[go: up one dir, main page]

JPS6367566B2 - - Google Patents

Info

Publication number
JPS6367566B2
JPS6367566B2 JP56114648A JP11464881A JPS6367566B2 JP S6367566 B2 JPS6367566 B2 JP S6367566B2 JP 56114648 A JP56114648 A JP 56114648A JP 11464881 A JP11464881 A JP 11464881A JP S6367566 B2 JPS6367566 B2 JP S6367566B2
Authority
JP
Japan
Prior art keywords
activated carbon
fiber
pore volume
fibers
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56114648A
Other languages
Japanese (ja)
Other versions
JPS5818418A (en
Inventor
Shokei Shimada
Hiroshi Shimizu
Nobuo Ishizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP56114648A priority Critical patent/JPS5818418A/en
Publication of JPS5818418A publication Critical patent/JPS5818418A/en
Publication of JPS6367566B2 publication Critical patent/JPS6367566B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な活性炭素繊維の製造方法に関す
るものである。 活性炭は古くから工業化され、液体、気体から
の不純物の除去用、有用物質の回収用吸着剤とし
て、又触媒の担体として広く使用されて来た。こ
れらの用途に長く使用されていた活性炭は粉体或
いは粒状のものであつたが、近年繊維状の活性炭
が見出され、その形態及び特異的な性能によつて
活性炭の用途をさらに拡大した。 しかしながら従来得られている活性炭素繊維の
細孔は直径30Å以下のものが主体であつて、直径
30〜300Åの部分の細孔容積は0.1c.c./g以下であ
るため、使用分野によつては、適格材といえない
面があつた。勿論出発炭素質繊維及び賦活条件を
適当に選ぶことにより、30Å以上の細孔容積を増
すことは可能であるが、収率が極端に低い脆弱な
繊維しか得られない。 これらの事情に鑑み、本発明者らは鋭意研究の
結果本発明に到達した。 即ち、本発明は表面積が30〜1200m2/g、かつ
細孔直径30〜300Åの細孔容積が0.1g/c.c.以下の
炭素質繊維にマグネシウム、カルシウム、バリウ
ム、鉄、コバルト、ニツケル、マンガンよりなる
化合物のうち少なくとも一種類を担持させた後、
酸化性ガス中又は燃焼廃ガス中で650〜1050℃で
加熱処理して賦活化処理を施し、細孔直径30〜
300Åの細孔容積を0.27g/c.c.以上有する活性炭
素繊維を製造する方法に関する。 本発明で用いる出発炭素質繊維としてはBET
法比表面積が30〜1200m2/g、かつ細孔直径30〜
300Åの孔容積0.1c.c./g以下の炭素質繊維である
ことが必要である。 BET表面積30m2/g以下の炭素質繊維に後述
する賦活助剤を添着させても本発明の賦活助剤添
加効果は得られない。一方BET表面積を1200
m2/g以上有する活性な炭素質繊維を出発繊維と
すると再賦活して得られる活性炭素繊維の収率が
極端に低くなり脆弱なものしか得られない。 本発明の実施に当つて賦活助剤の使用は、必要
欠くべからざるものである。賦活助剤を使わない
場合は再賦活をしても、主として30Å以下の細孔
容積が増加するのみで、30〜300Åの細孔は殆ん
ど増加しない。 賦活助剤としては、マグネシウム、カルシウ
ム、バリウム等の周期律第A族元素あるいは、
鉄、コバルト、ニツケル、マンガン、等の遷移金
属元素の化合物を使用する。塩化マグネシウム、
酢酸マグネシウム、塩化カルシウム、塩化第2
鉄、塩化コバルト、酢酸ニツケル、塩化マンガン
等の水溶性塩類が最も使用しやすい。 賦活助剤の担持法は、上記化合物水溶液に出発
炭素質繊維を浸漬後脱水、乾燥する方法、あるい
は該化合物水溶液をスプレー噴霧後、乾燥する方
法があるが、これに限定されるものではない。 炭素質繊維への賦活助剤の添着量は金属元素換
算で0.01〜40重量%の範囲が好ましい。0.01重量
%以下である場合は賦活助剤の効果を得難く、一
方40重量%以上であると賦活助剤がすでにある細
孔を塞いでしまい賦活助剤添加効果が認められな
いので好ましくない。 本発明における再賦活処理は、活性炭の製造に
おいて通常用いられる方法即ち、水蒸気、炭酸ガ
ス等を含む酸化性ガス中又は燃焼廃ガス中で650
〜1050℃に加熱する方法を適用できる。本発明を
有効に実施するには、賦活助剤の分解・昇華の始
まる温度より低い温度から水蒸気を導入しておく
のが好ましい。 本発明の賦活助剤を用いると孔径30〜300Åの
細孔が、特別に増大する理由は微細孔の壁につい
た賦活助剤の囲りの炭素と賦活ガスの反応速度が
大巾に上昇し、微細孔の拡大・合体が進むためと
考えられる。 本発明において用いる出発炭素質繊維として
は、フイラメントトウ、不織布、織物等のいずれ
の形態のものをも好適に使用しうる。 炭素質繊維の表面積は、液体窒素温度での窒素
ガスの吸着等温線より、いわゆるBET法(慶伊
富長「吸着」共立出版)にて計算して求める。そ
して繊維状活性炭の細孔直径および細孔容積は、
常圧下の液体窒素の沸点(−195.8℃)における
吸着側の窒素ガス吸着等温線を用いてクランスト
ン−インクレー(Cranston−Inkley)の計算法
(慶伊富長「吸着」共立出版)により求めた。但
し、細孔直径300Åに相当する相対圧での窒素ガ
ス吸着量に標準状態における気体窒素の密度と液
体窒素の密度の比(1.584×10-3)を乗じた値を
全細孔容積とみなし、又細孔直径300Åから細孔
直径30Åまでの累積細孔容積を全細孔容積から差
し引いた値を細孔直径30Å以下の細孔容積とし
た。 なお、多分子吸着層と相対圧との関係は t(Å)=4.3〔5/ln(Ps/P)〕1/3 なるフレンケル−ハルシー(Frenkel−Halsey)
の式(慶伊富長「吸着」共立出版)より計算し
た。 本発明の繊維状活性炭は、細孔直径30〜300Å、
いわゆるトランジシヨナル・ポアの容積が、従来
の直径30Å以下のミクロポア主体の繊維状活性炭
に比べ多量に存在するため、活性炭内部表面への
ガス分子の到達速度が大きい。このため、アセト
ン、ベンゼン、四塩化炭素、アルデヒド、オゾ
ン、硫化水素、二酸化硫黄等の有害ガス除去材、
メチレン・ブルー、フエノール等の液相系での適
用に有効である。又、パラジウム、プラチナ、銀
等の触媒の担体として使用でき、さらにオゾン酸
化炭素等の除去にも有効となる。 以下実施例によつて、本発明をさらに詳しく説
明するが、本発明の範囲は、これら実施例に限定
されるものではない。 実施例 1 1.5dのセルロース系繊維に、リン酸アンモニウ
ムを10重量%含浸させ乾燥した後、不活性ガス中
で室温から60℃/hの昇温速度で300℃まで熱処
理を施し耐炎性繊維を得た。次いでこの耐炎性繊
維を不活性ガス中で400℃/hの昇温速度で900℃
までもたらし、30分保持した後冷却して炭素質繊
維(B)を取り出した。炭素質繊維(B)を水蒸気含有不
活性ガス中で800℃30分処理し、活性炭素繊維(C)
を得た。又炭素質繊維(B)を水蒸気含有不活性ガス
中で900℃60分処理をし、活性炭素繊維(D)を得た。
さらに炭素質繊維(B)を窒素気流中1200℃にて3時
間処理をし炭素質繊維(A)を得た。これら4種の炭
素質繊維のBET表面積、細孔容積を第1表に示
す。
The present invention relates to a novel method for producing activated carbon fibers. Activated carbon has been industrialized for a long time and has been widely used as an adsorbent for removing impurities from liquids and gases, for recovering useful substances, and as a carrier for catalysts. Activated carbon that has long been used in these applications has been in the form of powder or granules, but in recent years fibrous activated carbon has been discovered, and its morphology and unique properties have further expanded the applications of activated carbon. However, the pores of conventionally obtained activated carbon fibers are mainly 30 Å or less in diameter;
Since the pore volume in the 30 to 300 Å region is less than 0.1 cc/g, it cannot be said to be a suitable material depending on the field of use. Of course, by appropriately selecting the starting carbonaceous fibers and the activation conditions, it is possible to increase the pore volume to 30 Å or more, but only brittle fibers with extremely low yields can be obtained. In view of these circumstances, the present inventors have arrived at the present invention as a result of intensive research. That is, the present invention provides carbon fibers with a surface area of 30 to 1200 m 2 /g, a pore diameter of 30 to 300 Å, and a pore volume of 0.1 g/cc or less, which is made of magnesium, calcium, barium, iron, cobalt, nickel, or manganese. After supporting at least one type of compound,
Activation treatment is performed by heating at 650 to 1050℃ in oxidizing gas or combustion waste gas, and the pore diameter is 30 to 30.
The present invention relates to a method for producing activated carbon fibers having a 300 Å pore volume of 0.27 g/cc or more. The starting carbonaceous fiber used in the present invention is BET
Specific surface area is 30~1200m 2 /g, and pore diameter is 30~
It is necessary that the carbon fiber has a 300 Å pore volume of 0.1 cc/g or less. Even if an activation aid described below is attached to a carbonaceous fiber having a BET surface area of 30 m 2 /g or less, the effect of adding the activation aid of the present invention cannot be obtained. Meanwhile bet surface area 1200
If activated carbon fibers having a carbon fiber density of m 2 /g or more are used as starting fibers, the yield of activated carbon fibers obtained by reactivation will be extremely low and only brittle ones will be obtained. The use of an activation aid is essential to the practice of the present invention. If no activation aid is used, even if reactivation is performed, only the pore volume of 30 Å or less will increase, and the pores of 30 to 300 Å will hardly increase. As the activation aid, periodic table group A elements such as magnesium, calcium, and barium, or
Compounds of transition metal elements such as iron, cobalt, nickel, and manganese are used. magnesium chloride,
Magnesium acetate, calcium chloride, chloride chloride
Water-soluble salts such as iron, cobalt chloride, nickel acetate, and manganese chloride are the easiest to use. The method for supporting the activation aid includes, but is not limited to, a method in which the starting carbon fiber is immersed in the aqueous solution of the compound, followed by dehydration, and then dried, or a method in which the aqueous solution of the compound is sprayed and then dried. The amount of the activation aid impregnated onto the carbonaceous fibers is preferably in the range of 0.01 to 40% by weight in terms of metal elements. If it is less than 0.01% by weight, it is difficult to obtain the effect of the activation aid, while if it is more than 40% by weight, the activation aid will block the existing pores and the effect of adding the activation aid will not be recognized, which is not preferable. The reactivation treatment in the present invention is performed by a method commonly used in the production of activated carbon, that is, in an oxidizing gas containing steam, carbon dioxide, etc., or in combustion waste gas.
A method of heating to ~1050°C can be applied. In order to effectively carry out the present invention, it is preferable to introduce water vapor at a temperature lower than the temperature at which the activation aid begins to decompose and sublimate. The reason why pores with a pore diameter of 30 to 300 Å are particularly enlarged when the activation aid of the present invention is used is that the reaction rate between the carbon and the activation gas around the activation aid attached to the walls of the micropores is greatly increased. This is thought to be due to the progress of expansion and coalescence of micropores. As the starting carbonaceous fiber used in the present invention, any form such as filament tow, nonwoven fabric, or woven fabric can be suitably used. The surface area of the carbonaceous fiber is calculated using the so-called BET method (Kei Tominaga "Adsorption" Kyoritsu Shuppan) from the adsorption isotherm of nitrogen gas at liquid nitrogen temperature. And the pore diameter and pore volume of fibrous activated carbon are
It was determined by the Cranston-Inkley calculation method (Keii Tominaga "Adsorption" Kyoritsu Shuppan) using the nitrogen gas adsorption isotherm on the adsorption side at the boiling point of liquid nitrogen (-195.8℃) under normal pressure. . However, the total pore volume is considered to be the value obtained by multiplying the amount of nitrogen gas adsorbed at a relative pressure corresponding to a pore diameter of 300 Å by the ratio of the density of gaseous nitrogen to the density of liquid nitrogen in standard conditions (1.584 × 10 -3 ). Also, the value obtained by subtracting the cumulative pore volume from the pore diameter of 300 Å to the pore diameter of 30 Å from the total pore volume was defined as the pore volume with a pore diameter of 30 Å or less. The relationship between the multimolecular adsorption layer and the relative pressure is Frenkel-Halsey, where t (Å) = 4.3 [5/ln (Ps/P)] 1/3 .
Calculated from the formula (Kei Tominaga "Adsorption" Kyoritsu Shuppan). The fibrous activated carbon of the present invention has a pore diameter of 30 to 300 Å,
Since the volume of so-called transitional pores is larger than in conventional fibrous activated carbon, which is mainly composed of micropores with a diameter of 30 Å or less, gas molecules reach the inner surface of the activated carbon at a high speed. For this reason, harmful gas removal materials such as acetone, benzene, carbon tetrachloride, aldehyde, ozone, hydrogen sulfide, and sulfur dioxide,
It is effective for application in liquid phase systems such as methylene blue and phenol. It can also be used as a carrier for catalysts such as palladium, platinum, and silver, and is also effective in removing ozone and carbon oxides. The present invention will be explained in more detail below with reference to Examples, but the scope of the present invention is not limited to these Examples. Example 1 A 1.5-d cellulose fiber was impregnated with 10% by weight of ammonium phosphate, dried, and then heat-treated in an inert gas from room temperature to 300°C at a temperature increase rate of 60°C/h to produce a flame-resistant fiber. Obtained. This flame-resistant fiber was then heated to 900°C at a heating rate of 400°C/h in an inert gas.
The carbonaceous fibers (B) were taken out after cooling and holding for 30 minutes. Carbon fiber (B) is treated in an inert gas containing water vapor at 800℃ for 30 minutes to form activated carbon fiber (C).
I got it. Furthermore, the carbonaceous fiber (B) was treated in an inert gas containing water vapor at 900°C for 60 minutes to obtain an activated carbon fiber (D).
Further, the carbonaceous fiber (B) was treated in a nitrogen stream at 1200° C. for 3 hours to obtain a carbonaceous fiber (A). Table 1 shows the BET surface area and pore volume of these four types of carbon fibers.

【表】 繊維(C)、(D)の比較によつて賦活助剤を用いない
場合には、賦活を進めても30〜300Åの細孔容積
は殆んど増加していないことが分かる。 炭素質繊維(A)、(B)、(C)、(D)に塩化第二鉄を第2
表に示す如く添着し乾燥させた後、600℃/hの
昇温速度で850〜900℃まで昇温し、水蒸気による
再賦活処理を行つた。得られた活性炭素繊維M、
N、P、Q、4種の細孔容積を第2表に示す。活
性炭素繊維N、P、Qの30〜300Åの細孔容積が
飛躍的に多くなつていることが分かる。しかし活
性炭素繊維QはPに較べて、細孔容積が少ないに
も拘らず繊維は脆弱であつた。又活性炭素繊維M
をさらに賦活しても30〜300Åの細孔容積は増加
しなかつた。
[Table] Comparison of fibers (C) and (D) shows that when no activation aid is used, the pore volume of 30 to 300 Å hardly increases even if activation is advanced. Adding ferric chloride to carbonaceous fibers (A), (B), (C), and (D)
After adhering and drying as shown in the table, the temperature was raised to 850-900°C at a rate of 600°C/h, and reactivation treatment with water vapor was performed. The obtained activated carbon fiber M,
Table 2 shows the pore volumes of the four types, N, P, and Q. It can be seen that the volume of 30 to 300 Å pores of activated carbon fibers N, P, and Q has increased dramatically. However, compared to activated carbon fiber P, activated carbon fiber Q was brittle despite having a smaller pore volume. Also activated carbon fiber M
Further activation did not increase the pore volume between 30 and 300 Å.

【表】 実施例 2 実施例1で得た活性炭素繊維(C)に塩化ニツケル
を4.4重量%添着させ、乾燥した後窒素気流中室
温より600℃/hの昇温速度で200℃より水蒸気を
導入し850℃までもたらし、この温度で60分再賦
活処理をし、冷却後繊維を取り出し、IN塩酸で
洗浄後水洗・乾燥し、活性炭素繊維を得た。この
ものの30〜300Åの細孔容積は0.35c.c./gであつ
た。 実施例 3 実施例1で得た活性炭素繊維(C)に塩化コバルト
を4.2重量%添着させ、実施例2と同じ方法で再
賦活をし、30〜300Åの細孔容積0.38c.c./gの活
性炭素繊維を得た。 実施例 4 実施例1で得た活性炭素繊維(C)に硫酸マンガン
を7.0重量%添着させ、実施例2と同じ方法で再
賦活をし、賦活収率49%で孔径30〜300Åの細孔
容積0.41c.c./gの活性炭素繊維を得た。 実施例 5 実施例1で得た活性炭素繊維(C)に酢酸マグネシ
ウムを6.2重量%添着させ、実施例2と同じ方法
で再賦活をし、孔径30〜300Åの細孔容積0.40
c.c./gの活性炭素繊維を得た。 実施例 6 実施例1で得た活性炭素繊維(C)にオキシン鉄を
9.1重量%添着させ、実施例2と同じ方法で再賦
活をし、孔径30〜300Åの細孔容積0.33c.c./gの
活性炭素繊維を得た。 実施例 7 アクリロニトリル95モル%、アクリル酸メチル
5モル%の共重合体を湿式紡糸して得た1.5デニ
ールのアクリル系繊維を空気雰囲気下で150℃よ
り1℃/分の昇温速度で300℃まで熱処理し、耐
炎性繊維を作つた。次いでこの耐炎性繊維を窒素
気流中室温より400℃/hで850℃まで昇温させた
後30分間水蒸気を導入し活性炭素繊維を得た。こ
のものの30〜300Åの細孔容積は0.07c.c./gであ
つた。この活性炭素繊維に塩化第二鉄を5.1重量
%添着し、乾燥させた後、窒素気流中室温より
600℃/hの昇温速度で昇温させながら200℃より
水蒸気を導入して850℃までもたらし、30分保つ
てから窒素気流中にて冷却し、活性炭素繊維を得
た。このものの30〜120Åの細孔容積は0.33c.c./
gであつた。 実施例 8 実施例1で得た4種の活性炭素繊維C、D、
N、PにPd触媒5%を担持したものを夫々70重
量部と木材パルプ30重量部と5部のポリビニール
アルコール繊維との三者を通常の湿式抄紙法で抄
紙し、Pd触媒担持活性炭素繊維を含有する4種
の紙を作つた。これらの紙はいずれも坪量50g/
m2、厚みは0.25mmであつた。この様にして作製し
た混抄紙の厚み方向に、オゾン1.0ppmを含む温
度20℃相対湿度50%の空気を0.45m/secの空塔
流速で通じ、オゾンの初期除去率を測定したとこ
ろ、第3表の結果が得られた。本発明による活性
炭素繊維(N)、(P)は、従来の活性炭素繊維
(C)、(D)に較べて、オゾンの除去率は極めて高かつ
た。
[Table] Example 2 The activated carbon fiber (C) obtained in Example 1 was impregnated with 4.4% by weight of nickel chloride, and after drying, water vapor was added to the activated carbon fiber (C) from 200°C at a heating rate of 600°C/h from room temperature in a nitrogen stream. The fibers were introduced and brought to 850°C, and reactivated for 60 minutes at this temperature. After cooling, the fibers were taken out, washed with IN hydrochloric acid, washed with water, and dried to obtain activated carbon fibers. The 30-300 Å pore volume of this material was 0.35 cc/g. Example 3 The activated carbon fiber (C) obtained in Example 1 was impregnated with 4.2% by weight of cobalt chloride and reactivated in the same manner as in Example 2, resulting in an active carbon fiber with a pore volume of 30 to 300 Å of 0.38 cc/g. Carbon fiber was obtained. Example 4 The activated carbon fiber (C) obtained in Example 1 was impregnated with 7.0% by weight of manganese sulfate and reactivated in the same manner as in Example 2 to form pores with a pore diameter of 30 to 300 Å with an activation yield of 49%. Activated carbon fibers with a volume of 0.41 cc/g were obtained. Example 5 The activated carbon fiber (C) obtained in Example 1 was impregnated with 6.2% by weight of magnesium acetate, and reactivated in the same manner as in Example 2, resulting in a pore volume of 0.40 with a pore diameter of 30 to 300 Å.
cc/g of activated carbon fiber was obtained. Example 6 Oxine iron was added to the activated carbon fiber (C) obtained in Example 1.
9.1% by weight was impregnated and reactivated in the same manner as in Example 2 to obtain activated carbon fibers with a pore diameter of 30 to 300 Å and a pore volume of 0.33 cc/g. Example 7 A 1.5 denier acrylic fiber obtained by wet spinning a copolymer of 95 mol% acrylonitrile and 5 mol% methyl acrylate was heated from 150°C to 300°C at a heating rate of 1°C/min in an air atmosphere. The fibers were heat-treated to create flame-resistant fibers. Next, this flame-resistant fiber was heated from room temperature to 850°C at a rate of 400°C/h in a nitrogen stream, and then water vapor was introduced for 30 minutes to obtain activated carbon fiber. The 30-300 Å pore volume of this material was 0.07 cc/g. After impregnating 5.1% by weight of ferric chloride on this activated carbon fiber and drying it,
While increasing the temperature at a rate of 600°C/h, water vapor was introduced from 200°C to 850°C, maintained for 30 minutes, and then cooled in a nitrogen stream to obtain activated carbon fibers. The pore volume of this material from 30 to 120 Å is 0.33 cc/
It was hot at g. Example 8 Four types of activated carbon fibers C, D, obtained in Example 1,
70 parts by weight of N and P with 5% Pd catalyst supported on them, 30 parts by weight of wood pulp, and 5 parts of polyvinyl alcohol fiber are made into paper using a normal wet paper making method, and activated carbon supporting Pd catalyst is made. Four types of paper containing fiber were made. All of these papers have a basis weight of 50g/
m 2 and thickness was 0.25 mm. Air containing 1.0 ppm of ozone at a temperature of 20°C and relative humidity of 50% was passed through the thickness of the mixed paper produced in this way at a superficial flow rate of 0.45 m/sec, and the initial ozone removal rate was measured. The results shown in 3 tables were obtained. The activated carbon fibers (N) and (P) according to the present invention are conventional activated carbon fibers.
Compared to (C) and (D), the ozone removal rate was extremely high.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 表面積が30〜1200m2/g、かつ細孔直径30〜
300Åの細孔容積が0.1c.c./g以下の炭素質繊維に
マグネシウム、カルシウム、バリウム、鉄、コバ
ルト、ニツケル、マンガンよりなる化合物から選
ばれた少なくとも1種類を担持させた後酸化性ガ
ス中又は燃焼廃ガス中で650〜1050℃で加熱処理
して賦活化処理を施すことを特徴とする活性炭素
繊維の製造方法。
1 Surface area is 30~1200m 2 /g and pore diameter is 30~
Carbon fibers with a 300 Å pore volume of 0.1 cc/g or less are loaded with at least one compound selected from magnesium, calcium, barium, iron, cobalt, nickel, and manganese, and then subjected to oxidizing gas or combustion. A method for producing activated carbon fiber, which comprises performing an activation treatment by heating at 650 to 1050°C in waste gas.
JP56114648A 1981-07-21 1981-07-21 Preparation of active carbon fiber Granted JPS5818418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56114648A JPS5818418A (en) 1981-07-21 1981-07-21 Preparation of active carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56114648A JPS5818418A (en) 1981-07-21 1981-07-21 Preparation of active carbon fiber

Publications (2)

Publication Number Publication Date
JPS5818418A JPS5818418A (en) 1983-02-03
JPS6367566B2 true JPS6367566B2 (en) 1988-12-26

Family

ID=14643060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56114648A Granted JPS5818418A (en) 1981-07-21 1981-07-21 Preparation of active carbon fiber

Country Status (1)

Country Link
JP (1) JPS5818418A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208486A (en) * 2007-02-26 2008-09-11 Mitsubishi Heavy Ind Ltd Activated carbon fiber and apparatus for cleaning exhaust gas
JP2009149460A (en) * 2007-12-19 2009-07-09 Osaka Gas Co Ltd Surface modification method of carbonaceous material, and carbonaceous material or activated carbon fiber

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295217A (en) * 1985-06-22 1986-12-26 Unitika Ltd Fibrous active carbon
JPH06104562B2 (en) * 1985-07-24 1994-12-21 大阪瓦斯株式会社 Activated carbon fiber manufacturing method
JPS62191040A (en) * 1986-02-17 1987-08-21 Nippon Denso Co Ltd Adsorbable carbon material and its production
US5630889A (en) * 1995-03-22 1997-05-20 Aluminum Company Of America Vanadium-free aluminum alloy suitable for extruded aerospace products
KR100547455B1 (en) * 1998-08-25 2006-02-01 후지 주코교 카부시키카이샤 Electrode material
KR20020089766A (en) * 2001-05-24 2002-11-30 조통래 Active carbon for adsorbing digestion gas and storage & utilizing method of digestion gas using the active carbon
DE102006007208B3 (en) * 2006-02-15 2007-07-05 RUHR-UNIVERSITäT BOCHUM Catalytic etching of carbon fibers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130327A (en) * 1975-05-08 1976-11-12 Toyobo Co Ltd Activated carbon fibers containing metallic oxide
JPS5510473A (en) * 1978-07-10 1980-01-24 Takeda Chem Ind Ltd Production of activated carbon fiber
JPS5650107A (en) * 1979-09-28 1981-05-07 Toho Rayon Co Ltd Manufacture of fibrous activated carbon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130327A (en) * 1975-05-08 1976-11-12 Toyobo Co Ltd Activated carbon fibers containing metallic oxide
JPS5510473A (en) * 1978-07-10 1980-01-24 Takeda Chem Ind Ltd Production of activated carbon fiber
JPS5650107A (en) * 1979-09-28 1981-05-07 Toho Rayon Co Ltd Manufacture of fibrous activated carbon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208486A (en) * 2007-02-26 2008-09-11 Mitsubishi Heavy Ind Ltd Activated carbon fiber and apparatus for cleaning exhaust gas
JP2009149460A (en) * 2007-12-19 2009-07-09 Osaka Gas Co Ltd Surface modification method of carbonaceous material, and carbonaceous material or activated carbon fiber

Also Published As

Publication number Publication date
JPS5818418A (en) 1983-02-03

Similar Documents

Publication Publication Date Title
US4366085A (en) Fibrous activated carbon with metal chelate compound supported thereon, process for producing the same
US4362646A (en) Process for the production of fibrous activated carbon
JPS5836095B2 (en) Activated carbon fiber manufacturing method
JPS6367566B2 (en)
KR102335494B1 (en) Activated carbon fiber with metal for the removal of harmful material, and method for preparation the same
JP2001514068A (en) Activated carbon filter and harmful gas separation method
KR20080027334A (en) Adsorbent and its manufacturing method
JPS62152534A (en) Pitch type activated carbon fiber for adsorption and recovery
USRE29410E (en) Process for manufacturing of deodorizing air filters
JPH09173829A (en) Air purifiers and filters for air purification
JPH0280314A (en) Sheet containing active carbon
JPS61282430A (en) Production of activated carbon fiber
JPH0223208B2 (en)
JPS6044012B2 (en) Adsorbent for removing sulfur-containing harmful gases
JPS6251651B2 (en)
KR102434722B1 (en) Multifunctional mask
JPWO2003033135A1 (en) Activated carbon fiber for removing organochlorine compounds
JP3074261B2 (en) Antibacterial fibrous activated carbon and method for producing the same
JPS62129144A (en) Porous composite structure and its preparation
JPS6158403B2 (en)
JPH06104562B2 (en) Activated carbon fiber manufacturing method
JPS59228935A (en) Dehumidifying element
JPS6045123B2 (en) Manufacturing method of fibrous activated carbon
JPS6048138A (en) Adsorbent of aldehydes in gaseous phase
JPS5820883B2 (en) Activated carbon fiber manufacturing method