を活性化するため及
び注入時に発生した結晶損傷を回復せしめる方法
としてレーザーから発生する光の熱エネルギーを
用いて熱処理(アニール)する方法がある。この
方法はレーザーアニール方法といわれている。半
導体結晶特にシリコン結晶をレーザーアニールす
る場合はシリコン結晶が他の半導体結晶に比べ蒸
気圧が低いためそれ程問題は生じない。即ち、レ
ーザーアニール中にシリコン結晶が蒸発して結晶
特性を劣化させることは少い。しかし二元あるい
は多元の化合物半導体結晶の場合、シリコンに比
べ蒸気圧が比較的高いためにレーザーアニール中
に構成元素の一部が蒸発する、そしてストイキオ
メトリーがずれて結晶特性を著しく劣化させる。
この蒸発を防ぐ方法として透明又は半透明のパツ
シベーシヨン膜を付けてレーザーアニールを行う
方法がある。しかしこの方法では工程の複雑化あ
るいはパツシベーシヨン膜からの汚染、パツシベ
ーシヨン膜と基板の熱膨張係数の差による歪の半
導体結晶への導入等がある。化合物半導体結晶を
パツシベーシヨン膜等を用いて被結晶表面に付着
せずに、裸のままでアニールを行うと、化合物半
導体結晶の構成元素の蒸気圧がそれぞれ異る事に
より、アニール中に構成元素の一部分あるいはそ
れぞれ異つた量だけ蒸発する。その結果、アニー
ル前の結晶に比べてアニール後の結晶はストイキ
オメトリーが変り、その結果、アニール後の結晶
特性は著しく劣化する。 A desired impurity is implanted into a semiconductor crystal using an ion implanter. In order to activate this impurity and to recover from crystal damage caused during implantation, there is a method of heat treatment (annealing) using the thermal energy of light generated from a laser. This method is called a laser annealing method. When a semiconductor crystal, particularly a silicon crystal, is laser annealed, there is no problem because silicon crystal has a lower vapor pressure than other semiconductor crystals. That is, the silicon crystal is less likely to evaporate during laser annealing and deteriorate the crystal properties. However, in the case of binary or multi-component compound semiconductor crystals, the vapor pressure is relatively high compared to silicon, so some of the constituent elements evaporate during laser annealing, and the stoichiometry shifts, significantly deteriorating the crystal properties.
One way to prevent this evaporation is to apply a transparent or translucent passivation film and perform laser annealing. However, this method complicates the process, causes contamination from the passivation film, and introduces strain into the semiconductor crystal due to the difference in thermal expansion coefficient between the passivation film and the substrate. If a compound semiconductor crystal is not attached to the crystal surface using a passivation film or the like and is annealed bare, the constituent elements of the compound semiconductor crystal will have different vapor pressures during annealing. Evaporates in parts or in different amounts. As a result, the stoichiometry of the annealed crystal changes compared to the unannealed crystal, and as a result, the post-annealed crystal properties deteriorate significantly.
本発明はリンを構成元素とする化合物半導体結
晶に不純物イオンを注入する工程と、
該イオン注入された化合物半導体結晶をレーザ
ビーム照射用の窓を設けた耐圧容器中に設置し、
ホスフインガスを該耐圧容器中に大気圧より高
く、レーザーアニール時上記化合物半導体結晶か
らリンの蒸発を押える平衡状態となる・高圧力で
導入する工程と、
該窓を介してレーザビームを該化合物半導体結
晶に選択的に照射し、高圧下でレーザーアニール
する工程を有することを特徴とする半導体装置の
製造方法を提供するものである。 The present invention includes a step of implanting impurity ions into a compound semiconductor crystal containing phosphorus as a constituent element, and placing the ion-implanted compound semiconductor crystal in a pressure-resistant container provided with a window for laser beam irradiation.
A step of introducing phosphine gas into the pressure-resistant container at a pressure higher than atmospheric pressure to create an equilibrium state that suppresses evaporation of phosphorus from the compound semiconductor crystal during laser annealing, and a step of introducing a laser beam into the compound semiconductor crystal through the window. The present invention provides a method for manufacturing a semiconductor device, which comprises a step of selectively irradiating the laser beam with a laser beam and performing laser annealing under high pressure.
その結果、構成元素に著しく、蒸気圧の高いリ
ン元素を含む場合レーザーアニール時に結晶構成
元素の一部分あるいは、複数の元素の蒸気圧のも
とで高圧下でレーザーアニールを行うことによ
り、レーザーアニール時の結晶基板の部分的な高
温状態において、構成元素の蒸発をおさえる。そ
して良好な結晶を得る事が出来る。 As a result, if the constituent elements include phosphorus with a significantly high vapor pressure, laser annealing may be performed under high pressure under the vapor pressure of a part of the crystal constituent elements or multiple elements during laser annealing. This suppresses the evaporation of the constituent elements in the partially high temperature state of the crystal substrate. And good crystals can be obtained.
第1図はInP結晶の如く、リン(P)が特に蒸
気圧が高いため高圧に耐えうる容器を用いて平衡
状態となるように高圧下でレーザーアニールを行
う装置である。 FIG. 1 shows an apparatus that performs laser annealing under high pressure to achieve an equilibrium state using a container that can withstand high pressure because phosphorus (P), such as InP crystal, has a particularly high vapor pressure.
半絶縁性のInP基板にイオン注入装置で所望の
不純物例えば硫黄(S)、セレン(Se)、シリコ
ン(Si)、…等と注入する。加速電圧は普通注入
不純物の深さを決めるもので数+KeVから数百
KeVが用いられる。そしてドーズ量は普通1010〜
1013cm-2が用いられる。この注入された基板の注
入表面の所望の部分を第1図に示す装置でレーザ
ーアニールを行なう。図において13はステンレ
ス製の耐圧容器、12′は厚さ10mm程度の石英製
窓である。 Desired impurities such as sulfur (S), selenium (Se), silicon (Si), etc. are implanted into a semi-insulating InP substrate using an ion implantation device. Acceleration voltage usually determines the depth of implanted impurities and ranges from several + KeV to several hundred.
KeV is used. And the dose is usually 10 10 ~
10 13 cm -2 is used. A desired portion of the implanted surface of the substrate is subjected to laser annealing using the apparatus shown in FIG. In the figure, 13 is a pressure-resistant container made of stainless steel, and 12' is a quartz window with a thickness of about 10 mm.
リン蒸気圧を上げるためにはホスフイン
(PH3)ガス(1〜10%)を用いる。レーザーア
ニール時の圧力は10〜30気圧である。この方法に
より、レーザーアニール時のリン(P)の蒸発を
極力押えることができる。 Phosphine (PH 3 ) gas (1-10%) is used to increase the phosphorus vapor pressure. The pressure during laser annealing is 10 to 30 atmospheres. By this method, evaporation of phosphorus (P) during laser annealing can be suppressed as much as possible.
以上の説明から明らかな如く、本発明の使用に
より容易にしかもアニール後の結晶の変成をきた
す事無く、注入イオンの活性化率を高める事がで
きる。この方法を用いてInPFETの動作層、ある
いはオーミツク電極を容易に形成することができ
る。 As is clear from the above description, by using the present invention, the activation rate of implanted ions can be easily increased without causing any deformation of the crystal after annealing. Using this method, the active layer or ohmic electrode of InPFET can be easily formed.
第1図は本発明の高圧下でレーザーアニールを
行う装置である。
1:レーザー、2:移動台、3:レンズ、5:
イオン注入した半導体基板、6:基板ホルダー、
8:冷却器、9:ボンベ、10:コツク、1
2′:石英製窓、13:耐圧容器、14:電子計
算機。
FIG. 1 shows an apparatus for performing laser annealing under high pressure according to the present invention. 1: Laser, 2: Moving table, 3: Lens, 5:
Ion-implanted semiconductor substrate, 6: Substrate holder,
8: Cooler, 9: Cylinder, 10: Kotoku, 1
2': Quartz window, 13: Pressure-resistant container, 14: Electronic computer.
Claims (1)
純物イオンを注入する工程と、 該イオン注入された化合物半導体結晶をレーザ
ビーム照射用の窓を設けた耐圧容器中に設置し、
ホスフインガスを該耐圧容器中に大気圧より高
く、レーザーアニール時上記化合物半導体結晶か
らリンの蒸発を押える平衡状態となる・高圧力で
導入する工程と、 該窓を介してレーザビームを該化合物半導体結
晶に選択的に照射し、高圧下でレーザーアニール
する工程を有することを特徴とする半導体装置の
製造方法。[Scope of Claims] 1. A step of implanting impurity ions into a compound semiconductor crystal containing phosphorus as a constituent element, and placing the ion-implanted compound semiconductor crystal in a pressure-resistant container provided with a window for laser beam irradiation,
A step of introducing phosphine gas into the pressure-resistant container at a pressure higher than atmospheric pressure to create an equilibrium state that suppresses evaporation of phosphorus from the compound semiconductor crystal during laser annealing, and a step of introducing a laser beam into the compound semiconductor crystal through the window. 1. A method for manufacturing a semiconductor device, comprising the steps of selectively irradiating with a laser beam and performing laser annealing under high pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3506680A JPS56131934A (en) | 1980-03-19 | 1980-03-19 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3506680A JPS56131934A (en) | 1980-03-19 | 1980-03-19 | Manufacture of semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56131934A JPS56131934A (en) | 1981-10-15 |
JPS637022B2 true JPS637022B2 (en) | 1988-02-15 |
Family
ID=12431639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3506680A Granted JPS56131934A (en) | 1980-03-19 | 1980-03-19 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56131934A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5873112A (en) * | 1981-10-28 | 1983-05-02 | Nippon Hoso Kyokai <Nhk> | Laser annealing |
JP2582741B2 (en) * | 1991-11-07 | 1997-02-19 | 株式会社日本製鋼所 | Method of forming epitaxial thin film |
JP5099576B2 (en) * | 2006-02-23 | 2012-12-19 | 株式会社Ihi | Method and apparatus for activating compound semiconductor |
JP5210549B2 (en) * | 2007-05-31 | 2013-06-12 | 株式会社半導体エネルギー研究所 | Laser annealing method |
JP2018022712A (en) * | 2014-12-10 | 2018-02-08 | 東京エレクトロン株式会社 | Fine structure forming method, semiconductor device manufacturing method, and CMOS forming method |
-
1980
- 1980-03-19 JP JP3506680A patent/JPS56131934A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS56131934A (en) | 1981-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4452644A (en) | Process for doping semiconductors | |
EP0269349B1 (en) | Method of making an article comprising a buried SiO2 layer | |
EP0193021A1 (en) | A method of forming an ion implanted gallium arsenide device | |
JP2001512906A (en) | Method for producing thin film made of solid material | |
US3600797A (en) | Method of making ohmic contacts to semiconductor bodies by indirect ion implantation | |
JPS6224945B2 (en) | ||
JPS637022B2 (en) | ||
JPH0587036B2 (en) | ||
JPH0126171B2 (en) | ||
JPS6476737A (en) | Manufacture of semiconductor integrated circuit device | |
JPS6116758B2 (en) | ||
JPS60239400A (en) | Annealing method for compound semiconductors | |
JPS6130030A (en) | Method of annealing multi-element semiconductor | |
JPS6327063A (en) | Manufacture of semiconductor device | |
JP3084089B2 (en) | Semiconductor device substrate and method of manufacturing the same | |
JPH0697664B2 (en) | Compound semiconductor annealing method | |
JPS57133626A (en) | Manufacture of semiconductor thin film | |
JP2536472B2 (en) | Solid phase growth method for polycrystalline semiconductor film | |
Rosenblatt et al. | Rapid thermal annealing of Si-implanted GaAs | |
JPH0480878B2 (en) | ||
JPS5851509A (en) | Manufacturing method of semiconductor device | |
JPS6175517A (en) | Annealing method for compound semiconductor substrates | |
CA1299069C (en) | Method of making an article comprising a buried sio _layer, and article produced thereby | |
JPS6022316A (en) | Manufacture of compound semiconductor apparatus | |
JPS6439732A (en) | Manufacture of semiconductor device |