JPS5820883B2 - Activated carbon fiber manufacturing method - Google Patents
Activated carbon fiber manufacturing methodInfo
- Publication number
- JPS5820883B2 JPS5820883B2 JP50061757A JP6175775A JPS5820883B2 JP S5820883 B2 JPS5820883 B2 JP S5820883B2 JP 50061757 A JP50061757 A JP 50061757A JP 6175775 A JP6175775 A JP 6175775A JP S5820883 B2 JPS5820883 B2 JP S5820883B2
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- fibers
- fiber
- treatment
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 5
- 239000000835 fiber Substances 0.000 claims description 49
- 230000003647 oxidation Effects 0.000 claims description 22
- 238000007254 oxidation reaction Methods 0.000 claims description 22
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 14
- 230000001590 oxidative effect Effects 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 48
- 229920000049 Carbon (fiber) Polymers 0.000 description 18
- 238000001994 activation Methods 0.000 description 18
- 230000004913 activation Effects 0.000 description 13
- 238000001179 sorption measurement Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 239000002994 raw material Substances 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 6
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- 239000003463 adsorbent Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 235000005074 zinc chloride Nutrition 0.000 description 3
- 239000011592 zinc chloride Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 2
- 229910001867 inorganic solvent Inorganic materials 0.000 description 2
- 239000003049 inorganic solvent Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 150000002926 oxygen Chemical class 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- JHUFGBSGINLPOW-UHFFFAOYSA-N 3-chloro-4-(trifluoromethoxy)benzoyl cyanide Chemical compound FC(F)(F)OC1=CC=C(C(=O)C#N)C=C1Cl JHUFGBSGINLPOW-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008360 acrylonitriles Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- INLLPKCGLOXCIV-UHFFFAOYSA-N bromoethene Chemical compound BrC=C INLLPKCGLOXCIV-UHFFFAOYSA-N 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
- Inorganic Fibers (AREA)
Description
【発明の詳細な説明】 本発明はアクリロニトリル系繊維を原料として。[Detailed description of the invention] The present invention uses acrylonitrile fiber as a raw material.
これを酸化処理及び活性化処理することによって、機械
的繊維性能が優れ、しかも吸着性能の高い活性炭素繊維
を高収率で得る方法に関するものである。The present invention relates to a method for obtaining activated carbon fibers with excellent mechanical fiber performance and high adsorption performance in a high yield by subjecting the carbon fibers to oxidation treatment and activation treatment.
ここで活性炭素繊維とは活性炭としての吸着性能を有す
る炭素質の繊維及びそれから構成されるフェルト、織物
等の構造物をいう。The activated carbon fibers herein refer to carbonaceous fibers that have adsorption performance as activated carbon, and structures such as felts and woven fabrics made from the same.
活性炭は古くから非常に有用な吸着材として知られてい
る。Activated carbon has long been known as a very useful adsorbent.
特にここ数年間、公害問題についての関心が急速に高ま
り、その中で水質汚濁、大気汚染等の防御手段としての
吸着機能は重要である。Particularly in recent years, interest in pollution problems has increased rapidly, and adsorption functions are important as a means of preventing water pollution, air pollution, etc.
ここで用いられる吸着材としての活性炭は他の吸着材料
に比して、その性能、費用等に於て有利な立場を占めて
いる。Activated carbon as the adsorbent used here has an advantage over other adsorbent materials in terms of performance, cost, etc.
従来活性炭は、主としてヤシガラ、木質材、タール等を
原料として粉又は粒状の活性炭が製造されてきた。Conventionally, activated carbon has been produced in the form of powder or granules using mainly coconut shells, wood materials, tar, and the like as raw materials.
又アクリロニトリル重合体を原料として使用する方法も
提案されている。A method using an acrylonitrile polymer as a raw material has also been proposed.
これらの原料を使用した活性炭は、その原料に依存した
特性を有している。Activated carbon made from these raw materials has characteristics that depend on the raw materials.
しかし、従来の活性炭は、通常、粉状、粒状であるため
形態保持性がなく取扱上用途によっては不都合な面を有
していた。However, since conventional activated carbon is usually in the form of powder or granules, it does not have shape retention and is inconvenient in handling depending on the application.
本発明者はアクリロニトリル系繊維を原料とした活性炭
素繊維の製造について研究の結果、繊維としての加工性
を有し、しかも優れた吸着特性を有する活性炭素繊維を
高収率で得る方法を見出した。As a result of research into the production of activated carbon fibers using acrylonitrile fibers as raw materials, the present inventor discovered a method for obtaining activated carbon fibers with high yields that are processable as fibers and have excellent adsorption properties. .
すなわち本発明は、アクリロニトリル系繊維を酸化性雰
囲気中200〜300℃の温度で収縮率が自由収縮の5
0〜90係となるように張力を与えながら、該繊維の飽
和酸素結合量の80係以上となるまで酸化処理し、次い
で水蒸気雰囲気中で活性化処理することにより活性炭素
繊維を得るものである。That is, the present invention provides acrylonitrile fibers with a free shrinkage rate of 5 at a temperature of 200 to 300°C in an oxidizing atmosphere.
Activated carbon fibers are obtained by oxidizing the fibers while applying tension such that the fiber has a saturated oxygen bond amount of 80 or more, and then activating in a steam atmosphere. .
このような方法によると、繊維強度の高い吸着性能の優
れた活性炭素繊維を得ることができる。According to such a method, activated carbon fibers with high fiber strength and excellent adsorption performance can be obtained.
従来、アクリロニトリル繊維を原料とする活性炭の製造
についても提案されている(特開昭49−116332
号公報)。Conventionally, the production of activated carbon using acrylonitrile fiber as a raw material has also been proposed (Japanese Patent Application Laid-Open No. 116332/1989).
Publication No.).
この方法は、アクリロニトリル繊維を無緊張下で耐炎化
処理しく酸化処理)、次いで活性化処理するものである
。In this method, acrylonitrile fibers are subjected to flameproofing treatment (oxidation treatment) and then activation treatment under no tension.
通常アクリロニトリル系繊維を熱処理すると分子配向の
弛緩によって収縮し、それに伴い強度は低下する。Normally, when acrylonitrile fibers are heat-treated, they shrink due to relaxation of molecular orientation, and their strength decreases accordingly.
前述の既知の方法によると耐炎化処理工程では無緊張処
理のため得られた活性炭素繊維は強度が低く、脆弱な繊
維であるばかりでなく、その最大の特徴である加工性が
失われ、用途面で通常の活性炭と同じになり、繊維状と
した意味がない。According to the above-mentioned known method, the activated carbon fiber obtained not only has low strength and is brittle, but also loses its most important characteristic, processability, due to the stress-free treatment during the flame-retardant treatment process, making it difficult to use. The surface is the same as normal activated carbon, so there is no point in making it fibrous.
これに対し本発明によると、このような問題はなく、吸
着性能に優れ、しかも加工に必要な強度を有し、形態と
して長繊維、短繊維、更にそれらから構成される織物、
不織布、フェルト等として加工して用いられ、従来の活
性炭より、より機能的に使用することができる。On the other hand, according to the present invention, there is no such problem, and it has excellent adsorption performance and strength necessary for processing, and has the form of long fibers, short fibers, and woven fabrics made of these.
It can be processed and used as nonwoven fabric, felt, etc., and can be used more functionally than conventional activated carbon.
本発明に於てアクリロニトリル系繊維とはアクリロニト
リルを主成分とする重合体からなる繊維であり、共重合
成分として例えば塩化ビニル、塩化ビニリデン、臭化ビ
ニル、アクリル酸又はメタアクリル酸及びその誘導体、
アクリルアミド、N−メチロールアクリルアミド、アリ
ルスルホン酸及びメタアリルスルホン酸又はその塩類等
の一種又はそれ以上と共重合してなる重合体からなる繊
維をいう。In the present invention, acrylonitrile fibers are fibers made of a polymer whose main component is acrylonitrile, and the copolymerization components include, for example, vinyl chloride, vinylidene chloride, vinyl bromide, acrylic acid or methacrylic acid, and derivatives thereof.
A fiber made of a polymer copolymerized with one or more of acrylamide, N-methylolacrylamide, allylsulfonic acid, metaallylsulfonic acid, or salts thereof.
アクリロニl−IJル系織繊維製造は、種々の有機・無
機溶媒を用いて紡糸されているが、有機溶媒を使用する
場合、繊維中の残留溶媒が酸化処理する際可塑化作用に
よって、繊維が脆弱化することがある。Acrylonyl l-IJ type woven fibers are produced by spinning using various organic and inorganic solvents, but when organic solvents are used, the residual solvent in the fibers undergoes plasticizing action during oxidation treatment, causing the fibers to deteriorate. May become vulnerable.
このため溶媒としては、無機溶媒を使用するのがよく、
特に塩化亜鉛系水溶液を使用した場合、残留並鉛分によ
って酸化、活性化時間を短縮し、更に高強力の繊維が得
られる。For this reason, it is best to use an inorganic solvent as the solvent.
In particular, when a zinc chloride-based aqueous solution is used, the oxidation and activation time is shortened due to the residual normal lead content, and even higher strength fibers can be obtained.
このアクリロニトリル系繊維を200〜300℃の温度
下、酸化性雰囲気中にて張力を与えながら酸化処理する
。This acrylonitrile fiber is oxidized at a temperature of 200 to 300° C. in an oxidizing atmosphere while applying tension.
酸化処理時の張力は耐炎化温度(酸化処理温度)での収
縮が、その温度における自由収縮率の50〜90%とな
るように調整する。The tension during the oxidation treatment is adjusted so that the shrinkage at the flame resistance temperature (oxidation treatment temperature) is 50 to 90% of the free shrinkage rate at that temperature.
この自由収縮率に対する収縮率が50係以下であると張
力が高すぎるため酸化後の繊維の配向が進み、このため
活性化処理(賦活処理)工程での賦活ガスとの反応がし
にくくなり、賦活収率が低下すると共に、賦活条件が酷
しくなることにより。If the shrinkage ratio is less than 50 times the free shrinkage ratio, the tension will be too high and the orientation of the fibers will progress after oxidation, making it difficult to react with the activation gas in the activation process. As the activation yield decreases and the activation conditions become harsher.
繊維強度が低下する。Fiber strength decreases.
一方収縮率が90係以上では強度の低い、加工性のない
活性炭素繊維しか得られない。On the other hand, if the shrinkage ratio is 90 or higher, only activated carbon fibers with low strength and no workability can be obtained.
又この時の酸化処理が充分でないと賦活収率が高く、優
れた吸着性能のものは得られない。Furthermore, if the oxidation treatment at this time is not sufficient, the activation yield will be high and a product with excellent adsorption performance will not be obtained.
また酸化処理は200〜300℃の酸化性雰囲気中にて
飽和酸素結合量の80係以上となるまで行うことが必要
である。Further, the oxidation treatment must be carried out in an oxidizing atmosphere at 200 to 300° C. until the amount of saturated oxygen bonds reaches 80 or more.
アクリロニトリル系繊維を酸化処理した場合、その共重
合組成に応じた固有の飽和酸素結合量を有する。When acrylonitrile fiber is oxidized, it has a specific amount of saturated oxygen bonding depending on its copolymer composition.
この飽和酸素結合量は、繊維を200〜300℃で酸化
処理した場合、経時的酸素結合量を測定すると、次第に
多くなるが、ある処理時間後ははシ一定となり、この時
の酸素結合量(重量%)を飽和酸素結合量という。When fibers are oxidized at 200 to 300°C, this saturated oxygen binding amount gradually increases when measuring the oxygen binding amount over time, but after a certain treatment time it becomes constant, and the oxygen binding amount at this time ( % by weight) is called the saturated oxygen bond amount.
この酸素結合量が飽和に達するまでの所要処理時間は処
理温度、共重合体組成により変るが、2〜24時間であ
る。The treatment time required until the amount of oxygen bonds reaches saturation varies depending on the treatment temperature and copolymer composition, but is 2 to 24 hours.
アクリロニトリル系重合体を原料とする活性炭素繊維の
製造においては、酸化工程における重合体分子鎖中への
酸素結合量が後の活性炭素繊維の性能に大きく関与して
くる。In the production of activated carbon fibers using an acrylonitrile polymer as a raw material, the amount of oxygen bonded into the polymer molecular chain in the oxidation step has a large influence on the subsequent performance of the activated carbon fibers.
同じく炭素質からなる繊維でも複合材料用としての炭素
繊維の製造においては、酸化工程における酸素結合量が
あまり高くならない段階で炭素化工程に移行するのが高
性能の炭素繊維を得るのに有効であり、しかもこのとき
の張力は繊維の結晶化を進め、配向度を高めるために、
なるべく高い張力下で酸化処理することが好ましい。Similarly, when producing carbon fibers for use in composite materials, it is effective to shift to the carbonization process at a stage when the amount of oxygen bonding in the oxidation process does not become too high in order to obtain high-performance carbon fibers. Moreover, the tension at this time promotes crystallization of the fibers and increases the degree of orientation.
It is preferable to carry out the oxidation treatment under as high a tension as possible.
しかし吸着材としての活性炭素繊維の製造においては、
酸化工程で充分な酸素をアクリロニドIJル重合体に結
合させ、はとんど飽和点にまで酸化することが高性能の
活性炭素繊維を得るうえに好ましい。However, in the production of activated carbon fiber as an adsorbent,
In order to obtain high-performance activated carbon fibers, it is preferable to bind sufficient oxygen to the acrylonide IJ polymer in the oxidation step and oxidize it almost to the saturation point.
例えば酸化処理条件と活性炭素繊維の関係を示すと次表
の通りである。For example, the relationship between oxidation treatment conditions and activated carbon fibers is shown in the following table.
又酸化段階における酸素結合量と活性炭素繊維の性能と
の関係を示すと下表の通りである。The table below shows the relationship between the amount of oxygen bonded in the oxidation stage and the performance of activated carbon fibers.
ただし;アクリロニトリル89.7%、アクリル酸メチ
ル9係、メタアリルスルホン酸
ソーダ1.3係の共重合体繊維
酸化処理待収縮率、自由収縮の75係
活性化条件、800℃スチーチ中40
分処理
表面積は柴田化学器械■5AL00に
て、又ベンセン吸着量はJIS
K−1112に準じて測定した。However, copolymer fiber oxidation treatment of 89.7% acrylonitrile, 9 parts methyl acrylate, 1.3 parts sodium methalylsulfonate, 75 parts free shrinkage activation conditions, 40 minutes treatment in 800°C Steach The surface area was measured using Shibata Chemical Instruments ■5AL00, and the amount of benzene adsorption was measured according to JIS K-1112.
以上の通り、酸化工程における酸素結合量、張力は活性
炭素繊維の性能に直接影響し、飽和酸素結合量の80%
を越えると非常に高い吸着能を示すようになる。As mentioned above, the amount of oxygen binding and tension in the oxidation process directly affect the performance of activated carbon fibers, and 80% of the saturated oxygen binding amount
When the adsorption capacity exceeds 100%, extremely high adsorption capacity is exhibited.
活性化処理は酸化処理された繊維を800〜1000℃
の水蒸気を含む雰囲気中で20分〜3時間処理すること
により行なわれる。Activation treatment is performed by heating the oxidized fibers at 800 to 1000℃.
The treatment is carried out by treatment in an atmosphere containing water vapor for 20 minutes to 3 hours.
酸化処理された繊維はこの工程で15〜30%収縮する
。The oxidized fibers shrink by 15-30% during this process.
したがって活性化処理は収縮に対応するだけの張力下で
行なわれる。Therefore, the activation process is carried out under sufficient tension to correspond to the contraction.
望ましくは活性化処理での自由収縮率に対して40係以
上にするのがよい。Preferably, the coefficient of free shrinkage in the activation process is 40 or more.
この場合被処理繊維の収縮率が自由収縮率の40係以下
であると活性化処理中に糸条の切断を招き易く、又活性
化し難く、吸着能が悪い結果となる。In this case, if the shrinkage rate of the fibers to be treated is less than 40 times the free shrinkage rate, the fibers are likely to break during the activation process, and activation will be difficult, resulting in poor adsorption ability.
以上の如く、アクリロニl−IJル系織繊維酸化処理及
び活性化処理して活性炭素繊維が得られるが、本発明に
よると活性炭素繊維は繊維としての加工性を有するため
に活性化処理の前又は後で改編織或はフェルト化し、繊
維状のみならず構造体として使用することができる。As described above, activated carbon fibers can be obtained by oxidation treatment and activation treatment of acrylonyl l-IJ type woven fibers.According to the present invention, activated carbon fibers have processability as fibers, so they must be treated before activation treatment. Alternatively, it can be later woven or felted and used not only in the form of fibers but also as a structure.
以下実施例について示す。Examples will be shown below.
実施例 1
60%塩化亜鉛系水溶液90部、アクIJ oニトリル
9.7部、アクリル酸メチル0.3部からなる溶液を均
一系溶液重合し得られた重合体溶液を紡糸原液として1
5℃30%塩化亜鉛水溶液中に孔径o、osmmu、孔
数1000のノズルを用いて紡糸し、延伸しながら水洗
し、120℃の乾燥機中で乾燥し、次いで130℃のス
チーム中にて5倍延伸し1.5デニールの繊維を得た。Example 1 A solution consisting of 90 parts of a 60% zinc chloride-based aqueous solution, 9.7 parts of AkuIJO nitrile, and 0.3 parts of methyl acrylate was subjected to homogeneous solution polymerization, and the resulting polymer solution was used as a spinning stock solution.
The fibers were spun in a 30% zinc chloride aqueous solution at 5°C using a nozzle with a pore diameter of o, osmmu and 1000 holes, washed with water while being stretched, dried in a dryer at 120°C, and then spun in steam at 130°C for 50 minutes. The fiber was stretched twice to obtain a 1.5 denier fiber.
この繊維を電気炉で250℃の空気中で自由収縮率に対
して70係の収縮を与える様な張力をかけつつ酸素結合
量が飽和酸素結合量に対して90係になるまで十分に処
理した。This fiber was sufficiently processed in an electric furnace in air at 250° C. while applying tension to give a contraction of 70 times the free shrinkage rate until the amount of oxygen bonds became 90 times the amount of saturated oxygen bonds. .
次いで850℃にて水蒸気を繊維1g当り0.7g/分
の割合で供給しつつ40分間、自由収縮率に対して80
%の収縮を与える張力下で活性化処理した。Next, at 850°C, water vapor was supplied at a rate of 0.7 g/min per 1 g of fiber for 40 minutes, and the free shrinkage rate was 80
The activation process was carried out under tension giving a contraction of %.
得られた活性炭素繊維は直径4.0部1強力1.81g
(強度8.6g/d)、伸度1.52係で充分な機械的
強度を有し、又表面積はL 400 m2/g、ベンセ
ン吸着量は46.11%で満足すべき活性能を有した。The obtained activated carbon fiber has a diameter of 4.0 parts and a strength of 1.81 g.
(strength: 8.6 g/d), elongation ratio: 1.52, and has sufficient mechanical strength, surface area is L 400 m2/g, and benzene adsorption amount is 46.11%, so it has satisfactory activity. did.
一方、酸化処理を無緊張下で行ったもの直径5μ、強力
0.5〜o、6g(強度1.5〜1.8g/d)で繊維
として使用に耐えない脆弱なものであった。On the other hand, the fibers subjected to the oxidation treatment without tension had a diameter of 5 μm, a strength of 0.5 to 0, and a strength of 6 g (strength of 1.5 to 1.8 g/d), and were too brittle to be used as fibers.
実施例 2
実施例1で用いた原料アクリロニトリル系繊維を収縮率
を変えて260℃で酸化処理し、次いで1、200 m
2/gの表面積を得るよう900℃水蒸気中で活性化処
理した。Example 2 The raw material acrylonitrile fiber used in Example 1 was oxidized at 260°C with different shrinkage rates, and then 1,200 m
Activation treatment was performed in steam at 900° C. to obtain a surface area of 2/g.
このときの収率、繊維強度を示すと次の通りであった。The yield and fiber strength at this time were as follows.
なお酸化処理時の酸素結合量は飽和酸素結合量の90係
とした。The amount of oxygen bonded during the oxidation treatment was set to be 90 times the amount of saturated oxygen bonded.
アクリロニトリル92係、メタクリル酸メチル7係、ア
リルスルホン酸ソーダlfoの重合体組成からなる、1
.5デニール、30,000フイラメントからなるアク
リロニトリル系繊維束を原料として用いた。1 consisting of a polymer composition of 92 parts acrylonitrile, 7 parts methyl methacrylate, and sodium allylsulfonate lfo.
.. An acrylonitrile fiber bundle consisting of 5 denier and 30,000 filaments was used as a raw material.
このアクリロニl−IJル繊維束を250℃空気中自由
収縮に対する収縮率60%とし処理時間を変えることに
より酸素結合量を変えて酸化処理した。This acrylonyl l-IJ fiber bundle was subjected to oxidation treatment at a shrinkage rate of 60% relative to free shrinkage in air at 250° C. by changing the amount of oxygen bonding by changing the treatment time.
次いでこの酸化処理繊維をニードルパンチにて不織布と
なし、850℃水蒸気中で30分間活性化処理した。Next, this oxidized fiber was made into a nonwoven fabric by needle punching, and activated in steam at 850° C. for 30 minutes.
このときの表面積、収率及びベンゼン吸着量は次の通り
であった。The surface area, yield, and amount of benzene adsorbed at this time were as follows.
Claims (1)
300℃の温度で収縮率が自由収縮率の50〜90係と
なるよう張力を与えながら、該繊維の飽和酸素結合量の
80係以上となるまで酸化処理し、次いで水蒸気雰囲気
中で活性化処理することを特徴とする活性炭素繊維の製
造法。1 Acrylonitrile fibers in an oxidizing atmosphere of 200~
While applying tension at a temperature of 300°C so that the shrinkage rate is 50 to 90 times the free shrinkage rate, oxidation treatment is performed until the saturated oxygen bond amount of the fiber becomes 80 times or more, and then activated in a steam atmosphere. A method for producing activated carbon fiber characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50061757A JPS5820883B2 (en) | 1975-05-23 | 1975-05-23 | Activated carbon fiber manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50061757A JPS5820883B2 (en) | 1975-05-23 | 1975-05-23 | Activated carbon fiber manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS51137694A JPS51137694A (en) | 1976-11-27 |
JPS5820883B2 true JPS5820883B2 (en) | 1983-04-26 |
Family
ID=13180335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50061757A Expired JPS5820883B2 (en) | 1975-05-23 | 1975-05-23 | Activated carbon fiber manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5820883B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016535175A (en) * | 2013-10-29 | 2016-11-10 | コーロン インダストリーズ インク | Activated carbon fiber and method for producing the same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5836095B2 (en) * | 1976-10-05 | 1983-08-06 | 東邦ベスロン株式会社 | Activated carbon fiber manufacturing method |
JPS5649836Y2 (en) * | 1978-06-19 | 1981-11-20 | ||
JPS582211A (en) * | 1981-06-25 | 1983-01-07 | Mitsubishi Chem Ind Ltd | modified activated carbon |
US5922300A (en) * | 1997-01-23 | 1999-07-13 | Oji Paper Co., Ltd. | Process for producing silicon carbide fibers |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3508874A (en) * | 1968-01-12 | 1970-04-28 | Celanese Corp | Production of carbon yarns |
JPS49116332A (en) * | 1973-03-13 | 1974-11-07 |
-
1975
- 1975-05-23 JP JP50061757A patent/JPS5820883B2/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3508874A (en) * | 1968-01-12 | 1970-04-28 | Celanese Corp | Production of carbon yarns |
JPS49116332A (en) * | 1973-03-13 | 1974-11-07 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016535175A (en) * | 2013-10-29 | 2016-11-10 | コーロン インダストリーズ インク | Activated carbon fiber and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JPS51137694A (en) | 1976-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4285831A (en) | Process for production of activated carbon fibers | |
CA1159810A (en) | Process for the production of fibrous activated carbon | |
CA1104994A (en) | Process for production of activated carbon fibers | |
US3529934A (en) | Process for the preparation of carbon fibers | |
EP0159365B1 (en) | Carbon fibers with high strength and high modulus, and process for their production | |
JPS6328132B2 (en) | ||
JPS5820883B2 (en) | Activated carbon fiber manufacturing method | |
FR2471427A1 (en) | PROCESS FOR PRODUCING POLYACRYLONITRILE PREOXIDE FIBER YARNS | |
JPS61282430A (en) | Production of activated carbon fiber | |
US5281477A (en) | Carbon fibers having high tenacity and high modulus of elasticity and process for producing the same | |
JP3048449B2 (en) | Acrylonitrile precursor fiber | |
JPS591803B2 (en) | Method for manufacturing activated carbon fiber | |
JPH04281008A (en) | Acrylonitrile-based precursor fiber bundle | |
JPH0931759A (en) | Activated carbon fiber having excellent mechanical properties and its production | |
JPS6350447B2 (en) | ||
JP3002614B2 (en) | Acrylonitrile fiber and method for producing the same | |
US3656883A (en) | Process for the stabilization of acrylic fibers | |
JP2004339627A (en) | Method for producing carbonaceous fiber, and carbonaceous fiber and activated carbon fiber | |
JPH02160923A (en) | Porous carbon fiber and production thereof | |
JPS6250574B2 (en) | ||
JPS5976927A (en) | Acrylonitrile-based flameproof fiber | |
JPH04240220A (en) | Precursor for carbon fiber | |
JP3154595B2 (en) | Method for producing acrylonitrile fiber | |
JPS623245B2 (en) | ||
US3650668A (en) | Thermally stabilized acrylic fibers produced by sulfation and heating in an oxygen-containing atmosphere |